
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.438 Algorithms for Inference
Fall 2014

15-16. Loopy Belief Propagation and Its Properties

Our treatment so far has been on exact algorithms for inference. We focused on
trees first and uncovered efficient inference algorithms. To handle loopy graphs, we
introduced the Junction Tree Algorithm, which could be computational intractable
depending on the input graph. But many real-world problems involve loopy graphs,
which demand efficient inference algorithms. Today, we switch gears to approximate
algorithms for inference to tackle such problems. By tolerating some error in our
solutions, many intractable problems suddenly fall within reach of efficient inference.

Our first stop will be to look at loopy graphs with at most pairwise potentials.
Although we derived the Sum-Product algorithm so that it was exact on trees, noth
ing prevents us from running its message updates on a loopy graph with pairwise
potentials. This procedure is referred to as loopy belief propagation. While mathe
matically unsound at a first glance, loopy BP performs surprisingly well on numerous
real-world problems. On the flip side, loopy BP can also fail spectacularly, yielding
nonsensical marginal distributions for certain problems. We want to figure out why
such phenomena occur.

In guiding our discussion, we first recall the parallel Sum-Product algorithm, where
we care about the parallel version rather than the serial version because our graph
may not have any notion of leaves (e.g., a ring graph). Let G = (V, E) be a graph
over random variables x1, x2, . . . , xN ∈ X distributed as follows:

px(x) ∝ exp (φi(xi)) exp (ψij (xi, xj)) . (1)
i∈V (i,j)∈E

Remark : If (i, j) ∈ E, then (j, i) ∈/ E since otherwise we would have ψij and ψji be

two separate factors when we only want one of these; moreover, we define ψji / ψij .

Parallel Sum-Product is given as follows.

Initialization: For (i, j) ∈ E and xi, xj ∈ X,

0 0 mi→j (xj) ∝ 1 ∝ mj→i(xi).

Message passing (t = 0, 1, 2, . . .): For i ∈ V and j ∈ N(i),
t+1 t m (xj) ∝ exp (φi(xi)) exp (ψij (xi, xj)) m (xi),i→j k→i

xi∈X k∈N(i)\j �
where we normalize our messages: mt (xj) = 1. xj ∈X i→j

Computing node and edge marginals: For (i, j) ∈ E,

bt(xi) ∝ exp (φi(xi)) m t (2)i k→i(xi),

k∈N(i)

bt m mi→j (xj).ij (xi, xj) ∝ exp (φi(xi) + φj(xj) + ψij (xi, xj)) k
t
→i(xi)

t

k∈N(i)\j i∈N (j)\i

(3)

But what exactly are these message-passing equations doing when the graph is not
a tree? Let’s denote mt ∈ [0, 1]2|E||X| to be all messages computed in iteration t stacked
up into a giant vector. Then we can view the message passing equations as applying

t t+1 t+1some function F : [0, 1]2|E||X| → [0, 1]2|E||X| to m to obtain m : m = F (mt).
For loopy BP to converge, it must be that repeatedly applying the message-passing
update F eventually takes us to what’s called a fixed point m ∗ of F :

m ∗ = F (m ∗).

This means that if we initialize our messages with m ∗, then loopy BP would imme
diately converge because repeatedly applying F to m ∗ will just keep outputting m ∗ .
Of course, in practice, we don’t know where the fixed points are and the hope is that
applying F repeatedly starting from some arbitrary point brings us to a fixed point,
which would mean that loopy BP actually converges. This leads us naturally to the
following questions:

• Does message-passing update F have a fixed point?

• If F has a fixed point or multiple fixed points, what are they?

• Does F actually converge to a fixed point?

In addressing these questions, we’ll harness classical results from numerical analysis
and interweave our inference story with statistical physics.

14.1 Brouwer’s fixed-point theorem

To answer the first question raised, we note that the message-passing update equations
are continous and so, collectively, the message-passing update function F is continuous
and in fact maps a convex compact set1 [0, 1]2|E||X| to the same convex compact set.
Then we can directly apply Brouwer’s fixed-point theorem:

Theorem 1. (Hadamard 1910, Brouwer 1912) Any continuous function mapping
from a convex compact set to the same convex compact set has a fixed point.

1In Euclidean space, a set is compact if and only if it is closed and bounded (Heine-Borel theorem)
and a set is convex if the line segment connecting any two points in the set is also in the set.

2

∏
∏ ∏

� �

This result has been popularized by a coffee cup analogy where we have a cup of

coffee and we stir the coffee. The theorem states that after stirring, at least one point
must be in the same position as it was prior to stirring! Note that the theorem is an
existential statement with no known constructive proof that gives exact fixed points
promised by the theorem. Moreover, as a historical note, this theorem can be used
to prove the existence of Nash equilibria in game theory.

Applying Brouwer’s fixed-point theorem to F , we conclude that in fact there does
exist at least one fixed point to the message-passing equations. But what does this
fixed point correspond to? It could be that this giant-vector-message fixed point
does not correspond to the correct final messages that produce correct node and edge
marginals. Our next goal is to characterize these fixed points by showing that they
correspond to local extrema of an optimization problem.

14.2 Variational form of the log partition function

Describing the optimization problem that message-passing update equations actually
solve involves a peculiar detour: We will look at a much harder optimization problem
that in general we can’t efficiently solve. Then we’ll relax this hard optimization
problem by imposing constraints to make the problem substantially easier, which will
directly relate to our loopy BP message update equations.

The hard optimization problem is to solve for the log partition function of distri
bution (1). Recall from Lecture 1 that, in general, solving for the partition function
is hard. Its logarithm is no easier to compute. But why should we care about the
partition function though? The reason is that if we have a black box that com
putes partition functions, then we can get any marginal of the distribution that we
want! We’ll show this shortly but first we’ll rewrite factorization (1) in the form of a
Boltzmann distribution: ⎛ ⎞

−E(x)px(x) =
1
exp ⎝ φi(xi) + ψij (xi, xj)⎠ =

1
e , (4)

Z Z
i∈V (i,j)∈E

where Z is the partition function and E(x) / − i∈V φi(xi)− (i,j)∈E ψij (xi, xj) refers
to energy. Then suppose that we wanted to know pxi (xi). Then letting x\i denote

3

∑ ∑
∑ ∑

� � �

� � �

� �

the collection (x1, x2, . . . , xi−1, xi+1, . . . , xN), we have

pxi (xi) = px(x)
x\i ⎛ ⎞

1
= exp ⎝ φi(xi) + ψij (xi, xj)⎠

Z
x\i i∈V (i,j)∈E

x\i
exp i∈V φi(xi) + ψij (xi, xj)(i,j)∈E

=
Z

Z(xi = xi)
=

Z

where Z(xi = xi) = exp(φi(xi) + ψij (xi, xj)) is just the partition x\i i∈V (i,j)∈E

function once we fix random variable xi to take on value xi. So if computing partition
functions were easy, then we could compute any marginal—not just for nodes—easily.
Thus, intuitively, computing the log partition function should be hard.

We now state what the hard optimization problem actually is:

log Z = sup − µ(x)E(x) − µ(x) log µ(x) , (5)
µ∈M

x∈XN x∈XN

where M is the set of all distributions over XN . This expression is a variational
characterization of the log partition function, which is a fancy way of saying that
we wrote some expression as an optimization problem. We’ll show why the right-
hand side optimization problem actually does yield log Z momentarily. First, we lend
some physical insight for what’s going on by parsing the objective function F of the
maximization problem in terms of energy:

F(µ) = − µ(x)E(x) − µ(x) log µ(x)
x∈XN x∈XN

= − Eµ[E(x)]+ Eµ[− log µ(x)] . (6) ' - ' -
average energy entropy of µ

w.r.t. µ

So by maximizing F over µ, we are finding µ that minimizes average energy while
maximizing entropy, which makes sense from a physics perspective.

We could also view the optimization problem through the lens of information
theory because as we’ll justify shortly, any solution to optimization problem (5) is
also a solution to the following optimization problem:

min D(µ I px), (7)
µ∈M

4

∑
∑ ∑ ∑
∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

where D(· I ·) is the Kullback-Leibler divergence also called the information divergence

between two distributions over the same alphabet:

p(x)
D(p I q) = p(x) log .

q(x)
x

KL divergence is a way to measure how far apart two distributions are; however, it
is not a proper distance because it is not symmetric. It offers a key property that
we shall use though: D(p I q) ≥ 0 for all distributions p and q defined on the same
alphabet, where equality occurs if and only if p and q are the same distribution.

We now show why the right-hand side maximization in equation (5) yields log Z
and, along the way, establish that the maximization in (5) has the same solution as
the minimization in (7). We begin by rearranging terms in (4) to obtain

E(x) = − log Z − log px(x). (8)

Plugging (8) into (6), we obtain

F(µ) = − µ(x)E(x) − µ(x) log µ(x)
x∈XN x∈XN

= µ(x) (log Z + log px(x)) − µ(x) log µ(x)
x∈XN x∈XN

= µ(x) log Z + µ(x) log px(x) − µ(x) log µ(x)
x∈XN x∈XN x∈XN

= log Z + µ(x) log px(x) − µ(x) log µ(x)
x∈XN x∈XN

µ(x)
= log Z − µ(x) log

px(x)
x∈XN

= log Z − D(µ I px)

≤ log Z,

where the last step is because D(µ I px) ≥ 0, with equality if and only if µ ≡ px. In
fact, we could set µ to be px, so the upper bound established is attained with µ ≡ px,
justifying why the maximization in (5) yields log Z. Moreover, from the second-to
last line in the derivation above, since log Z does not depend on µ, maximizing F(µ)
over µ is equivalent to minimizing D(µ I px), as done in optimization problem (7).

So we now even know the value of µ that maximizes the right-hand side of (5).
Unfortunately, plugging in µ to be px, we’re left with having to sum over all possible
configurations x ∈ XN , which in general is intractable. We next look at a way to
relax this problem called Bethe approximation.

5

∑

∑ ∑
∑ ∑
∑ ∑ ∑

∑ ∑
∑

14.3 Bethe approximation

The guiding intuition we use for relaxing the log partition optimization is to look at
what happens when px has a tree graph. By what we argued earlier, the solution to
the log partition optimization is to set µ ≡ px, so if px has a tree graph, then µ must
factorize as a tree as well. Hence, we need not optimize over all possible distributions
in XN for µ; we only need to look at distributions with tree graphs!

With this motivation, we look at how to parameterize µ to simplify our optimiza
tion problem, which involves imposing constraints on µ. We’ll motivate the contraints
we’re about to place by way of example. Supposing that px has the tree graph in Fig
ure 1, then px factorizes as:

px(x) = px1 (x1)px2|x1 (x2|x1)px3|x1 (x3|x1)
px1,x2 (x1, x2) px1,x3 (x1, x3)
 = px1 (x1)
 px1 (x1) px1 (x1)

px1,x2 (x1, x2) px1,x3 (x1, x3) = px1 (x1)px2 (x2)px3 (x3) .

px1 (x1)px2 (x2) px1 (x1)px3 (x3)

A pattern emerges in the last step, which in fact holds in general: if px has tree graph
G = (V, E), then its factorization is given by

pxi,xj (xi, xj) px(x) = pxi (xi) .
pxi (xi)pxj (xj)i∈V (i,j)∈E

Using this observation, we make the crucial step for relaxing the log partition opti
mization by parameterizing µ by:

µij (xi, xj)
µ(x) = µi(xi) , (9)

µi(xi)µj (xj)
i∈V (i,j)∈E

where we have introduced new distributions µi and µij that need to behave like node
marginals and pairwise marginals. By forcing µ to have the above factorization, we
arrive at the following Bethe variational problem for the log partition function:

log Zbethe = max F(µ) (10)
µ

1

2 3

Figure 1

6

∏ ∏

∏ ∏

subject to the constraints:

µij (xi, xj)
µ(x) = µi(xi) for all x ∈ XN

µi(xi)µj (xj)
i∈V (i,j)∈E

µi(xi) ≥ 0 for all i ∈ V, xi ∈ X

µi(xi) = 1 for all i ∈ V
xi∈X

µij (xi, xj) ≥ 0 for all (i, j) ∈ E, xi, xj ∈ X

µij (xi, xj) = µi(xi) for all (i, j) ∈ E, xi ∈ X
xj ∈X

µij (xi, xj) = µj (xj) for all (i, j) ∈ E, xj ∈ X
xi∈X

The key takeaway here is that if px has a tree graph, then the optimal µ will factor
as a tree and so this new Bethe variational problem is equivalent to our original log
partition optimization problem and, furthermore, log Z = log Zbethe.

However, if px does not have a tree graph but still has the original pairwise poten
tial factorization given in equation (4), then the above optimization may no longer
be exact for computing log Z, i.e., we may have log Zbethe log Z.= Constraining µ
to factor into µi’s and µij ’s as in equation (9), where E is the set of edges in px and
could be loopy, is referred to as a Bethe approximation, named after physicist Hans
Bethe. Note that since edge set E is fixed and comes from px, we are not optimizing
over the space of all tree distributions!

We’re now ready to state a landmark result.

Theorem 2. (Yedidia, Freeman, Weiss 2001) The fixed points of Sum-Product mes
sage updates result in node and edge marginals that are local extrema of the Bethe
variational problem (10).

We set the stage for the proof by first massaging the objective function a bit to
make it clear exactly what we’re maximizing once we plug in the equality constraint
for µ factorizing as µi’s and µij ’s. This entails a fair bit of algebra. We first compute
simplified expressions for log px and log µ, which we’ll then use to derive reasonably
simple expressions for the average energy and entropy terms of objective function F.

Without further ado, denoting di to be the degree of node i, we take the log of
equation (4):

log px = − log Z + φi(xi) + ψij (xi, xj)
i∈V (i,j)∈E

= − log Z + φi(xi) + (ψij (xi, xj) + φi(xi) + φj (xj)) − diφi(xi)
i∈V (i,j)∈E i∈V

= − log Z + (1 − di)φi(xi) + (ψij (xi, xj) + φi(xi) + φj (xj)) .
i∈V (i,j)∈E

7

∏ ∏
∑

∑
∑

6

∑ ∑
∑ ∑ ∑
∑ ∑

Meanwhile, taking the log of the tree factorization imposed for µ given by equation (9),

we get:

log µ(x) = log µi(xi) + (log µij (xi, xj) − log µi(xi) − log µj (xj))
i∈V (i,j)∈E

= (1 − di) log µi(xi) + log µij (xi, xj).
i∈V (i,j)∈E

Now, recall from equations (6) and (8) that

F(µ) = − Eµ[E(x)]+ Eµ[− log µ(x)] = Eµ[log Z + log px(x)] + Eµ[− log µ(x)]. -
average energy entropy of µ

w.r.t. µ

Gladly, we’ve computed log px and log µ already, so we plug these right in to determine
what F is equal to specifically when µ factorizes like a tree:

F(µ) = Eµ[log Z + log px(x)] + Eµ[− log µ(x)]⎡	 ⎤

= Eµ ⎣ (1 − di)φi(xi) + (ψij (xi, xj) + φi(xi) + φj (xj))⎦
i∈V (i,j)∈E ⎡	 ⎤

− Eµ ⎣ (1 − di) log µi(xi) + log µij (xi, xj)⎦
i∈V (i,j)∈E

= (1 − di)Eµ[φi(xi)] + Eµ[ψij (xi, xj) + φi(xi) + φj (xj)]
i∈V (i,j)∈E

+	 (1 − di)Eµ[− log µi(xi)] + Eµ[− log µij (xi, xj)]
i∈V (i,j)∈E

=	 (1 − di)Eµi [φi(xi)] + Eµij [ψij (xi, xj) + φi(xi) + φj (xj)]
i∈V (i,j)∈E

+ (1 − di) Eµi [− log µi(xi)] + Eµij [− log µij (xi, xj)]-	 -
i∈V	 (i,j)∈Eentropy of µi entropy of µij

/ Fbethe(µ),

where Fbethe is the negative Bethe free energy. Consequently, the Bethe variational
problem (10) can be viewed as minimizing the Bethe free energy. Mopping up Fbethe

8

∑ ∑
∑ ∑

︸ ︸

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑ ∑
∑ ︸ ∑ ︸

︷︷ ︸ ︷︷

︷︷ ︷︷

���

a little more yields:

Fbethe(µ) = (1 − di)Eµi [φi(xi) − log µi(xi)]
i∈V

+ Eµij [ψij (xi, xj) + φi(xi) + φj (xj) − log µij (xi, xj)]
(i,j)∈E

= (1 − di) µi(xi)[φi(xi) − log µi(xi)]
i∈V xi∈X

+ µij (xi, xj)[ψij (xi, xj) + φi(xi) + φj (xj) − log µij(xi, xj)].
(i,j)∈E xi,xj ∈X

(11)

We can now rewrite the Bethe variational problem (10) as

max Fbethe(µ)
µ

subject to the constraints:

µi(xi) ≥ 0 for all i ∈ V, xi ∈ X

µi(xi) = 1 for all i ∈ V
xi∈X

µij (xi, xj) ≥ 0 for all (i, j) ∈ E, xi, xj ∈ X

µij (xi, xj) = µi(xi) for all (i, j) ∈ E, xi ∈ X
xj ∈X

µij (xi, xj) = µj (xj) for all (i, j) ∈ E, xj ∈ X
xi∈X

Basically all we did was simplify the objective function by plugging in the factorization
for µ. As a result, the stage is now set for us to prove Theorem 2.

Proof. Our plan of attack is to introduce Lagrange multipliers to solve the now sim
plified Bethe variational problem. We’ll look at where the gradient of the Lagrangian
is zero, corresponding to local extrema, and we’ll see that at these local extrema,
Lagrange multipliers relate to Sum-Product messages that have reached a fixed-point
and the µi’s and µij’s correspond exactly to Sum-Product’s node and edge marginals.

So first, we introduce Lagrange multipliers. We won’t introduce any for the non-
negativity constraints because it’ll turn out that these constraints aren’t active; i.e.,
the other constraints will already yield local extrema points that always have non
negative µi and µij . Let’s assign Lagrange multipliers to the rest of the constraints:

Constraints Lagrange multipliers

xi∈X µi(xi) = 1 λi

xj ∈X µij (xi, xj) = µi(xi) λj→i(xi)

xi∈X µij (xi, xj) = µj(xj) λi→j (xj)

9

∑
∑

∑ ∑
∑ ∑

∑
∑
∑

∑∑∑

Collectively calling all the Lagrange multipliers λ, the Lagrangian is thus

L(µ, λ) = Fbethe(µ) + λi µi(xi) − 1

i∈V xi∈X⎛	 ⎞

+	 λj→i(xi) ⎝ µij (xi, xj) − µi(xi)⎠

(i,j)∈E xi∈X xj ∈X 	
+	 λi→j (xj) µij (xi, xj) − µj (xj) .

(i,j)∈E xj ∈X xi∈X

The local extrema of Fbethe subject to the constraints we imposed on µ are precisely
the points where the gradient of L with respect to µ is zero and all the equality
constraints in the table above are met.

Next, we take derivatives. We’ll work with the form of Fbethe given in equa
tion (11), and we’ll use the result that d x log x = log x + 1. First, we differentiate

dx
with respect to µk(xk):

∂L(µ, λ)
= (1 − dk)(φk(xk) − log µk(xk) − 1) + λk − λi→k(xk)

∂µk(xk)
i∈N (k)

= −(dk − 1)φk(xk) + (dk − 1)(log µk(xk) + 1) + λk − λi→k(xk).
i∈N (k)

Setting this to 0 gives ⎛ ⎞

log µk(xk) = φk(xk) +
1

dk − 1
⎝

i∈N (k)

λi→k(xk) − λk⎠ − 1,

so ⎧ ⎫ ⎨ 1 ⎬
µk(xk) ∝ exp ⎩

φk(xk) +
dk − 1

i∈N (k)

λi→k(xk)⎭
. (12)

Next, we differentiate with respect to µki(xk, xi):

∂L(µ, λ)
= ψki(xk, xi) + φk(xk) + φi(xi) − log µki(xk, xi) − 1 + λi→k(xk) + λk→i(xi).

∂µki(xk, xi)

Setting this to 0 gives:

µki(xk, xi) ∝ exp {ψki(xk, xi) + φk(xk) + φi(xi) + λi→k(xk) + λk→i(xi)} . (13)

We now introduce variables mi→j (xj) for i ∈ V and j ∈ N(i), which are cunningly
named as they will turn out to be the same as Sum-Product messages, but right now,

10

∑ ∑
∑ ∑ ∑
∑ ∑ ∑

∑
∑

∑

∑

we do not make such an assumption! The idea is that we’ll write our λi→j multipliers
in terms of mi→j ’s. But how do we do this? Pattern matching between equation (13)
and the edge marginal equation (3) suggests that we should set

λi→j (xj) = log mk→j (xj) for all i ∈ V, j ∈ N(i), xj ∈ X.
k∈N(j)\i

With this substitution, equation (13) becomes

µki(xk, xi) ∝ exp (ψki(xk, xi) + φk(xk) + φi(xi)) mi→k(xk) mj→i(xi),
i∈N(k)\i j∈N (i)\k

(14)
which means that at a local extremum of Fbethe, the above equation is satisfied. Of
course, this is the same as the edge marginal equation for Sum-Product. We verify a
similar result for µi. The key observation is that

λi→k(xk) = log mi→k(xk) = (dk − 1) log mj→k(xk),
i∈N(k) i∈N(k) i∈N(k)\i j∈N(k)

which follows from a counting argument. Plugging this result directly into equa
tion (12), we obtain
 ⎧⎨

⎫⎬
1

µk(xk) ∝ exp φ () + xk k⎩ λi→k(xk)

dk − 1
i∈N(k)

1

⎭
 ⎧⎨

⎫⎬

φk(xk) + (dk − 1) log mj→k(xk)= exp
 ⎩
 dk − 1 ⎭

j∈N(k)

= exp(φk(xk)) mj→k(xk), (15)
∈j N(k)

∈Xxe

⎛

matching the Sum-Product node marginal equation.
What we’ve shown so far is that any local extremum µ of Fbethe subject to the

constraints we imposed must have µi and µij take on the forms given in Equations (15)
and (14), which just so happen to match node and edge marginal equations for Sum-
Product. But we have not yet shown that the messages themselves are at a fixed
point. To show this last step, we examine our equality constraints on µij . It suffices
to just look at what happens for one of them:

µki(xk, xi)

∝ exp (ψki(xk, xi) + φk(xk) + φi(xi)) mi→k(xk) mj→i(xi)

xe∈X
 i∈N(k)\i j∈N(i)\k ⎞⎠
=
 ⎝exp(φk(xk)) mi→k(xk) exp (ψki(xk, xi) + φi(xi)) mj→i(xi),

i∈N(k)\i xe∈X j∈N(i)\k

11

∑
∏ ∏

∑ ∑ ∑ ∑

∑
∑

∏

∑
∑ ∏ ∏

∏ ∑ ∏

 at which point, comparing the above equation and the µk equation (15), perforce, we
have

mi→k(xk) = exp (ψki(xk, xi) + φi(xi)) mj→i(xi).
xe j∈N (i)\k

The above equation is just the Sum-Product message-passing update equation! More
over, the above is in fact satisfied at a local extremum of Fbethe for all messages mi→j .
Note that there is absolutely no dependence on iterations. This equation say that
once we’re at a local extremum of Fbethe, the above equation must hold for all xk ∈ X.
This same argument holds for all the other mi→j ’s, which means that we’re at a
fixed-point. And such a fixed-point is precisely for the Sum-Product message-update
equations.

We’ve established that Sum-Product message updates on loopy graphs do have
at least one fixed point and, moreover, all possible fixed points are local extrema of
Fbethe, the negative Bethe free energy. Unfortunately, Theorem 2 is only a statement
about local extrema and says nothing about whether a fixed point of Sum-Product
message updates is a local maximum or a local minimum for Fbethe. Empirically, it
has been found that fixed points corresponding to maxima of the negative Bethe free
energy, i.e., minima of Bethe free energy, tend to be more stable. This empirical
result intuitively makes sense since for loopy graphs, we can view local maxima of
Fbethe as trying to approximate log Z, which was what the original hard optimization
problem was after in the first place.

Now that we have characterized the fixed points of Sum-Product message-passing
equations for loopy (as well as not-loopy) graphs, it remains to discuss whether the
algorithm actually converges to any of these fixed points.

14.4 Loopy BP convergence

Our quest ends in the last question we had asked originally, which effectively asks
whether loopy BP converges to any of the fixed points. To answer this, we will sketch
two different methods of analysis and will end by stating a few results on Gaussian
loopy BP and an alternate approach to solving the Bethe variational problem.

14.4.1 Computation trees

In contrast to focusing on fixed points, computation trees provide more of a dynamic
view of loopy BP through visualizing how messages across iterations contribute to
the computation of a node marginal. We illustrate computation trees through an
example. Consider a probability distribution with the loopy graph in Figure 2a.

12

∑ ∏

1

2 3

1

2 3

𝑚2→1
1 𝑚3→1

1

1

2 3

𝑚2→1
1 𝑚3→1

1

3 2

𝑚3→2
0 𝑚2→3

0

(a) (b) (c)

Figure 2

Suppose we ran loopy BP for exactly one iteration and computed the marginal
at node 1. Then this would require us to look at messages m1 and m1 , where 2→1 3→1

the superscripts denote the iteration number. We visualize these two dependencies in
Figure 2b. To compute m1 , we needed to look at message m0 , and to compute 2→1 3→2

m3
1
→1, we needed to look at m2

0
→3. These dependencies are visualized in Figure 2c.

These dependency diagrams are called computation trees. For the example graph
in Figure 2a, we can also draw out the full computation tree up to iteration t, which
is shown in Figure 3. Note that loopy BP is operating as if the underlying graph is
the computation tree (with the arrows on the edges removed), not realizing that some
nodes are duplicates!

But how can we use the computation tree to reason about loopy BP convergence?
Observe that in the full computation tree up to iteration t, the left and right chains
that descend from the top node each have a repeating pattern of three nodes, which
are circled in Figure 3. Thus, the initial uniform message sent up the left chain will
pass through the repeated block over and over again. In fact, assuming messages
are renormalized at each step, then each time the message passes through the re
peated block of three nodes, we can actually show that it’s as if the message was
left-multiplied by a state transition matrix M for a Markov chain!

So if the initial message v on the left chain is from node 2, then after 3t iterations,
the resulting message would be Mtv. This analysis suggests that loopy BP converges
to a unique solution if as t → ∞, Mtv converges to a unique vector and something
similar happens for the right-hand side chain. In fact, from Markov chain theory, we
know that this uniqueness result does occur if our alphabet size is finite and M is the
transition matrix for an ergodic Markov chain. This result follows from the Perron-
Frobenius theorem and can be used to show loopy BP convergence for a variety of
graphs with single loops. Complications arise when there are multiple loops.

13

14.4.2 Attractive fixed points

Another avenue for analyzing convergence is a general
fixed-point result in numerical analysis that basically an
swers: if we’re close to a fixed point of some iterated func
tion, does applying the function push us closer toward the
fixed point? One way to answer this involves looking at
the gradient of the iterated function, which for our case
is the Sum-Product message update F defined back in
Section for giant vectors containing all messages.

We’ll look at the 1D case first to build intuition. Sup
pose f : R → R has fixed point x ∗ = f(x ∗). Let xt be
our guess of fixed point x ∗ at iteration t, where x0 is our
initial guess and we have xt+1 = f(xt). What we would
like is that at each iteration, the error decreases, i.e., error

t+1 − x|x ∗| should be smaller than error |xt − x ∗|. More
formally, we want

t+1 − x|x ∗| ≤ ρ|x t − x ∗| for some ρ < 1. (16)

In fact, we could chain these together to bound our total
error at iteration t + 1 in terms of our initial error:

t+1 − x t − x t−1 − x|x ∗| ≤ ρ|x ∗| ≤ ρ(ρ|x ∗|)
≤ ρ(ρ(ρ|x t−2 − x ∗|)) · · ·
≤ ρt+1|x 0 − x ∗|, (17)

which implies that as t → ∞, the error is driven to 0.
We’re now going to relate this back to f , but first,

we’ll need to recall the Mean-Value Theorem: Let a < b.
If f : [a, b] → R is continuous on [a, b] and differentiable
on (a, b), then f(a)−f(b) = f '(c)(a−b) for some c ∈ (a, b).
Then

t+1 − x|x ∗ | = |f(x t) − f(x ∗)|
= |f '(y)(x t − x ∗)| (via Mean-Value Theorem)

= |f '(y)||x t − x ∗|,

for some y in an open interval (a, b) with a < b and xt, x ∗ ∈
[a, b]. Note that if |f '(y)| ≤ ρ for all y close to fixed point
x ∗, then we’ll exactly recover condition (16), which will

1

2 3

𝑚2→1
𝑡 𝑚3→1

𝑡

3 2

𝑚3→2
𝑡−1 𝑚2→3

𝑡−1

1 1

𝑚1→3
𝑡−2 𝑚1→2

𝑡−2

2 3

3 2

𝑚3→2
𝑡−4 𝑚2→3

𝑡−4

1 1

𝑚1→3
𝑡−5 𝑚1→2

𝑡−5

𝑚2→1
𝑡−3 𝑚3→1

𝑡−3

…

…

Figure 3

drive our error over time to 0, as shown in inequality (17). Phrased another way, if
|f '(y)| < 1 for all y close to fixed point x ∗, then if our initial guess is close enough to
x ∗, we will actually converge to x ∗ .

14

Extending this to the n-dimensional case is fairly straight-forward. We’ll basically
apply a multi-dimensional version of the Mean-Value Theorem. Let f : Rn → Rn have

∗ t+1fixed point x = f(x ∗). We update x = f(xt). Let fi denote the i-th component
of the output of f , i.e.,
 ⎞
⎛

x t+1 = f(x t) =
⎜⎜⎜⎝

f1(x
t)

f2(x
t)

. . .
fn(x

t)

⎟⎟⎟⎠

.

Then

t+1 ∗|x − x | = |fi(x t) − fi(x ∗)|i i

= |Vfi(yi)
T(x t − x ∗)| (multi-dimensional Mean-Value Theorem)

≤ Ifi ' (yi)I1Ix t − x ∗I∞,

for some yi in an neighborhood whose closure includes xt and x ∗, and where the
inequality2 is because for any a, b ∈ Rn ,

|a Tb| ≤

n

akbk

n n

k=1 k=1 -≤ |ak||bk| ≤ |ak| max |bi|
i=1,...,n

.

k=1
 -

/ b ∞/ a 1

Lastly, taking the max of both sides across all i = 1, 2, . . . , n, we get
t+1 − xIx ∗I∞ ≤ max IVfi(yi)I1 Ix t − x ∗I∞.

i=1,...,n

Then if IVfi(z)I1 is strictly less than positive constant S for all z in an open ball
whose closure includes xt and x ∗ and for all i, then

t+1 − xIx ∗I∞ ≤ max IVfi(yi)I1 Ix t − x ∗I∞ ≤ SIx t − x ∗I∞,
i=1,...,n

and provided that S < 1 and x0 is sufficiently close to x ∗, iteratively applying f will
indeed cause xt to converge to x ∗ .

In fact, if IVfi(x ∗)I is strictly less than 1 for all i, then by continuity and differ
entiability of f , there will be some neighborhood B around x ∗ for which IVfi(z)I < 1
for all z ∈ B and for all i. In this case, x ∗ is called an attractive fixed point. Note
that this condition is sufficient but not necessary for convergence.

This gradient condition can be used on the Sum-Product message update F and
its analysis is dependent on the node and edge potentials.

2In fact, this is a special case of what’s called H¨ which generalizes Cauchyolder’s inequality,
Schwarz by upper-bounding absolute values of dot products by dual norms.

15

∑ ∑ ∑
︸ ︷︷ ︸ ︷︷
()

14.4.3 Final remarks

We’ve discussed existence of at least one loopy BP fixed point and we’ve shown
that any such fixed point is a local extremum encountered in the Bethe variational
problem. Whether loopy BP converges is tricky; we sketched two different approaches
one could take. Luckily, some work has already been done for us: Weiss and Freeman
(2001) showed that if Gaussian loopy BP converges, then we are guaranteed that the
means are correct but not necessarily the covariances; additional conditions ensure
that the covariances are correct as well. And if loopy BP fails to converge, then a
recent result by Shih (2011) gives an algorithm with running time O(n2(1/ε)n) that
is guaranteed to solve the Bethe variational problem with error at most ε.

16

MIT OpenCourseWare
http://ocw.mit.edu

6.438 Algorithms for Inference
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

