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Problem 5.1 
Consider the 2-node undirected graphical model in Figure 5.1 , where the variables, xa, xb 

ba
ψab

ψa ψb

Figure 5.1 

are binary, and the compatibility functions are given by: 

ψa(0) = ψa(1) = ψb(0) = ψb(1) = 1	 (1) 

ψab(0, 0) = ψab(1, 1) = 1 , ψab(1, 0) = ψab(0, 1) = 10	 (2) 

(a) Compute the max-marginals for	 each variable, and show that there is no unique 
maximizing value for each of the variables. Explain why independently choosing the 
maximizing values for each of the variables does not lead to the maximum of the joint 
distribution. 

(b) In general, we shall define edge max-marginals p̄ij (xi, xj ) = maxx\{xi,xj } px(x) for 
every edge (i, j) in a tree.
 

Choose one of the maximizing values at one node, say node “a”. Show that in order
 
to maximize the joint probability, you can use the edge max-marginal to determine
 
the value of the other node.
 

Problem 5.2 
Consider a hidden Markov model (HMM) with states xi and observations yi for i = 1, 2, . . . , n 
for some n. The states are binary-valued, i.e., xi ∈ {0, 1}. Moreover, the model is homoge­
neous, i.e., the potentials are given by 

ψi(xs, xs+1) = ψ(xs, xs+1), ψi
�(xs, ys) = ψ�(xs, ys), for i = 1, 2, . . . , n 

Given the observations yi = yi for i = 1, . . . , n, we are interested in state estimates 
x̂i(y1, . . . , yn) for i = 1, . . . , n that maximize the probability that at least one of those state 
estimates x̂i is correct. 
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(a) The desired state estimates can be expressed in the form
 

(x̂1, . . . , x̂n) = arg min px1,...,xn|y1,...,yn (f(x̂1), . . . , f(x̂n)|y1, . . . , yn). 
x̂1,...,x̂n 

Determine the function f(·). 

(b) Show that if	 only the marginal distributions pxi|y1,...,yn (xi|y1, . . . , yn), i = 1, . . . , n, 
for the model are available, the desired state estimates cannot be determined. In 
particular, construct two HMMs whose marginals coincide, but whose state estimates 
differ. Hint: It suffices to consider a model with n = 2, and in which the observations 
are independent of the states and thus can be ignored. Accordingly, express your 
answer in the form of two distributions px1,x2 (·, ·) and p (·, ·).x1,x2 

(c) Construct an example of an HMM in which our desired estimates are not the same 
as the MAP estimates obtained from running the Viterbi (i.e., max-product or min­
sum) algorithm on our model. The same hint as in part (b) applies, so again give 
your answer in the form of a distribution px1,x2 (·, ·). 

(d) You are given two pieces of code (e.g.,  scripts). 

The first routine implements the forward-backward algorithm, taking as input po­
tential functions that describe a homogeneous HMM, and an associated list of n 
observations. It produces as output the list of marginal distributions for each of the 
associated n states conditioned on the full set of n observations, for the specified 
HMM. 

The second routine implements the Viterbi algorithm, taking the same inputs as the 
forward-backward routine, but producing as output the most probable sequence of 
states xi given the full set of n observations. 

Describe how to use one or both of these routines to compute the desired estimates 
x̂i(y1, . . . , yn) for i = 1, . . . , n for our model of interest, assuming the potentials are 
strictly positive. You are free to use these routines with any input values you like 
(whether or not related to the model of interest), and you can further process the 
outputs of these routines to compute the desired state estimates. However, in such 
further processing, you are not allowed to (re)use the model’s potential functions or 
observations. 

Problem 5.3 (Practice) 
This problem explains how the problem of computing MAP and normalization constant for 
an undirected graphical model is related to the problem of computing marginals of variables. 
To that end, consider an undirected graphical model G = (V, E) of N variables x1, . . . , xN 

with each xi ∈ {0, 1}. Let the associated probability distribution be ⎛ ⎞   
px(x) ∝ exp ⎝ Fi(xi) + Gij (xi, xj )⎠ 

i∈V (i,j)∈E 

1   
∝ exp(H(x)) = exp H(x) ,	 (3)

Z 
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where normalization constant (also known as partition function)
 

Z = exp(H(x)), 
x∈{0,1}N 

with potential function 

H(x) £ Fi(xi) + Gij (xi, xj ), (4) 
i∈V (i,j)∈E 

where Fi : {0, 1} → R+ and Gij : {0, 1}2 → R+ are arbitrary non-negative valued functions 
(R+ represents non-negative real values). 

Oracle. Throughout, we assume that we have access to an oracle that provides answers to 
following query instantly (consider O(1) computation): 

For any graphical model of the form described above, for any given variable i, 1 ≤ i ≤ N , 
it provides its marginal distribution. 

In other words, given input H over N variables of form (4), for any i, 1 ≤ i ≤ N , the oracle 
will provide answer to pxi (0) with respect to the graphical model defined as per (3) for the 
given H. 

Part 1. In the first part of this problem, we shall utilize the above mentioned oracle to 
∗find MAP assignment. Recall, that the MAP assignment x is such that px(x ∗) ≥ px(y) for 

all y ∈ {0, 1}N , i.e. H(x ∗) ≥ H(y). 

For the purpose of answering (a)-(c), assume the special structure: 

Fi : {0, 1} → {0, 1, 2}, for all i ∈ V, and 

Gij : {0, 1}2 → {0, 1, 2, 3}, for all (i, j) ∈ E. 

∗We shall assume that MAP is unique, i.e. H(x ∗) > H(y) for all y ∈ {0, 1}N , y  = x . 
To find x ∗, consider 

β (x) ∝ exp(βH(x)), for β > 0. (5)
p
x

Let x ∗(β) be the MAP assignment of p β 
x , that is,
 

x
 ∗ (β) ∈ argmax β(x).
p
x
x∈{0,1}N 

∗Note that, our interest is in finding x ∗(1) = x . 

∗(a) Show that, for all β ≥ 1, x ∗(β) = x ∗(1) = x . 

(b) Argue that, for some β∗ = O(N2), p β
∗ 

x (x
 ∗) > 1/2. 

Hint: Note that for this sub-part of the problem, H(y) is integer valued for all y ∈ 
∗{0, 1}N and x is unique. 
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β∗ ∗(c) Using (a) and (b), conclude that the oracle for p can be used to find x . 
β∗ ∗Hint: For each i, the oracle for pxi should decide whether xi equal to 0 or 1. 

Part 2. Now, we shall use the oracle to find Z. 

(d) For this subpart only, suppose Gij (xi, xj ) = 0 for all (i, j) ∈ E and (xi, xj ) ∈ {0, 1}2 . 
Show that 

NN exp(Fi(0))
Z = . 

pxi (0)i=1 

Note that this suggests that when x1, . . . , xN are independent, Z can be written as 
a product of the inverse of node marginals (along with easy to evaluate quantities). 
Thus, the oracle for computing node marginals is useful. 

(e) Explain how one can use the oracle to compute: 

px1 (0), px2|x1 (0|0), . . . , pxN |xN −1,...,x1 (0|0, . . . , 0). 

Hint: You want to apply oracle for N different graphical models. Please be specific 
when defining these different graphical models. 

(f) Write down Z as a function of quantities from (e) and quantities that involve evalua­
tion of H at a specific assignment in {0, 1}N . 

Problem 5.4 
Let x ∼ N −1(hx, Jx), and y = Cx + v, where v ∼ N (0, R). 

(a) Find the potential vector and the information matrix of p(x, y) and p(x|y). 

(b) Consider the following Gaussian graphical model: 

Let y1 = x1 + v1, y2 = x3 + v2, and R = I. Find C. Represent messages hx3→x2 and 
Jx3→x2 in terms of the elements of hx and Jx. 

(c) Now assume that we have an additional measurement y3 = x3 + v3, where v3 is a zero-
mean Gaussian variable with variance 1 and is independent from all other variables. 
Represent messages hx3→x2 and Jx3→x2 in terms of the elements of hx and Jx. 
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Problem 5.5
 
In this problem we explore connections between Kalman filtering/smoothing and belief 
propagation. In particular, consider our standard state-space model: 

x [n + 1] = ax [n] + v [n] 

y [n] = cx [n] + w [n], 

where for simplicity x [n] and y [n] are scalars. We assume that x [0], v [n], and w [n] are all 
independent of each other, with zero-means and var x [0] = σ2, var v [n] = q, var w [n] = r. 
Also, assume that x [0], v [n], and w [n] are all Gaussian random variables. 

(a) Fix	 a time N , and assume that we are given observations y [0], . . . , y [N ]. We are 
interested in computing the marginal distribution of each x [i] given the observations 
y [0], . . . , y [N ]. Draw an (undirected) graphical model that can be used to compute 
these estimates. 

(b) (Practice) Write out the Gaussian belief propagation equations for your graph from 
part (a). Explain why the final estimates computed by Gaussian belief propagation 
should be the same as the estimates computed by using the Kalman smoother. Com­
ment on the similarities and differences in the Gaussian belief propagation equations 
compared to the Kalman smoothing equations in information form (Refer to Jordan 
Chapter 15 for the Kalman smoothing equations in information form or derive them 
from the covariance form). Since Gaussian belief propagation computes J and h and 
the Kalman smoother computes J and m, it is fine if you just comment on the way the 
two algorithms compute J, i.e., don’t worry about the differences in h and m. Here J 
and h denote the usual information parameters used in Gaussian belief propagation, 
while m denotes the smoothed estimate of the mean that is calculated by the Kalman 
smoother. 

(c) Can you find a method to generate filtered estimates (instead of smoothed estimates) 
using Gaussian belief propagation? That is, can you slightly modify Gaussian belief 
propagation to develop a recursive algorithm for computing the marginal distribution 
of x [n] given y [0], . . . , y [n]. (Hint: we basically just want you think about the messages 
passed in Gaussian belief propagation and how they relate to the Kalman filter). 

(d) (Practice) Solve the following system of equations. You should solve this system 
by hand rather than using   Explain why this is related to Gaussian belief 
propagation. 

⎤⎡⎤⎡ 
1 0 0 −4 1 −3 0 −32
 ⎢⎢⎢⎢⎢⎢⎢⎢⎣
 

0 4 0 0 0 1 0 
0 0 2 0 0 1 0 
1 0 0 3 0 0 1 
2 0 0 0 1 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎦
 
x =
 

⎢⎢⎢⎢⎢⎢⎢⎢⎣
 

32
 
8
 
24
 

⎥⎥⎥⎥⎥⎥⎥⎥⎦
 5
 
1 −1 −1 0 0 5 0
 12
 
0 0 0 −3 0 0 6 12 
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Problem 5.6
 
In this problem you’ll implement a discrete time Kalman filter in MATLAB. Some built-in
 
functions that you may find useful include: rand, randn, inv, chol, qr, eps, and plot.
 
Consider the system: 

x[n + 1] =

 
0.9 
0 

0 
0.9

 
x[n] +

 
E2 

0 
0 
E2

 
w[n]   

y[n] =
1 
1 

0
E

x[n] + v[n], 

where w[n] and v[n] are zero-mean white noise processes uncorrelated with each other, both 
having unit variance. 

Note that with E small, one mode of the state variable x is highly “observable” from the 
output y and another is only weakly “observable.” This type of ill-conditioning can lead to 
numerical difficulties (especially with more complex systems than in this simple example). 
You will see a modest indication of the problem here. 

(a) Set up	 a simulation of this system to generate state and measurement sequences 
for t = 1, 2, . . . , 200 for use in part (b). State your assumptions about the non­
deterministic parts of the system. 

(b) Implement and run a discrete time Kalman filter on the data.	 Initialize your filter 
with covariance:   

1 1 0 
Λx[1] = .

E 0 1

Write code to implement the discrete time Kalman filter and plot the original data, 
the estimates, the estimation errors, and the one-step-prediction error covariances, for 
choices of E that are (i) larger than, (ii) comparable to, and (iii) smaller than machine 
precision (see eps in MATLAB). 

Problem 5.7 (Practice) 
Consider the 4-node chain, as shown below, where each node can have a ternary state (0, 
1, or 2), and where the (joint) probabilities for all 81 possible state sequences are distinct. 

a b dc

Suppose that we run the direction-free version of the max-product algorithm (i.e. the 
version that does not include the δ messages) to obtain the max-marginals p̄i(xi) = maxx\xi 

px(x) 
at each node i, the results of which are indicated in the following table: 

i p̄i(0) p̄i(1) p̄i(2) 

a
 0.2447 0.0753 0.0234
 
b
 0.2447 0.0118 0.1199
 
c 0.2447 0.1199 0.0169 
d 0.2447 0.0346 0.0141 
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We seek the kth most likely state sequence xk, for k = 1, 2, 3. Here, the kth most likely 
k k k kstate sequence means a specific joint state xk(x , xb , x , x ) whose joint probability is the a c d

kth largest among all 81 state sequences. 

(a) Find the most likely state sequence from the given set of max-marginals. Remember 
to provide your reasoning. 

(b) Find the	 second most likely state sequence from the given set of max-marginals. 
Remember to provide your reasoning. 

(c) Given the set of max-marginals above, list all the sequences that could be the third 
most likely state sequence. Explain your reasoning. (For this list, you may ignore 
constraints on the joint probability imposed by the graph’s chain structure). 

(d) Suppose that instead of gathering the node max-marginal data above, we had instead 
run a different kind of direction-free max-product algorithm on the same chain—one 
that produces edge max-marginals p̄ij (xi, xj ) = maxx\{xi,xj } px(x) for every edge (i, j). 
With the edge-max-marginal data, can we uniquely determine the third most likely 
state sequence? Explain. 

Problem 5.8 (Practice) 
Suppose we run the direction-free version of max-product algorithm on a tree with N nodes 
(N » 1). After the algorithm ends, K nodes face ties that cannot be broken without 
additional communication through the graph. 

(a) What is the largest K for which this could happen? Give an example that results in 
such K and explain why K could not be larger. 

(b) What is the smallest K for which this could happen? Give an example that results 
in such K and explain why K could not be smaller. 

Problem 5.9 (Practice) 
This problem deals with a common problem in biology — locating genes in a DNA sequence. 

A DNA sequence is a string of nucleotides (of which there are four: A, T, G, C). Genes 
are contiguous parts of a DNA sequence that code for protein. Between genes are intragenic 
regions that do not code for protein. A gene itself consists of three regions in this order: 
the promoter, the coding region, and the polyA. For the sake of this exercise, assume the 
average number of nucleotides in each region is as follows: promoter - 5; coding region ­
10; polyA - 6; intergenic region - 10. Also assume each region is associated with a different 
frequency with which nucleotides occur (i.i.d.), given by this chart: 

A T G C 
promoter: 0.1 0.1 0.4 0.4 

coding region: 0.1 0.2 0.3 0.4 
polyA: 0.7 0.1 0.1 0.1 

intergenic region: 0.25 0.25 0.25 0.25 
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(a) Construct and simulate a hidden Markov model (HMM) for DNA sequences.	 Draw 
and fully label the state diagram for the hidden states. (Hint: You need to calcu­
late the transition probabilities by using the average lengths of the regions. What 
assumptions do you need to make about the distributions of the lengths?) 

Assume there is an equal probability of starting in any region at the beginning of the 
sequence. In MATLAB, generate a DNA sequence of 500 nucleotides with the true 
region labels. Draw the trellis diagram of the HMM and mark the state transitions 
for the first 5 sequence letters you generated. 

(b) Suppose we want to infer the region labels from the DNA sequence. We can find the 
MAP estimates of the labels at each position in the sequence (from their marginals). 
Implement the forward-backward algorithm (or use your codes from Problem Set 4) 
and compute this labeling. How many labels were found incorrectly? What is more 
fundamentally wrong with this labeling? 

(c) Implement the Viterbi algorithm and find the most probable sequence of region labels 
with it. Provide your code. How many labels were found incorrectly this time? Where 
did the errors occur? 

(d) How would you modify the Viterbi algorithm to find the	 second most probable se­
quence of regions? How does computational and storage complexity compare with 
part (c)? 

(e) (practice) Suppose we want to infer the number of genes in an observed DNA se­
quence, but don’t care about the actual labeling. We can of course estimate a labeling 
first, then count the number of promoter regions, but can you think of a slight modifi­
cation to the Viterbi algorithm that gives the answer directly? Make the modification 
and plot the number of genes found on each of the 4 partial paths (i.e., the best path 
ending at each of the M states at each time step) as the algorithm proceeds. 

Problem 5.10 (Practice) 
Consider a discrete state-space model given by 

x [k + 1] = a[k]x [k] + b[k]v [k], 

where v [k] is zero-mean, unit-variance, white, Gaussian, and independent of x [m] for all 
k ≥ m. a[k] and b[k] are unkown parameters. 

We have the measurement sequence 

y [k] = x [k] + w [k], 

where w [k] is zero-mean, unit variance, white, Gaussian, and independent of x [m] for all 
k ≥ m. 

(a) Suppose that for this process, E[x [k]x [k + l]] = e−0.02|l| for all k. Determine a[k] and 
b[k] in the model above. 
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For the following parts, make sure you can simulate your model in MATLAB using 
the parameters you obtain in part (a). Assume that x [0] has Gaussian distribution 
with zero mean and unit variance. 

(b) Implement Guassian Belief Propagation to compute the marginal of	 x[k] after ob­
serving the y s (i.e. p(x[k]|y[0], . . . , y[K])). Alternatively, you can implement Kalman 
smoothing (Rauch-Tung-Striebel algorithm) to compute the marginals. Include your 
code. (You may structure your code however you want, but if you choose to imple­
ment the Kalman filter as a standalone function, please exclude that portion of the 
code from your submission.) 

(c) We	 know that p(x[k]|y[0], . . . , y[K]) = N (xk|K , Pk|K ) and p(x[k]|y[0], . . . , y[k]) = 
N (xk|k, Pk|k). Calculate xk|K , Pk|K , xk|k, Pk|k for k = 0 to k = 50 using either Gaus­
sian Belief Propagation or the Kalman filtering and smoothing equations. Plot the 
true states and the state estimates xk|K and xk|k. Also plot the variances Pk|K and 
Pk|k of the two methods. Comment on what you see. 

Hint: If you’re using Gaussian Belief Propagation, use your answer to 5.8(c) to com­
pute p(x[k]|y[0], . . . , y[k]). 
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