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""•	 This is a closed book exam, but four 81
2
× 11"" sheets of notes (8 sides total) 

are allowed. 

•	 Calculators are not allowed. 

•	 There are 3 problems. 

•	 The problems are not necessarily in order of difficulty. We recommend that you 
read through all the problems first, then do the problems in whatever order 
suits you best. 

•	 Record all your solutions on the exam paper. We have left enough space for 
each part. Extra blank sheets and stapler are available in case you need more 
space. You may want to first work things through on the scratch paper provided 
and then neatly transfer to the exam paper the work you would like us to look 
at. Let us know if you need additional scratch paper. 

•	 A correct answer does not guarantee full credit, and a wrong answer does not 
guarantee loss of credit. You should clearly but concisely indicate your reasoning 
and show all relevant work. Your grade on each problem will be based on 
our best assessment of your level of understanding as reflected by what you have 
written in the answer booklet. 

•	 Please be neat—we can’t grade what we can’t decipher! 
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Problem 1 

Part 1: Junction Trees 

Johnny, being a very bright student, is taking an advanced class on graphical models. 
Johnny’s teacher has asked him to build a junction tree for the graph in Figure 1. 
In this problem, we will follow Johnny’s attempts to build a Junction Tree for the 
given graph. On seeing the graph, Johnny immediately notices that it is not a chordal 
graph. 

Figure 1: Graph for Problem 1 

(a) (1 point) Show that the graph G is non-chordal i.e. find a non-chordal cycle 
of length 4 or more in G. 
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Johnny was very attentive in class, so he knows that non-chordal graphs do not have
 
Junction Trees. Thus, he must first add edges to G to make it chordal. Being a lazy 
fellow, Johnny does not wish to add too many edges. Being quite clever as well, he 
sees that he can triangulate the graph using only 2 edges. 

(b) (1 point) Triangulate G using exactly 2 edges. We will denote the resulting 
graph as G " . (Note: We want you to list down the edges added, as well as draw 
the triangulated graph.) 
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Johnny has now asked his friend Sarah, to help him finish the assignment. Sarah
 
is very attentive to detail, and spells out each step of the Junction Tree algorithm 
clearly. 

(c) (1 point) Build a weighted clique graph of G " . We will call this graph GC . 
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(d) (1 point) Find a Maximum-weight Spanning Tree (MST) of GC .We will call 
the resulting graph GT . 
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� � 
(e) (1 point) Check whether GT satisfies the test for junction trees, i.e. whether  

weight(e) = |C| − |V |, 
e∈EGT C∈C 

where EGT is the set of edges in GT . 
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Part 2: Sampling from Undirected Graphical Model
 

In the following parts, we are interested in undirected graphical models only. More
over, assume that all the variables are binary. 

(f) (2 points) Give an O(N2) algorithm to sample from an N-node graphical model 
using the sum-product algorithm, given that the underlying graph is a tree. 

Note: We assume that basic arithmetic operations like addition, multiplication 
can be done in O(1) time. 

7
 



(g) (1 point) Extend the above algorithm to sample from any chordal graphical
 
model G. What will be the complexity of sampling for your algorithm? 
Hint: Think about part 1. 
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(h) (1 point) Now, suppose we have a graphical model G, whose underlying graph
 
is NOT chordal. We want to do something similar to part (g). Describe how 
you would do this. (In other words, how can you reduce the problem back to 
the one you solved in (g)?) 
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(i) (1 point) Can you provide any useful bounds on the complexity in the case of 
part (h)? Justify. 
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Problem 2 

Given an undirected graph G = (V, E), an independent set I is a subset of V s.t. 
∀i, j ∈ I, i  ∈ E.= j, we have (i, j) / In other words, a subset I of V is an independent 
set if for any edge in E, at most one of the two vertices of that edge is in I. 

Notice a subset of V can be represented as a sequence of binary variables x = 
(x1, x2, ..., xn) ∈ {0, 1}n, where n = |V |. xi = 1 if and only if node i is in the subset. 

We will define a distribution over x:  g 
Z 
1 exp( wixi) if x corresponds to an independent set 

px(x) = i∈V 

0 otherwise 

where weights w1, w2, ..., wn are given constants, and we assume wi > 0, ∀i ∈ 
{1, 2, ...n}. 

We are interested in finding an independent set with the maximum total weight, g 
i.e.	 we want to maximize wixi for x that corresponds to an independent set. It 

i∈V 

should be obvious that this is equivalent to maximize px(x). 

Part 1: Max-Product Algorithm 

In this part of the problem, we apply max-product algorithm to solve the Weighted 
Maximum Independent Set problem. 

(a) (2 points) To be more concrete, consider the graph in Fig 2: 

1

2 3

4 5

Figure 2: Graph for problem 2
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Draw an undirected graphical model according to which px(x) factorizes. Specify 
the corresponding potential functions. 
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(b) (2 points) Express m2
t 
→4(x4) in terms of messages at iteration t - 1 and the 

given weights wi’s. Also, express the estimated max-marginal p̄t x2 
(x2) in terms 

of messages at iteration t and the weights. (You don’t need to normalize the 
messages/max-marginals.) 
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(c) (1 points) At iteration t, we will make our guess of the weighted maximum
 
independent set using the following rules: 

t t t(1). x̂i(p̄ ) = 1 if p̄ (1) > p̄ (0)xi xi xi 
t t t(2). x̂i(p̄ ) = 0 if p̄ (1) < p̄ (0)xi xi xi 
t t t(3). x̂i(p̄ ) = ? if p̄ (1) = p̄ (0)xi xi xi 

Notice we only care about the ratio of p̄t (1) and p̄t (0), not the actual valxi xi 

ues. Thus we define 

mt (0)
γi
t 
→j � ln( i→j 

), ∀(i, j) ∈ E 
mt

i→j (1)

Express γt in terms of other γt and the weights wi. Also express the 2→4 i→j 

decision rule for x̂2 in terms of γi
t 
→j and weights. 
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(d) (2 points) For this part only, we consider a general undirected graph. We are
 
interested in characterizing the fixed points of the above described max-product
 
algorithm. Let γt be the set of all messages γi

t 
→j , ∀(i, j) ∈ E. Assume that γ∗ is
 

a fixed point of the max-product algorithm. Prove that x̂(γ∗) does not violate
 
the ’independent set’ requirement, i.e. if x̂i(γ∗) = 1, then ∀j ∈ N(i), x̂j (γ∗) = 0.
 

Hint: You can first prove the following facts:
 
(i). If x̂i(γ∗) = 1, then γi

∗
→j > γj

∗
→i, ∀j ∈ N(i)
 

(ii). If x̂i(γ∗) =?, then γ∗ ≥ γj
∗
→i, ∀j ∈ N(i). Moreover, if γ∗ ≥ 0, then
 i→j j→i 

equality is achieved, i.e. γi
∗
→j = γj

∗
→i 
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Part 2: Markov Chain Monte Carlo Methods
 

In this part, we consider sampling from px(x) using Metropolis-Hastings algorithm. 

(e) (2 points) Design a Metropolis-Hastings algorithm that samples from px(x). 
Make sure you explicitly describe your proposed Markov Chain and how the 
Metropolis-Hastings Markov Chain (i.e. the Markov Chain whose stationary 
distribution is px(x)) is related to your proposed Markov Chain. 

Note: The solution here is not unique. You only need to describe one such 
algorithm. 
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(f) (1 points) Now assume you are provided with a black box that can provide
 
independent samples from px(x). Briefly discuss how you would use the black 
box to approximately solve the Weighted Maximum Independent Set problem. 

Note: Description of a strategy would suffice. You are not expected to come up 
with any theoretical guarantee of the performance of your strategy. 
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Problem 3
 

The purpose of this question is to understand how graphical model learning can 
be very useful in seemingly unrelated applications. 

Consider a point-of-sales system like Square, Inc. (remember the payment system 
that works with iPhones). A candy shop uses this system for processing all of its 
transactions. Naturally, Square collects data about these transactions over time. 
Based on it, to provide it’s value, it would like to inform the candy shop when it’s 
close to running out of its inventory so that shop can order new candies without 
turning its customers away. The problem is that Square does not know exactly how 
many candies are there in a store at any point of time; it only knows whether a candy 
is sold or not. In what follows, we’ll go through a stylized version of this question 
that can help Square infer the number of candies in a store at any given time. 

Let time be indexed by t ∈ {0, 1, . . . , }. Let Xt ∈ {0, 1, . . . , C} represent the number 
of candies in the store at time t; C being the maximum number of candies in the 
store. Let Yt ∈ {0, 1} represent whether Square observes a transaction of purchase 
of a candy from the store at time t: Yt = 1 if a candy is purchased at time t and 0 
otherwise (we shall assume that no one ever purchases more than one candy). 

The shop owner operates as follows. At a given time t, if Xt = 0 (i.e. no more 
candies in stock), with probability p, s/he re-fills the shop by ordering C candies (i.e. 
Xt+1 = C); with probability 1 − p, nothing happens (i.e. Xt+1 = 0). At any given 
time, if Xt = 0, then naturally Yt = 0 as there is nothing to purchase. However, if 
Xt ≥ 1, then Yt = 1 with probability q. Obviously, when Yt = 1, the remaining stock 
decreases by 1 i.e. Xt+1 = Xt − 1. 

The question of interest for Square is to learn parameters p, q given the knowledge of 
C and above behavior of shop owner as well as customers. (Questions start on next 
page.) 
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(a) Suppose X0 = C and C ≥ 2. We wish to find an estimate of q from observations 
Yt, 0 ≤ t ≤ T , for T large enough. 

(1) (1 points) For this part, assume that the stock is always full i.e. C = +∞. 
Describe how you would estimate q using Yt, 0 ≤ t ≤ T so that as T → ∞ 
your estimate finds the correct value of q. 
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(2) (2 points) Now assume C is finite. Describe how you would estimate q 
using Yt, 0 ≤ t ≤ T so that as T → ∞ your estimate finds the correct value 
of q. 
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(b) Now, suppose	 X0 = 0 and C ≥ 2. We wish to find an estimate of p from 
observations Yt, 0 ≤ t ≤ T , for T large enough. 

(1) (1 points) Suppose q = 1 i.e. an item is always sold when the stock is 
non-empty. Describe how you would estimate p using Yt, 0 ≤ t ≤ T so that 
as T → ∞ your estimate finds the correct value of p. 
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(2) (2 points) Describe how you would estimate p for arbitrary q so that as 
T → ∞ your estimate finds the correct value of p. 
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(c) Now suppose X0 is distributed uniformly at random on {0, . . . , C} at time 0, 
C ≥ 2. We wish to obtain good estimates for p, q. As this part is more complex, 
it will be useful to write down a graphical model description. 

(1) (2 points) Write down a Hidden Markov Model description of the above 
problem. 
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(2) (2 points) Describe how you would use EM algorithm to estimate p, q 
from the observations. 
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