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12 Gaussian Belief Propagation 

Our inference story so far has focused on discrete random variables, starting with the 
Elimination algorithm for marginalization. For trees, we saw how there is always a 
good elimination order, which gave rise to the Sum-Product algorithm for trees, also 
referred to as belief propagation (BP). For the problem of determining MAP config
urations of the variables, we introduced the MAP Elimination algorithm, which is 
obtained from its marginalization counterpart by replacing summations with maxi
mizations and keeping track of the maximizing argument of every message. For trees, 
an efficient implementation of elimination yielded the Max-Product algorithm. We 
then specialized our algorithms to the case of the simplest class of trees—the hidden 
Markov model—obtaining the forward-backward algorithm as the specialization of 
Sum-Product, and the Viterbi algorithm as the specialization of Max-Product. 

In the case of continuous-valued distributions, we can of course continue to use the 
Elimination Algorithm, where now summations are replaced with integrals. Obviously 
our computational complexity analysis does not carry over from the discrete case, as 
we need to think about the complexity of integration—which could be intractable 
for arbitrary continuous distributions. However, as we develop in these notes, for 
the special case of jointly Gaussian distributions, explicit integration can be entirely 
avoided by exploiting the algebraic structure of the underlying distributions, leading, 
once again, to highly efficient algorithms! 

We begin with the Gaussian Sum-Product algorithm, or equivalently, Gaussian 
belief propagation. 

12.1 Preliminary Example: the Two-Node Case 

We begin with a two-node undirected graph for the jointly Gaussian case, observing 
the message passing structure associated with eliminating one node. The insights 
here will help us anticipate the structure for the general case of trees. 

Our development makes use of a key result from our earlier introduction to Gaus
sian graphical models, whereby in information form, marginalization is computed via 
a Schur complement: 

Claim 1. If         
x1 h1 J11 J12 x = ∼ N−1 , (1)
x2 h2 J21 J22

then 
x1 ∼ N−1(h , J ) (2) 

where 
h = h1 − J12J

−1 
22 h2 and J = J11 − J12J

−1 
22 J21. (3) 



          

Proceeding, consider the case of two jointly Gaussian random variables x1 and x2 

distributed according to 

px1,x2 (x1, x2)  
T T T∝ exp − 

1 
x1 J11x1 + hT

1 x1 − 
1 
x2 J22x2 + hT

2 x2 − x1 J12x2
2 2     
1 1   

T T T = exp − x J11x1 + hT exp − x2 2 x2 exp −x .1 1 x1 J22x2 + hT
1 J12x2

2 2 ,   } ,   } ,   } 
/ψ12(x1,x2)

/φ1(x1) /φ2(x2) 

where we want to compute the marginal px1 . Writing out the associated integration,1 

while interpreting the quantities involved in terms of the sum-product algorithm 
messages, we obtain   

px1 (x1) = φ1(x1) φ2(x2) ψ12(x1, x2) dx2 = φ1(x1) φ2(x2)ψ12(x1, x2) dx2 . ,   } 
m2→1(x1) 

However, the message m2→1 can be rewritten as    
m2→1(x1) = exp − x T 2 x2 − x T dx2 

1 
2 J22x2 + hT

1 J12x2
2    T T
1 x1 0 J12 x1 0 x1 = exp − + dx2,
2 x2 J21 J22 x2 h2 x2

which, conveniently, we can interpret as a marginalization which we can evaluate 
using a Schur complement! In particular, applying Claim 1 with J11 = 0 and h1 = 0, 
we then obtain 

m2→1(x1) ∝ N−1(x1; h2→1, J2→1), 

where 
h2→1 / −J12J

−1h2 and J2→1 / −J12J
−1J21.22 22 

We remark that the proportionality constant does not matter; indeed, even in the 
discrete case we had the lattitude to normalize messages at each step. However, what 
is important is the observation that in this case of jointly Gaussian distributions, 
the messages are Gaussian. In turn, this has important computational implications. 
Indeed, since Gaussian distributions are characterized by their mean and convariance 
parameters, in Gaussian inference we need only propagate these parameters. Phrased 
differently, the mean and covariance parameters constitute equivalent messages in 
this Gaussian case. As such, the computation involved in the manipulation of these 

1This is an integration over Rd if x2 is d-dimensional. 
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messages in the inference process amounts to linear algebra, whose complexity is easy
 
to characterize! 

To complete our initial example, note that the marginal distribution for x1, which 
is also a Gaussian distribution and thereby characterized by its mean and covariance, 
is obtained from the message m2→1 via the following final bit of linear algebra: 

px1 (x1) ∝ φ1(x1) m2→1(x1) 

T T∝ exp − 
1 
x 1 x1 − 

1 
x1 J2→1x1 + hT 

2 1 J11x1 + hT 

2 2→1x1 

= exp − 
1 
x T1 (J11 + J2→1)x1 + (h1 + h2→1)

T x1
2 

∝ N−1(x1; h1 + h2→1, J11 + J2→1). 

In particular, in marginalizing out x2, we see that h2→1 is used in updating the 
potential vector of x1, while J2→1 is used in updating the information matrix of x1. 

12.2 Undirected Trees 

From the two-node example, we saw that messages are Gaussian in the case of Gaus
sian inference, and that message computation and marginalization involve linear al
gebraic computation. Thus, when applying the Sum-Product algorithm to the case of 
Gaussian distributions, our focus is one of determining the associated linear algebra 
for its implementation, which we now develop, again exploiting the information form 
of Gaussian distributions and the role of Schur complements in marginalization. 

To start, note that the message sent from xi to xj can be written as 

mi→j (xj )  
= φi(xi)ψij (xi, xj ) mk→i(xi) dxi 

k∈N(i)\j 

T T = exp − xi i xi exp −xi 
1 

Jiixi + hT Jij xj
2  

· exp − 
1 
x TJk→ixi + hT dxii k→ixi2 

k∈N (i)\j⎧ ⎫ 

= exp 
⎨ ⎩ 
− 
1 
2 
x T 
i Jiixi + hT 

i xi − x T 
i Jij xj +

 
− 
1 
2 
x T 
i Jk→ixi + hT 

k→ixi 

⎬ ⎭ 
dxi 

k∈N(i)\j 

= exp − 
1 
2 

xi 
xj 

T 
Jii +

 
k∈N(i)\j 
Jji 

Jk→i Jij 
0 

xi 
xj 

+ 
hi +

 
k∈N(i)\j 
0 

hk→i 
T 

xi 
xj 

dxi. 
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Applying Claim 1, we obtain
 

mi→j (xj ) ∝ N−1(xj ; hi→j , Ji→j ), (4) 

where ⎛ ⎞−1 ⎛ ⎞ 

hi→j = −Jji ⎝Jii + Jk→i
⎠ ⎝hi + hk→i

⎠ , (5) 
k∈N(i)\j k∈N(i)\j ⎛ ⎞−1 

Ji→j = −Jji ⎝Jii + Jk→i
⎠ Jij . (6) 

k∈N(i)\j 

In turn, the marginal computation can be expressed as 

pxi (xi) ∝ φi(xi) mk→i(xi)
 
k∈N(i)
 

1 
i xi 

1 
Jk→ixi + hT∝ exp − 

2 
x T 
i Jiixi + hT exp − 

2 
x T 
i k→ixi 

k∈N(i)⎧ ⎫ ⎨ ⎬ 
= exp − 

1 
xi 
TJiixi + hT − 

1 
xi 
T 

k→ixii xi + Jk→ixi + hT ⎩ 2 2 ⎭ 
k∈N(i) ⎧ ⎛ ⎞ ⎛ ⎞T ⎫ ⎨ ⎬ 

T = exp − 
1 
xi ⎝Jii + Jk→i

⎠ xi + ⎝hi + hk→i
⎠ xi ,⎩ 2 ⎭ 

k∈N(i) k∈N (i) 

from which we obtain that 
xi ∼ N−1(ˆ ˆhi, Ji) 

where 
ˆ ˆhi = hi + hk→i, Ji = Jii + Jk→i. (7) 

k∈N (i) k∈N (i) 

Eqs. (5), (6), and (7) thus define the implementation of the update rules for 
Gaussian BP. As in the general case, we may run these update rules at each node in 
parallel. 

Having now developed the linear algebra that implements Gaussian belief propa
gation, we can examine the complexity of Gaussian inference, focusing on the serial 
version of Gaussian BP. In general, of course, different xi can have different dimen
sions, but to simplify our discussion let us assume that each xi has dimension d. At 
each iteration, the computational complexity is dominated by the matrix inversion in 
(5), which need not be repeated for computing (6). Now if matrix inversion is imple
mented via Gaussian elimination, its complexity is O(d3) complexity2 Moreover, as 

2Actually, a lower complexity of O(d2.376) is possible via the Coppersmith-Winograd algorithm. 
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in the case of discrete-valued variables, the number of iterations needed scales with 
the diameter of the undirected tree, which in turn scales with the number of nodes 
N . Thus, the overall complexity is O(Nd3). By contrast, naively inverting the infor
mation matrix of the entire graph J ∈ RNd×Nd in order to compute marginal means 
and covariances at each node results in inference complexity of O((Nd)3) = O(N3d3). 

12.3 Connections to Gaussian Elimination 

From our initial discussion of Gaussian distributions, recall that the covariance and 
information forms are related via 

J = Λ−1 and h = Jµ, (8) 

from which we see that marginalization, i.e., the computation of µ from the informa
tion form parameterization can be obtained by solving a set of linear equations. 

Via this observation, it follows that for any (symmetric) positive-definite matrix 
A that corresponds to the information matrix for a tree graph, the linear equation 
Ax = b for x may be solved by running Gaussian BP on the associated graph! 
As such, there is a close connection between the Gaussian elimination algorithm for 
solving linear equations and Gaussian BP, which we give a flavor of by the following 
simple example. 

Example 1. Consider the following pair of jointly Gaussian variables 

x1 3 4 2 ∼ N−1 , . 
x2 3 2 3 

In particular, let’s look at solving the following for x = (x1, x2): 

4 2 x1 3 
2 3 x2 

= 
3 

. 

Subtracting 2/3 of the second row from the first yields
 

4 − 2 · 2 2 − 2 · 3 x1 3 − 2 · 3
3 3 3= . 
2 3 x2 3 

Simplifying yields 
8 0 x1 1
3 = ,
2 3 x2 3 

from which we can back-substitute to obtain x1 = 3/8 and so forth. We leave com
puting Gaussian BP messages by first eliminating node x2 as an exercise, noting that 
the calculations will in fact be identical to those above. 
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This begs the question: Does this result contradict our earlier computational com
plexity analysis suggesting that Gaussian BP is more efficient than naively inverting 
the entire graph’s information matrix using Gaussian elimination? We mention two 
differences here. First, the equivalence assumes the same elimination ordering, which 
means that while using Gaussian elimination, we need to essentially reorder the rows 
so that we eliminate the leaves to the root, and choosing a bad elimination ordering 
will induce a significant computational penalty, akin to using the Elimination Algo
rithm on a tree with a bad ordering (e.g., trying to first eliminate nodes that are not 
leaves). Second, Gaussian elimination does not know a priori that matrix A is sparse 
and might, for example, perform many multiplications by 0 whereas Gaussian BP 
for trees will automatically avoid a lot of these operations. We can modify Gaussian 
elimination to account for such issues, but the intuition for doing so really comes from 
the tree structure. In fact, once we account for the tree structure and elimination 
ordering as described above, Gaussian elimination becomes equivalent to Gaussian 
BP. 

12.4 MAP Configurations in the Gaussian Case 

For Gaussian distributions, we are also often interested in our other main inference 
task, viz., MAP estimation. However, conveniently, for jointly Gaussian distributions, 
marginalization and MAP estimation coincide, i.e., the sum-product and max-product 
and produce identical results, and thus our development of the sum-product algorithm 
suffices. 

The reason for this is the special tructure and symmetries of jointly Gaussian 
distributions; indeed, the mean and mode (and median for that matter) of such 
distributions is identical. Since the mode corresponds to the MAP configuration, and 
the marginals are parameterized by the mean vector, BP suffices for both. 

To verify that the mode of a Gaussian distribution is its mean, it suffices to note 
that maximizing the distribution N(x; µ, Λ) over x amounts to solving the uncon
strained maximization problem 

x ∗ = arg max − 
1
(x − µ)TΛ−1(x − µ) 

x 2

1 1TΛ−1 TΛ−1 TΛ−1 = arg max − x x + µ x − µ µ . 
x 2 2

Taking the gradient of the objective function with respect to x, we obtain
 

∂ 1 1TΛ−1 TΛ−1 TΛ−1− x x + µ x − µ µ = −Λ−1 x + Λ−1 µ. 
∂x 2 2

In turn, setting the gradient to 0 we see that, indeed, the MAP configuration is 
x ∗ = µ. 
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