
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.438 Algorithms for Inference
Fall 2014

12 Gaussian Belief Propagation

Our inference story so far has focused on discrete random variables, starting with the
Elimination algorithm for marginalization. For trees, we saw how there is always a
good elimination order, which gave rise to the Sum-Product algorithm for trees, also
referred to as belief propagation (BP). For the problem of determining MAP config
urations of the variables, we introduced the MAP Elimination algorithm, which is
obtained from its marginalization counterpart by replacing summations with maxi
mizations and keeping track of the maximizing argument of every message. For trees,
an efficient implementation of elimination yielded the Max-Product algorithm. We
then specialized our algorithms to the case of the simplest class of trees—the hidden
Markov model—obtaining the forward-backward algorithm as the specialization of
Sum-Product, and the Viterbi algorithm as the specialization of Max-Product.

In the case of continuous-valued distributions, we can of course continue to use the
Elimination Algorithm, where now summations are replaced with integrals. Obviously
our computational complexity analysis does not carry over from the discrete case, as
we need to think about the complexity of integration—which could be intractable
for arbitrary continuous distributions. However, as we develop in these notes, for
the special case of jointly Gaussian distributions, explicit integration can be entirely
avoided by exploiting the algebraic structure of the underlying distributions, leading,
once again, to highly efficient algorithms!

We begin with the Gaussian Sum-Product algorithm, or equivalently, Gaussian
belief propagation.

12.1 Preliminary Example: the Two-Node Case

We begin with a two-node undirected graph for the jointly Gaussian case, observing
the message passing structure associated with eliminating one node. The insights
here will help us anticipate the structure for the general case of trees.

Our development makes use of a key result from our earlier introduction to Gaus
sian graphical models, whereby in information form, marginalization is computed via
a Schur complement:

Claim 1. If
x1 h1 J11 J12 x = ∼ N−1 , (1)
x2 h2 J21 J22

then
x1 ∼ N−1(h , J) (2)

where
h = h1 − J12J

−1
22 h2 and J = J11 − J12J

−1
22 J21. (3)

Proceeding, consider the case of two jointly Gaussian random variables x1 and x2

distributed according to

px1,x2 (x1, x2)
T T T∝ exp −

1
x1 J11x1 + hT

1 x1 −
1
x2 J22x2 + hT

2 x2 − x1 J12x2
2 2
1 1

T T T = exp − x J11x1 + hT exp − x2 2 x2 exp −x .1 1 x1 J22x2 + hT
1 J12x2

2 2 , } , } , }
/ψ12(x1,x2)

/φ1(x1) /φ2(x2)

where we want to compute the marginal px1 . Writing out the associated integration,1

while interpreting the quantities involved in terms of the sum-product algorithm
messages, we obtain

px1 (x1) = φ1(x1) φ2(x2) ψ12(x1, x2) dx2 = φ1(x1) φ2(x2)ψ12(x1, x2) dx2 . , }
m2→1(x1)

However, the message m2→1 can be rewritten as
m2→1(x1) = exp − x T 2 x2 − x T dx2

1
2 J22x2 + hT

1 J12x2
2 T T
1 x1 0 J12 x1 0 x1 = exp − + dx2,
2 x2 J21 J22 x2 h2 x2

which, conveniently, we can interpret as a marginalization which we can evaluate
using a Schur complement! In particular, applying Claim 1 with J11 = 0 and h1 = 0,
we then obtain

m2→1(x1) ∝ N−1(x1; h2→1, J2→1),

where
h2→1 / −J12J

−1h2 and J2→1 / −J12J
−1J21.22 22

We remark that the proportionality constant does not matter; indeed, even in the
discrete case we had the lattitude to normalize messages at each step. However, what
is important is the observation that in this case of jointly Gaussian distributions,
the messages are Gaussian. In turn, this has important computational implications.
Indeed, since Gaussian distributions are characterized by their mean and convariance
parameters, in Gaussian inference we need only propagate these parameters. Phrased
differently, the mean and covariance parameters constitute equivalent messages in
this Gaussian case. As such, the computation involved in the manipulation of these

1This is an integration over Rd if x2 is d-dimensional.

2

() []() () ()

messages in the inference process amounts to linear algebra, whose complexity is easy

to characterize!

To complete our initial example, note that the marginal distribution for x1, which
is also a Gaussian distribution and thereby characterized by its mean and covariance,
is obtained from the message m2→1 via the following final bit of linear algebra:

px1 (x1) ∝ φ1(x1) m2→1(x1)

T T∝ exp −
1
x 1 x1 −

1
x1 J2→1x1 + hT

2 1 J11x1 + hT

2 2→1x1

= exp −
1
x T1 (J11 + J2→1)x1 + (h1 + h2→1)

T x1
2

∝ N−1(x1; h1 + h2→1, J11 + J2→1).

In particular, in marginalizing out x2, we see that h2→1 is used in updating the
potential vector of x1, while J2→1 is used in updating the information matrix of x1.

12.2 Undirected Trees

From the two-node example, we saw that messages are Gaussian in the case of Gaus
sian inference, and that message computation and marginalization involve linear al
gebraic computation. Thus, when applying the Sum-Product algorithm to the case of
Gaussian distributions, our focus is one of determining the associated linear algebra
for its implementation, which we now develop, again exploiting the information form
of Gaussian distributions and the role of Schur complements in marginalization.

To start, note that the message sent from xi to xj can be written as

mi→j (xj)
= φi(xi)ψij (xi, xj) mk→i(xi) dxi

k∈N(i)\j

T T = exp − xi i xi exp −xi
1

Jiixi + hT Jij xj
2

· exp −
1
x TJk→ixi + hT dxii k→ixi2

k∈N (i)\j⎧ ⎫

= exp
⎨ ⎩
−
1
2
x T
i Jiixi + hT

i xi − x T
i Jij xj +

−
1
2
x T
i Jk→ixi + hT

k→ixi

⎬ ⎭
dxi

k∈N(i)\j

= exp −
1
2

xi
xj

T
Jii +

k∈N(i)\j
Jji

Jk→i Jij
0

xi
xj

+
hi +

k∈N(i)\j
0

hk→i
T

xi
xj

dxi.

3

{ }{ }
{ }

∫
∫ { } { }

{ }
∫ []
∫ { () []()

() ()}

Applying Claim 1, we obtain

mi→j (xj) ∝ N−1(xj ; hi→j , Ji→j), (4)

where ⎛ ⎞−1 ⎛ ⎞

hi→j = −Jji ⎝Jii + Jk→i
⎠ ⎝hi + hk→i

⎠ , (5)
k∈N(i)\j k∈N(i)\j ⎛ ⎞−1

Ji→j = −Jji ⎝Jii + Jk→i
⎠ Jij . (6)

k∈N(i)\j

In turn, the marginal computation can be expressed as

pxi (xi) ∝ φi(xi) mk→i(xi)

k∈N(i)

1
i xi

1
Jk→ixi + hT∝ exp −

2
x T
i Jiixi + hT exp −

2
x T
i k→ixi

k∈N(i)⎧ ⎫ ⎨ ⎬
= exp −

1
xi
TJiixi + hT −

1
xi
T

k→ixii xi + Jk→ixi + hT ⎩ 2 2 ⎭
k∈N(i) ⎧ ⎛ ⎞ ⎛ ⎞T ⎫ ⎨ ⎬

T = exp −
1
xi ⎝Jii + Jk→i

⎠ xi + ⎝hi + hk→i
⎠ xi ,⎩ 2 ⎭

k∈N(i) k∈N (i)

from which we obtain that
xi ∼ N−1(ˆ ˆhi, Ji)

where
ˆ ˆhi = hi + hk→i, Ji = Jii + Jk→i. (7)

k∈N (i) k∈N (i)

Eqs. (5), (6), and (7) thus define the implementation of the update rules for
Gaussian BP. As in the general case, we may run these update rules at each node in
parallel.

Having now developed the linear algebra that implements Gaussian belief propa
gation, we can examine the complexity of Gaussian inference, focusing on the serial
version of Gaussian BP. In general, of course, different xi can have different dimen
sions, but to simplify our discussion let us assume that each xi has dimension d. At
each iteration, the computational complexity is dominated by the matrix inversion in
(5), which need not be repeated for computing (6). Now if matrix inversion is imple
mented via Gaussian elimination, its complexity is O(d3) complexity2 Moreover, as

2Actually, a lower complexity of O(d2.376) is possible via the Coppersmith-Winograd algorithm.

4

∑ ∑
∑

∏
{ } ∏ { }

∑ []
∑ ∑

∑ ∑

in the case of discrete-valued variables, the number of iterations needed scales with
the diameter of the undirected tree, which in turn scales with the number of nodes
N . Thus, the overall complexity is O(Nd3). By contrast, naively inverting the infor
mation matrix of the entire graph J ∈ RNd×Nd in order to compute marginal means
and covariances at each node results in inference complexity of O((Nd)3) = O(N3d3).

12.3 Connections to Gaussian Elimination

From our initial discussion of Gaussian distributions, recall that the covariance and
information forms are related via

J = Λ−1 and h = Jµ, (8)

from which we see that marginalization, i.e., the computation of µ from the informa
tion form parameterization can be obtained by solving a set of linear equations.

Via this observation, it follows that for any (symmetric) positive-definite matrix
A that corresponds to the information matrix for a tree graph, the linear equation
Ax = b for x may be solved by running Gaussian BP on the associated graph!
As such, there is a close connection between the Gaussian elimination algorithm for
solving linear equations and Gaussian BP, which we give a flavor of by the following
simple example.

Example 1. Consider the following pair of jointly Gaussian variables

x1 3 4 2 ∼ N−1 , .
x2 3 2 3

In particular, let’s look at solving the following for x = (x1, x2):

4 2 x1 3
2 3 x2

=
3

.

Subtracting 2/3 of the second row from the first yields

4 − 2 · 2 2 − 2 · 3 x1 3 − 2 · 3
3 3 3= .
2 3 x2 3

Simplifying yields
8 0 x1 1
3 = ,
2 3 x2 3

from which we can back-substitute to obtain x1 = 3/8 and so forth. We leave com
puting Gaussian BP messages by first eliminating node x2 as an exercise, noting that
the calculations will in fact be identical to those above.

5

() (() [])

[]() ()

[]() ()
[]() ()

This begs the question: Does this result contradict our earlier computational com
plexity analysis suggesting that Gaussian BP is more efficient than naively inverting
the entire graph’s information matrix using Gaussian elimination? We mention two
differences here. First, the equivalence assumes the same elimination ordering, which
means that while using Gaussian elimination, we need to essentially reorder the rows
so that we eliminate the leaves to the root, and choosing a bad elimination ordering
will induce a significant computational penalty, akin to using the Elimination Algo
rithm on a tree with a bad ordering (e.g., trying to first eliminate nodes that are not
leaves). Second, Gaussian elimination does not know a priori that matrix A is sparse
and might, for example, perform many multiplications by 0 whereas Gaussian BP
for trees will automatically avoid a lot of these operations. We can modify Gaussian
elimination to account for such issues, but the intuition for doing so really comes from
the tree structure. In fact, once we account for the tree structure and elimination
ordering as described above, Gaussian elimination becomes equivalent to Gaussian
BP.

12.4 MAP Configurations in the Gaussian Case

For Gaussian distributions, we are also often interested in our other main inference
task, viz., MAP estimation. However, conveniently, for jointly Gaussian distributions,
marginalization and MAP estimation coincide, i.e., the sum-product and max-product
and produce identical results, and thus our development of the sum-product algorithm
suffices.

The reason for this is the special tructure and symmetries of jointly Gaussian
distributions; indeed, the mean and mode (and median for that matter) of such
distributions is identical. Since the mode corresponds to the MAP configuration, and
the marginals are parameterized by the mean vector, BP suffices for both.

To verify that the mode of a Gaussian distribution is its mean, it suffices to note
that maximizing the distribution N(x; µ, Λ) over x amounts to solving the uncon
strained maximization problem

x ∗ = arg max −
1
(x − µ)TΛ−1(x − µ)

x 2

1 1TΛ−1 TΛ−1 TΛ−1 = arg max − x x + µ x − µ µ .
x 2 2

Taking the gradient of the objective function with respect to x, we obtain

∂ 1 1TΛ−1 TΛ−1 TΛ−1− x x + µ x − µ µ = −Λ−1 x + Λ−1 µ.
∂x 2 2

In turn, setting the gradient to 0 we see that, indeed, the MAP configuration is
x ∗ = µ.

6

[]
[]

[]

MIT OpenCourseWare
http://ocw.mit.edu

6.438 Algorithms for Inference
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

