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Problem 10.1 
The Chow-Liu algorithm is a simple and efficient way to learn a tree structure that minimizes 
the information divergence to the empirical distribution p̃: 

pChow−Liu = arg min D(p̃|p) 
p∈T 

where T is the class of distributions defined on trees. 
The algorithm first computes empirical mutual information of all pairs of variables using 

their sample values: � p̃xi,xj (xi, xj )I(xi, xj ) ≡ p̃xi,xj (xi, xj ) log 
p̃xi (xi)p̃xj (xj)xi,xj 

where p̃xi,xj (xi, xj ) is the empirical marginal distribution of xi and xj obtained from samples. 
Then, it sets each edge weight equal to the empirical mutual information and finds the 
maximum weight spanning tree, which can be solved using greedy algorithms. In particular, 
Kruskal’s algorithm begins with a graph with no edges, and successively adds maximal-
weight edge to the graph while ensuring that the graph remains cycle-free. 

(a) Consider four variables with the following empirical mutual information: 

I(xi, xj ) 
1 0.3415 0.2845 0.0003 0.0822 
2 0.2845 0.3457 0.0005 0.0726 
3 0.0003 0.0005 0.5852 0.0002 
4 0.0822 0.0726 0.0002 0.5948 

1 2 3 4
 

Find the Chow-Liu tree of the four variables. 

(b) chowLiuData.mat contains a 10 × 5000 matrix, where each column represents binary 
sample values of {x1, x2, ...x10}. Implement the Chow-Liu algorithm and find three
 Chow-Liu trees of the 10 variables using the first 100, 3000, and 5000 samples,  respectively. 

You may find the following functions   useful: 

–	 connected.m: connected(adjmat,i,j) returns true if node i and j are con­
nected in the graph, where adjmat is the adjacency matrix of the graph with 
adjmat(i,j) = 1 if there is an edge between i and j and 0 otherwise. 

–	 draw graph.m: draw graph(adjmat) draws a graph with adjacency matrix 
adjmat. 
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Problem 10.2 
Suppose we are given random sequences z1, z2, . . . , zN+S and x1, x2, . . . , xN , where N and 
S are given, and where zn, xn ∈ {1, 2, . . . ,M}. The structure in the joint probability 
distribution for these variables is given by a directed acyclic graph Gs in which zn has no 
parents and zn+s is the unique parent node of xn, for n = 1, 2, . . . , N . For example, G2 is as 
follows. 

...

...

...

z1 z2 z3 z4 z5

x1 x2 x3

zN+2

xN

zN+S

sIn the graphical model, s ∈ {0, . . . , S} is a parameter, as are the distributions px |z (x|z) = 
pxn|zn+s (x|z) and pz (z) = pzn (z), which do not depend on n (as our notation reflects). 

We are given a sample for each variable: Dx = {x1, x2, . . . , xN }, Dz = {z1, z2, . . . , zN+S }, 
so our complete data is D = {Dx, Dz}. 

(a) For a given s, express the maximum-likelihood (ML) estimates for the parameters 
spx |z (x|z) and pz (z) in terms of the following empirical distributions computed from D 

N N+S
1 1s p̂ (x, z) = p̂z (z) = 11zn =z,x ,z 11xn =x11zn+s =z,
N N + S 

n=1 n=1 

where we have used the indicator function notation  
1 u = v 

11u=v = . 
0 u = v 

θML(b) The model Gs maximizing the log-likelihood of the data £(Gs; D) £ £((Gs, ˆ ); D)Gs 

can be expressed as Gs ∗ where 

∗ s s = arg max f(p̂x ,z , p̂z ), 
s 

swith p̂ (x, z) and p̂z (z) as defined in part (a). Determine the function f(·).x ,z 

In the following parts (c) and (d), we restrict our attention to the case M = 2 (binary 
variables), and S = 2. Suppose our data are Dx = {2, 1, 1, 1} and Dz = {1, 1, 1, 2, 1, 1}. 
Furthermore, suppose we are deciding between candidate structure G2 and an alternative 

˜structure G that has no edges, corresponding to a fully-disconnected graph. 

(c) Compute £(G2, D) − £(G̃, D) and determine which structure has the higher likelihood 
score. Explain why the likelihood score is not appropriate for choosing between G2 

and G̃. 
Reminder: Via the usual convention, we define 0 log 0 £ 0. 
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(d) Recall that the Bayesian score is defined as £B(G, D) = log p(D|G) + log p(G) where  
p(D|G) = p(D|θG , G) p(θG |G) dθG . 

Assume that p(G̃) = p(G2) and both p(θ ̃ |G̃) and p(θG2 |G2) are uniform distributions. G 

Compute £B(G2, D)−£B(G̃, D) and determine which structure has the higher Bayesian 
score. 

Hint: In your analysis, you may find it convenient to use the following parameter 
notation 

For G̃ : γ̃ = pz (1), β = px (1) 

For G2 : γ = pz (1), α1 = px |z (1|1), α2 = px |z (1|2). (1) 

Problem 10.3 
Recall Problem 5.6 where you were asked to implement the forward-backward and the 
Viterbi algorithm to locate genes in a DNA sequence. Now, pretend you do not have the 
model parameters for the HMM. Implement the Baum-Welch algorithm by augmenting 
your forward-backward algorithm, then run it on your test sequence, which you generated 
in Problem 5.6(a) (if you did not store your sequence, then you may re-generate a sequence 
using the true parameters in 5.6). Again find the region labels as the MAP estimates of the 
marginals, and compare estimation accuracy to your answer in Problem 5.6(b). 

Problem 10.4 

(a) A discrete-time Gaussian stochastic process y [n] is generated by a first-order system 
driven by white Gaussian noise w [n]: 

y [n + 1] = αy [n] + w [n], n = 0, 1, 2, . . . 

where y [0] ∼ N(0, λ) is independent of the noise sequence. Also, w [n] ∼ N(0, σ2), and 
α is unknown. Find the ML estimate of α based on observation of y [0], . . . , y [N + 1], 
i.e., compute the value of α that maximizes 

py [0],...,y [N+1]|α(y[0], . . . , y[N + 1]|α). 

(Hint: y [n] is a Gauss-Markov process.) 

(b) Now	 suppose y [n] is a Gaussian process generated by an (M + 1)th-order system 
driven by white Gaussian noise w [n]: 

y [n + 1] = a0y [n] + a1y [n − 1] + · · · + aM y [n − M ] + w [n], n = 0, 1, 2, . . . , 

where [y [−M ] · · · y [0]]T ∼ N(0, Λ) is independent of the white noise sequence. Also, 
w [n] ∼ N(0, σ2), and a = [a0 · · · aM ]

T is unknown. Find the ML estimate of a based 
on observation of y [−M ], . . . , y [N + 1]. 
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(c) Sometimes it is useful to take a discrete-time sequence y[−M ], . . . , y[N + 1] and try 
to model each sample as a linear combination of its past samples. That is, we seek to 
find the best a = [a0 · · · aM ]

T so that we minimize   2N+1 M 

y[k] − aiy[k − 1 − i] . 
k=1 i=0 

Find the optimal a, and compare with part (b). 
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