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13	 BP on Gaussian Hidden Markov Models: Kalman 
Filtering and Smoothing 

As we have seen, when our variables of interest are jointly Gaussian, the sum-product 
algorithm for inference on trees takes a special form in which the messages themselves 
are Gaussian. As we also saw earlier, a simple but very important class of trees 
are the Hidden Markov Models (HMMs). In this section of the notes we specialize 
our Gaussian BP algorithm to the class of Gaussian HMMs, which are equivalently 
characterized as linear dynamical systems (LDSs). As we will see, what results is 
a version of the forward-backward algorithm for such models that is referred to as 
Kalman filtering and smoothing. 

13.1 Gaussian HMM (State Space Model) 
Consider the Gaussian HMM depicted in Fig. 1, where to simplify our development we 
restrict our attention to zero-mean variables and homogeneous models. In this model, 
the states xt and observations yt are d- and d'-dimensional vectors, respectively. 

The Gaussian HMM can be expressed as an LDS by exploiting the representation 
of the variables in innovation form. 1 In particular, first, the states evolve according 
to the linear dynamics 

xt+1 = Axt + vt, vt ∼ N(0, Q), x0 ∼ N(0, Λ0), (1a) 

where A is a constant matrix, Λ0 and Q are covariance (i.e., positive semidefinite) 
matrices, and where {vt} is a sequence of independent random vectors that are also 
independent of x0. Second, the observations depend on the state according to the 
linear measurements 

yt = Cxt + wt, wt ∼ N(0, R),	 (1b) 

where C is a constant matrix and R is a covariance matrix, and where {wt} is a 
sequence of independent random variables that is also independent of x0 and {vt}. 

Hence, in terms of our notation, we have the conditional distributions 

x0 ∼ N(0, Λ0) 
xt+1|xt ∼ N(Axt, Q) 
yt|xt ∼ N(Cxt, R). 

1Recall that any pair of jointly Gaussian random vectors u, v can be expressed in innovation form: 
there exists a matrix G and a Gaussian random vector w (the innovation) that is independent of v 
such that 

u = Gv + w. 
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Figure 1: A Gaussian HMM as a directed tree. In this model, the variables are jointly 
Gaussian. 

Such Gaussian HMMs are used to model an extraordinarily broad range of phe
nomena in practice. 

13.2 Inference with Gaussian HMMs 
In our development of Gaussian BP for trees, we expressed the algorithm in terms 
of the information form representation of the Gaussian variables involved. In this 
section, we further specialize our results to the HMM, and express the quantities 
involved directly in terms of the parameters of the LDS (1). 

To obtain our results, we start by observing that the joint distribution factors as 

p(x0
t , y0

t ) = p(x0) p(y0|x0) p(x1|x0) p(y1|x1) · · · p(yt|xt), 

where we have used xt 
0 as a shorthand to denote the entire sequence x0, . . . , xt. 

Substituting the Gaussian form of the constituent conditional distributions and 
matching corresponding terms, we then obtain 
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Next note that y0 
t are observations, so we condition on these variables. After 

conditioning on y0t , the joint distribution continues to be Gaussian, and simplifies to 
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Thus the potential for node k is a Gaussian with information parameters (hk, Jk), and 
the potential for the edge from node k − 1 to node k is a Gaussian with information 
parameters (0, Lk); see Fig. 2. 

Having now expressed the joint distribution as a product of potentials in Gaussian 
information form, we can easily read off the information matrices and potential vectors 
required to apply Gaussian BP. In particular, the initial messages are 

= −L1J
−1LTJ0→1 0 1 

= L1J
−1h0→1 0 h0. 
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Figure 2: The equivalent undirected tree for Gaussian HMMs, with only the first 
node and edge potentials shown. 

Then, the “forward” pass is given by the recursion 
−1 LTJi→i+1 = −Li+1 (Ji + Ji−1→i) i+1 

−1 , i = 0, 1, . . . , t − 1. 
hi→i+1 = Li+1 (Ji + Ji−1→i) (hi + hi−1→i) 

In turn, the “backward” pass is given by the recursion 
−1 LTJi+1→i = −Li+1 (Ji+1 + Ji+2→i+1)

−1 
i+1 

, i = t − 1, t − 2, . . . , 0. 
hi+1→i = Li+1 (Ji+1 + Ji+2→i+1) (hi+1 + hi+2→i+1). 

Finally, the parameters for the marginals for each i are obtained via 

Ĵi = Ji + Ji−1→i + Ji+1→i 

ĥi = hi + hi−1→i + hi+1→i, 

from which the mean vectors and covariance matricses associated with the t marginals 
are given by 

Ĵ−1 ̂ Ĵ−1 µi = i hi and Σi = i . 

As a reminder, the complexity of this algorithm scales as O(td3) compared to O((td)3) 
for a naive implementation of the marginalization. The savings is particularly signif
icant because t » d in typical applications. 

13.3 Kalman Filtering and Smoothing 
The implementation of BP for Gaussian HMMs developed in the previous section 
has a convenient two-pass structure, consisting of a forward and a backward pass. 
Note that the data yk enters into the computation through the potential vector hk, 
and thus in the serial version of BP each piece of the data is used three times: once 
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during the forward pass, once during the backward pass, and once during the marginal  
computation. 

There are a variety of ways to rearrange such forward-backward computation for 
efficiently producing marginals. One such variant corresponds to what is referred to as 
the Rauch-Tung-Striebel (RTS) algorithm. In this algorithm, the forward and back
ward passes take the form of what are referred to as Kalman filtering and smoothing, 
respectively. 

The Kalman filter was introduced by R. Kalman in his extraordinarily influential 
work in 1959.2 In contrast to the forward pass of the Gaussian BP procedure de
veloped in the previous section, the Kalman filter directly generates a particular set 
of marginals. Specifically, it generates the marginals p(xi|y0

i ) for i = 0, 1, . . . , t, i.e., 
a marginal at node i based on the data only through index i; this is what is meant 
by the term “filtering.” Each step in the forward pass is typically implemented in 
two substeps: a prediction substep that generates p(xi|y i−1), followed by an update 0 
substep that generates p(xi|yi ).0

The backward pass of the RTS algorithm, which implements Kalman smoothing, 
directly generates the desired marginals p(xi|yt ), i.e., a marginal at node i based0

on all the data. Moreover, it does so in a manner that requires only access to the 
marginals obtained in the forward pass in the computation—once the forward pass is 
complete, the data is no longer needed.

From the above perspectives, the RTS algorithm can be viewed as the Gaussian 
version of the so-called α, γ variant of the forward-backward algorithm for discrete 
HMMs. Indeed, suitably normalized, the α messages are the “filtered” marginals, and 
the γ messages are the “smoothed” marginals. The α, γ forward-backward algorithm 
and its relation to the α, β forward-backward algorithm we introduced as BP for 
discrete HMMs are developed in Chapter 12 of Jordan’s notes.

There are several versions of the Kalman filter, both in covariance and information 
forms. As an illustration, we summarize a standard version of the former. As notation, 
we use µi|j and Σi|j to refer to the mean vector and covariance matrix, respectively, 
of the distribution p(xi|yj ). We omit the derivation, which involves substituting0

the Gaussian forms into the α, γ version of the forward-backward algorithm, with 
summations replaced by integrals, and evaluating the integrals, the same manner 
that Gaussian BP was obtained from our original BP equations. 

More specifically, the forward (filtering) recursion is 

α(xi+1) = α(xi) p(xi+1|xi) p(yi+1|xi+1) dxi, 

2       You are strongly encouraged to read at least the first two pages to appreciate the broader context 
as well as significance of this work.
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�
and the backward (smoothing) recursion is  

� 
α(xi) p(xi+1|xi) 

� 
γ(xi) = γ(xi+1) dxi+1,' ' '

� 
α(x ) p(xi+1|x ) dxi i i 

where, for reference, recall that the γ marginals are expressed in terms of our original 
β messages via 

α(xi) β(xi)
γ(xi) = 

t . 
p(y0) 

13.3.1 Filtering 

The filtering pass produces the mean and covariance parameters µi|i and Σi|i, re
spectively, in sequence for i = 0, 1, . . . , t. Each step consists of the following two 
substeps: 

Prediction Substep: In this substep, we predict the next state xi+1 from the 
current observations y0

i , whose impact is summarized in the filtered marginals p(xi|y0
i ) 

and thus does not require re-accessing the data: 

p(xi|y0
i ) → p(xi+1|y0

i ), i = 0, 1, . . . , t − 1. 

In terms of the model parameters (1), the prediction recursion for the associated 
marginal parameters can be derived to be 

µi+1|i = Aµi|i 
i = 0, 1, . . . , t − 1, 

Σi+1|i = AΣi|iA
T + Q. 

where the initialization of the recursion is 

µ0|−1 = 0 (2) 
Σ0|−1 = Λ0. (3) 

Update Substep: In this substep, we update the prediction at step i by incorpo
rating the new data yi+1, i.e., 

i i+1 p(xi+1|y0) → p(xi+1|y0 ), i = 0, 1, . . . , t − 1. 

In terms of the model parameters (1), the update recursion for the associated marginal 
parameters can be derived to be 

µi+1|i+1 = µi+1|i + Gi+1(yi+1 − Cµi+1|i) 
i = 0, 1, . . . , t − 1, 

Σi+1|i+1 = Σi+1|i − Gi+1CΣi+1|i 

where 
Gi+1 = Σi+1|iC

T(CΣi+1|iC
T + R)−1 

is a precomputable quantity referred to as the Kalman gain. 
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13.3.2 Smoothing 

The filtering pass produces the mean and covariance parameters µi|t and Σi|t, respec
tively, in sequence for i = t, t − 1, . . . , 0. Each step implements 

p(xi+1|y0
t ) → p(xi|y0

t ), i = t, t − 1, . . . , 0. 

In terms of the model parameters (1), the smoothing recursion for the associated 
marginal parameters can be derived to be 

µi|t = µi|i + Fi(µi+1|t − µi+1|i) 
i = t, t − 1, . . . , 0. 

Σi|t = Fi(Σi+1|t − Σi+1|i)F
T 
i + Σi|i 

where 
Fi = Σi|iA

TΣ−1 
i+1|i. 
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