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Problem 9.1 
Alice wants to build an optical character recognition (OCR) system, which scans images of 
words and recognizes the letters in the words. Each letter xj takes values in the alphabet 
{A, B, ..., Z}. For any fixed word length d, we model the word (x1, x2, ..., xd) as a Markov 
chain 

dd 
px1,x2,...,xd (x1, x2, ..., xd) = px1 (x1) pxj |xj−1 

(xj |xj−1) 
j=2 

(1)(a) Suppose that Alice is given a very large collection of data D = {x , ..., x(n)}, where 
each x(i) is a d-letter word. Give an expression for the maximum likelihood estimates 
of the parameters (The parameters are the elements of px1 (x1) and pxj |xj−1 

(xj |xj−1)). 

(b) Assume that in Alice’s dataset D, no word starts with “EE”. What is the ML estimate 
(n+1) (n+1)

of P (x2 = “E” |x1 =“E”, D), i.e., the probability of the second letter in the 
(n+1)-th word being “E” conditioned on that the first letter in the (n+1)-th word is 
“E” given the data? 

(c) Disappointed that her system cannot recognize the word	 “EECS”, Alice decided to 
use the Bayesian estimates instead, and assumed that each parameter vector has 
the Dirichlet prior with all hyperparameters equal to 1. Give an expression for the 
posterior distribution of the parameters conditioned on data. 

(n+1) (n+1)
(d) What is P (x = “E” |x =“E”, D) based on the Bayesian estimates, assuming 2 1 

that D still does not contain a word starting with “EE”? 

Problem 9.2 
In this problem, we try to learn undirected graph parameters for joint Gaussian distribu­
tions. Consider a joint Gaussian distribution over x = [x1, x2, . . . , x6], as shown in Figure 1. 
Each node can be a Gaussian vector. 

(1) (K)(a) Suppose	 that you observe K i.i.d. samples x , . . . , x . Provide the Maximum 
Likelihood estimator for the covariance matrix ˆ µ.Σ and the mean ˆ

(b) However, in order to do inference	 on the graphical model, you need to learn the 
information matrix J . In this example, assume that you are interested in estimating 
the block J123,123 corresponding to the variables x1, x2, x3. 
One approach is to invert the estimated covariance matrix Σ̂ to obtain an estimation 

1
 



1	



2	



3	



4	



5	



6	



7	



Figure 1 

ˆof J . Another approach is described below. Assume that you have a script of loopy 
Gaussian BP algorithm, which inputs an information matrix JJ for a potentially loopy 
graph and outputs all the messages JJi→j . Use this script to get an estimation of 
Ĵ123,123. 

ˆ(hint: Specify the input and output to the script, and express the estimator J123,123 

in terms of the output as well as Σ̂) 

(c) Comment on the complexity and the accuracy of the two approaches to learn Gaussian 
graphical models in (b). 
((hint: in general, if a matrix A is sparse, the inverse A−1 will not have the sparsity 
pattern. Moreover, A−1 may not be sparse at all.) ) 

Problem 9.3 
Consider the Naive Bayes model with class variable c and discrete observed variables 
x1, ..., xK . The conditional probability distributions for the model are parameterized by 
pc (c) = θc and pxk|c (x|c) = θxk |c for k = 1, ..., K and for all assignments xk ∈ X and classes 
c ∈ C. 

(1)Now given a dataset D = {x , ..., x(N)}, where each x(n) is a complete sample of the 
observed variables, x1, ..., xK , we can use the EM to learn the parameters of our model. 
Note that the class variable, c , is never observed. 

(a) Show that if we initialize the parameters uniformly, 

θ(0) 
1 (0) 1 

= and θ =	 (1)c xk|cL	 M 

for all xk, c where L = |C| and M = |X |, then the EM algorithm converges in one iter­
ation, and gives a closed form expression for the parameter values at this convergence 
point. 

(b) Consider a simple example with	 K = 2,M = 2, L = 2 and the true parameters are 
θ0 = θ1 = 1/2, θ1|1 = θ0|0 = 1 for both k = 1 and 2. Assume that for half of our  l	  l 

0	 1(n)	 (n)dataset, x = , and for the other half x = . Show that if we initialize 
0 1
 

our parameters to
 
1	 1 

θ(0)	 
(0) (0)

= and θ = θ = + E	 (2)c	 1|1 0|02	 2 
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for both k = 1 and 2, where E is a small positive number, then the EM algorithm 
converges to the true parameters. 

Hint: Show that as long as 0 < E < 1/2, θ1|1 and θ0|0 increase at each iteration of the 
EM and converge to 1. 

(c) Explain why the particular initialization in (a) is bad. 

Hint: Think about the joint distribution implied by the initial parameters. Does it have 
any additional independence structure that is not implied by the Naive Bayes model? 

Problem 9.4 
Consider a “Bayesian” hidden Markov model (HMM) in which the parameters are random 
variables, as described by the following directed acyclic graph. 

A

η

π x1 x2

y1 y2

x3

y3

xN

yN

...

...

In this (homogenous) model, given realizations θ̄ = ( ¯ η, ¯A, ¯ π) of the set of random param­
eters θ = (A, η, π), respectively, the transmission, emission, and initial state distributions 
take the form 

¯pxt+1|xt,A(j|i, A) = āij t = 1, 2, . . . , N − 1 

pyt|xt,η(j|i, η̄) = η̄ij t = 1, 2, . . . , N 

px1|π(i|π̄) = π̄i 

For convenience, we denote the full hidden state and observation sequences by x = 
(x1, . . . , xN ) and y = (y1, . . . , yN ), respectively. Moreover, we restrict our attention to the 
case of binary states and observations, i.e., X = Y = {1, 2}. 

We place the associated Dirichlet priors on the parameters θ. For example, the first row 
of A = [aij ] is distributed as   

a11 a12 ∼ Dir(λ11, λ12) 

The priors on η and π are defined similarly. 
Recall: For a binary variable z whose parameter γ £ pz (1) has distribution p(γ) = 

Dir(α1, α2), the posterior based on samples z̄ = {z̄1, . . . , z̄K } of z takes the form p(γ|z̄) = 
Dir(α1 + K(1), α2 + K(2)), where  

KK 1 u = v 
K(m) = 11zk=m, m = 1, 2, with 11u=v £ . 

0 u = v 
k=1 
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Given observations ȳ, we desire the posterior marginals p(θ|ȳ) and p(xn|ȳ) for n = 
1, . . . , N , which we approximate by particle representations from Gibbs sampling. To apply 
Gibbs sampling, we first sample θ conditioned on sample values for x (and y), then we 
resample x conditioned on the sample values of θ (and y). We then repeat this resampling 
process, iterating until convergence. 

(a) As needed for parameter resampling, express p((a11 x, ȳ) in terms of the appro­a12)|¯

priate count statistics over x̄ and ȳ.
 

(b) One approach to state sequence resampling is to choose one xt variable at a time and 
resample it conditioned on fixed values for the other state variables (and parame­

¯ters and observations). Express the distribution p(xt|x̄\t, θ, ȳ) in terms of the HMM 
transition, emission, and initial state distributions, where x\t denotes x \ {xt}. 

(c) A more efficient alternative to state sequence resampling is to resample the entire 
sequence x at once, a method called blocked Gibbs sampling. 

The forward-backward inference algorithm can be exploited to efficiently compute the 
required sample sequence x̄ from p(x|θ, ¯ ȳ), which would otherwise require exponential 
complexity in N . Recall that the backward messages computed by the algorithm are 

¯βi(xi) = p(ȳi+1, . . . , ȳN |xi = xi, θ = θ) i = 1, 2, . . . , N − 1 

¯Show how to use the β messages together with the parameters θ and observations ȳ
to efficiently produce a sample sequence x̄. 

Hint: To produce a sample from a Markov chain, one can sample the root node and 
recursively sample the subsequent node given its parent. 
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