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10	 Sum-product on factor tree graphs, MAP elim

ination algorithm 

The previous lecture introduced the beginnings of the sum-product on factor tree 
graphs with a specific example. In this lecture, we will describe the sum-product 
algorithm for general factor tree graphs. 

10.1 Sum-product for factor trees 

Recall that a factor graph consists of a bipartite graph between variable nodes and 
factor nodes. The graph represents the factorization of the distribution into factors 
corresponding to factor nodes in the graph, in other words 

MM 
p(x1, . . . , xN ) ∝ fi(xci ) 

i=1 

where ci is the set of variables connected to factor fi. As in the case with undirected 
graphs, we restrict our attention to a special class of graphs where inference is efficient. 

Definition 1 (Factor tree graph) A factor tree graph is a factor graph such that 
the variable nodes form a tree, that is between any two variable nodes, there is a 
unique path (involving factors). 

10.1.1 Serial version 

As in the sum-product algorithm for undirected graphs, there is a serial verison of 
the sum-product algorithm for factor tree graphs. Because there are factor nodes and 
variables nodes, we have two types of messages: 

1. Variable to factor messages: 

xib a

M 
mi→a(xi) = mb→i(xi) 

b∈N(i)\a 

The variable node i with degree di sends a message towards a that is the product 
of di−1 terms for each value in |X|. This results in a total of O(|X|di) operations. 
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2. Factor to variable messages:
 

a xixj

 M 
ma→i(xi) = fa(xi; xj , j ∈ N(a)\i) mj→a(xj) 

xj :j∈N(a)\i j∈N(a)\i 

The factor node a with degree da sends a message towards i that is a summation 
over |X|da−1 terms, each involving a product of da terms for each value in |X| of 
the neighboring variables. Thus, the total cost is O(|X|da da). 

In summary, complexity scales as O(|E||X|d∗ 
) where d∗ = maxa da (over factor nodes) 

and |E| is the total number of edges in the factor tree graph. Notably, because the 
graph is a tree, |E| = O(N).1 

10.1.2 Parallel version 

We can also run the updates in parallel to get the parallel version of the sum-product 
algorithm for factor tree graphs: 

1. Initialization: for (i, a) ∈ E, 

m 0 
i→a(xi) = 1 

ma
0 
→i(xi) = 1 

for all xi ∈ X. 

2. Update: for (i, a) ∈ E, t ≥ 0, M 
t+1 t(*) m (xi) = m (xi)i→a b→i

b∈N(i)\a  M 
t+1 t(**) m (xi) = fa(xi; xj , j ∈ N(a)\i) m (xj )a→i j→a

xj :j∈N(a)\i j∈N(a)\i 

3. Marginalization: for t ≥ diameter M 
t+1 t+1 p (xi) ∝ m (xi).xi a→i

a∈N(i) 

1This is the cost to send all of the messages to a single node. If we wanted to send all of the 
messages the other direction, this would naively cost O(N2|X|d ∗ 

). We can reduce this to O(N |X|d ∗ 
) 

using a technique that we show in the next section. 
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As we noticed above sending ma→i costs O(|X|da da) and we have to send a similar mesa 
sage for every neighbor of a, so the total complexity cost will scale as O(|X|d∗ 

d2)a a a

and in the worst case O( a d
2 
a) will be quadratic in N . 

With a little cleverness, we can provide a more efficient implementation of (*) 
and (**): 

(*) Compute M 
t+1 t mi (xi) = mb→i(xi) 

b∈N(i) 

then,
 
m t+1(xi)
t+1 i mi→a(xi) = 

t . 
ma→i(xi) 

Thus the total cost of computing (*) per variable node i is O(|X|di) instead of 
O(|X|d2).i 

(**) Compute M 
f̃ t+1 t 
a (xk, k ∈ N(a)) = fa(xk; k ∈ N(a)) mk→a(xk) 

k∈N(a) 

then,
 
f̃ t+1
(xk, k ∈ N(a))t+1 a m (xi) = . a→i

xj :j∈N(a)\i 
mt

i→a(xi) 

Thus the total cost of computing (**) per factor node a is O(|X|da da). 

Thus the overall complexity cost for a single iteration of the parallel algorithm will 
be O(N |X|d∗ 

). 

10.2 Factor tree graph > Undirected tree graph 

The factor tree graph representation is strictly more general than the undirected 
tree graph representation. Recall that by the Hammersley-Clifford theorem, we can 
represent any undirected graph as a factor graph by creating a factor node for each 
clique potential and connecting the respective variable nodes. In the case of an 
undirected tree graph, the only clique potentials are along edges, so it’s clear the 
factor graph representation will also be a tree. Now, we consider an example where 
the undirected graph is not a tree, but its factor graph is: 
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As shown in the figure, the graphical model on the left has 4 maximal cliques. The 
factor graph representation of it is on the right, and it does not have any loops, 
even though the undirected graph did. A necessary and sufficient condition for this 
situation is provided in the solution of Problem 2.2. 

On the left hand graph, we cannot apply the sum-product algorithm because the 
graph is not a tree, but on the right hand side we can. What happened here? The 
factor in the middle of the graph has 3 nodes, and as we saw above, the overall 
complexity of the algorithm depends strongly on the maximal degree node. Taking 
this example further, consider converting the complete undirected graph on N vertices 
into a factor graph. It is a star graph with a single factor node, so it is a tree 
Unfortunately, the factor node has N vertices, so the cost of running sum-product is 
O(N |X|N ), so we don’t get anything for free. 

10.3 MAP elimination algorithm 

The primary focus of the prior material has been on algorithms for computing marginal 
distributions. In this section, we will be talking about the second inference problem: 
computing the mode or MAP. 

Specifically, consider a collection of N random variables x1, . . . xN each taking 
values in |X| with their joint distribution represented by a graphical model G. For 
concreteness, let G = (V, E) be an undirected graphical model, so that the distribution 
factorizes as: M 

px(x) ∝ φC (xC ) 
C∈C M1 

= φC (xC ),
Z 

C∈C 

where C is the set of maximal cliques in G and Z is the partition function. Our goal 
is to compute x ∗ ∈ XN such that 

x ∗ ∈ arg max px(x). 
x∈XN 
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Note that we have written ∈ instead of = because there may be several configurations 
that result in the maximum and we are interested in finding one of them. 

The sum-product algorithm gives us a way to compute the marginals pxi (xi), so 
we might wonder if setting xi 

∗ ∈ arg maxxi pxi (xi) produces a MAP assignment. This 
works in situations where the variables are independent, there is only one positive 
configuration, or when the variables are jointly Gaussian. However, consider the 
following example with binary variables x1 and x2: 

p (0, 0) = 1/3 − tx1,x2 

p (1, 0) = 1/3x1,x2 

p (0, 1) = 0 x1,x2 

p (1, 1) = 1/3 + t.x1,x2 

arg maxx1 p (x1) = 1 and arg maxx2 p (x2) = 0, but that is not the MAP. It is clear x1 x2 

that we need a more general algorithm. 

10.4 MAP Elimination algorithm example 

We will start with a motivating example of the MAP elimination algorithm. Consider 
a distribution over (x1, . . . , x5) described by the graphical model below. Let each 
xi ∈ {0, 1}, for 1 ≤ i ≤ 5. 

x1

x3 x5

x2 x4

�13 = �1

�12 = 1

�24 = �1

�34 = 1

�35 = 1

p(x) ∝ exp(θ12x1x2 + θ13x1x3 + θ24x2x4 + θ34x3x4 + θ35x3x5) 

For this example, we will consider the specific values θ12 = θ34 = θ35 = 1, θ13 = θ24 = 
−1. So, plugging in those values, our distribution is 

p(x) ∝ exp(x1x2 − x1x3 − x2x4 + x3x4 + x3x5) 
1 

= exp(x1x2 − x1x3 − x2x4 + x3x4 + x3x5)
Z �   � 

F (x1,...,x5) 
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Our goal is to efficiently compute: 

x ∗ ∈ arg max px(x) ∝ F (x1, . . . , x5). 
x∈XN 

To efficiently compute this mode x ∗, let us adapt the elimination algorithm for 
computing the marginals of a distribution. First, we will fix an elimination order of 
nodes: 5, 4, 3, 2, 1. Then   

max px(x) = max exp(x1x2 − x1x3 − x2x4 + x3x4) max exp(x3x5)
x x1,...,x4 x5 

�m5(x3) 

where we have grouped the terms involving x5 and moved the maxx5 past all of the 
terms that do not involve x5. We see that 

m5(x3) = e x3 

here. We also store the specific value of x5 that maximized the expression (e.g. when 
x3 = 1, m5(x3) = e and x5 

∗ = 1) and we will see why this is important to track later. 
In this case, the maximizer of x5 is 1 if x3 = 1 and 0 or 1 if x3 = 0. We are free to 
break ties arbitrarily, so we break the tie so that x5

∗(x3) = x3. 

x1

x3

x2 x4

�13 = �1

�12 = 1

�24 = �1

�34 = 1

m5(x3) = exp(x3)

x�
5(x3) = 1

Now we eliminate x4 in the same way, by grouping the terms involving x4 and 
moving the maxx4 past terms that do not involve it.   

max px(x) = max exp(x1x2 − x1x3)m5(x3) max exp(x3x4 − x2x4)
x x1,x2,x3 x4 

�m4(x2,x3) 

with 

m4(x2, x3) = exp(x3(1 − x2)) 

x4
∗ (x2, x3) = 1 − x2. 
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x1

x3

x2

�13 = �1

�12 = 1

m4(x2, x3) = exp(x2(1 � x3))

x�
4(x2, x3) = 1 � x2

Similarly for x3, 

max px(x) = max exp(x1x2) max exp(−x1x3)m5(x3)m4(x2, x3) 
x x1,x2 x3 

= max exp(x1x2) max exp(−x1x3 + x3 + x3(1 − x2)) 
x1,x2 x3 

= max exp(x1x2) max exp(−(x1 + x2)x3) 
x1,x2 x3 

m3(x1,x2) 

with 

m3(x1, x2) = 1 

x3
∗ (x1, x2) = 0. 

Finally,
 
max px(x) = max exp(x1x2)
 

x x1,x2 

implies that x1 
∗ = x2 

∗ = 1. Now we can use the information we stored along the way 
∗ ∗ ∗to compute the MAP assignment. x3(1, 1) = 0, x4(1, 0) = 0, x 5(0) = 1. Thus the 

optimal assignment is: 
x ∗ = (1, 1, 0, 0, 1). 

As in the elimination algorithm for computing marginals, the primary determinant 
of the computation cost is the size of the maximal clique in the reconstituted graph. 
Putting this together, we can describe the MAP elimination algorithm for general 
graphs: 

7
 

( )
( )
( )
︸ ︷︷ ︸

,



 

  
   

Input: Potentials ϕc for c ∈ C and an elimination ordering I
 
Output: x ∗ ∈ arg maxx∈XN px(·)
 
Initialize active potentials Ψ to be the set of input potentials.
 
for node i in I do 

Let Si be the set of all nodes (not including i and previously eliminated
 
nodes) that share a potential with node i.
 
Let Ψi be the set of potentials in Ψ involving xi.
 
Compute
 M 

mi(xSi ) = max ϕ(xi ∪ xSi ) 
xi 

ϕ∈ΨiM 
xi 
∗ (xSi ) ∈ arg max ϕ(xi ∪ xSi ) 

xi 
ϕ∈Ψi 

where ties are broken arbitarily. 
Remove elements of Ψi from Ψ. 
Add mi to Ψ. 

end 
Produce x ∗ by traversing I in a reverse order 

∗ ∗ ∗ xj = xj (xk : j < k ≤ N). 

Algorithm 1: The MAP Elimination Algorithm 
As in the context of computing marginals, the overall cost of the MAP elimination 

algorithm is bounded above as 

overall cost ≤ |C| |X||Si|+1 

i 

≤ N |C||X|maxi |Si|+1 . 

The MAP elimination algorithm and elimination algorithm for marginals are 
closely related and they both rely on the relationship between sums and products 
and max and products. Specifically, the key property was that 

max f(x)g(x, y) = max f(x) max g(x, y)
 
x,y x  y  

f(x)g(x, y) = f(x) g(x, y) . 
x,y x y 
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