
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.438 Algorithms for Inference
Fall 2014

17 Variational Inference
Prompted by loopy graphs for which exact inference is computationally intractable,
we tread into algorithms for approximate inference in search for efficient solutions
that may have error. We began with loopy belief propagation, which meant applying
the parallel Sum-Product algorithm to loopy graphs with at most pairwise potentials.
Our analysis revealed that the problem could be viewed in terms of approximating
the log partition function of the distribution of interest.

Today we extend this train of analysis, presenting a general approach that ap
proximates distributions we care about through modifying the hard log partition
optimization. Previously, we applied a Bethe approximation to the log partition op
timization to recover an optimization problem intricately related to loopy BP. The
Bethe approximation amounted to changing the space we’re optimizing over to be a
simpler set, which slammed down the computational complexity of inference. But
we could have easily chosen a different space to optimize over such as some family
of probability distributions, which would yield different approximating distributions!
This general approach is called variational inference, and cleverly selecting which
family of distributions to optimize over will offer us lower and upper bounds on the
log partition function.

We’ll first review the log partition optimization and Bethe approximation before
plunging into how to bound the log partition function for distributions with at most
pairwise potentials. Each bound will directly have an algorithm that gives an approx
imating distribution. But variational inference works for distributions with potentials
on larger cliques as well! We’ll save this for the end, when we’ll also briefly inject
variational inference with an information-theoretic interpretation.

17.1 Log partition optimization and Bethe approximation
We blaze through some previously stated results while defining a few new variables.
Unless otherwise stated, we take distribution x ∈ XN defined over graph G = (V, E)
to have factorization ⎛ ⎞ 1

px(x) =
Z

exp ⎝ φi(xi) + ψij (xi, xj)⎠ , (1)
i∈V (i,j)∈E

where Z is the partition function.
Denoting H(μ) ; −Eμ[log(μ(x))] = − x μ(x) log(μ(x)) to be the entropy of

distribution μ, the hard log partition variational problem is: ⎧ ⎡ ⎤ ⎫ ⎨ ⎬
log Z = sup Eμ ⎣ φi(xi) + ψij (xi, xj)⎦ + H(μ) , (2)

μ∈M ⎩ ⎭
i∈V (i,j)∈E

∑ ∑

where M is the set of all distributions over XN .
Applying the Bethe approximation amounted to saying that rather than optimiz

ing over μ ∈ M, we’ll optimize over μ with factorization μij (xi, xj)
μ(x) = μi(xi) , (3)

μi(xi)μj (xj)
i∈V (i,j)∈E

where μi’s and μij ’s are constrained to behave like node and edge marginals. Ex
tremely important is the fact that E in the factorization is precisely the edge set in
the graph for px, which may be loopy! Adding the above factorization constraint on μ
to the log partition variational problem and scrawling a few lines of algebra, we’re
left with the Bethe variational problem below. ⎧ ⎫ ⎨ ⎬
log Zbethe = sup Eμi [φi(xi)] + [ψij (xi, xj)] + H(μi) + H(μij).Eμij

μ ⎩ ⎭
i∈V (i,j)∈E i∈V (i,j)∈E

(4)
subject to:

μi(xi) ≥ 0 for all i ∈ V, xi ∈ X

μi(xi) = 1 for all i ∈ V
xi∈X

μij (xi, xj) ≥ 0 for all (i, j) ∈ E, xi, xj ∈ X

μij (xi, xj) = μi(xi) for all (i, j) ∈ E, xi ∈ X
xj ∈X

μij (xi, xj) = μj (xj) for all (i, j) ∈ E, xj ∈ X
xi∈X

We get out approximate node marginals μi’s and approximate edge marginals μij ’s.
Also, we previously argued that if px has a tree graph, then log Z = log Zbethe. How
ever, if px has a loopy graph, then log Z and log Zbethe may differ, and how much these
differ is messy but can be described by loop series expansions.??? Unfortunately, it’s
unclear whether log Zbethe is a lower or upper bound for log Z, as we’ll discuss later.

But why is bounding the log partition function interesting? Recall that the
marginal over a subset S ⊂ V can be computed by

φi(xi) + ψij (xi, xj)x\ i∈V (i,j)∈E Z(x = xS)
pxS (xS) =

S
= S

,
Z Z

where x\S denotes all xi variables not in xS, and Z(xS = xS) is the partition function
evaluated when xS is fixed to have value xS. If we can bound log partition functions,
then we can bound partition functions. Thus, finding a lower bound on Z(xS = xS)
and an upper bound on Z would give us a lower bound for pxS (xS). Meanwhile, finding
an upper bound on Z(xS = xS) and a lower bound on Z would give an upper bound
for pxS (xS). So it’s possible to sandwich pxS (xS) into an interval!

2

∑ ∑ ∑ ∑

∑
∑
∑

∑ ∑ ∑

17.2 Lower bound using mean field
Imagine if we’re asked to optimize over 10 items, but we’re too lazy or it’s too expen
sive to check all 10. So we stop after checking five of them and return the optimal
solution so far. Surely our solution provides a lower bound for what the best solution
is since if we checked the rest of the items, our solution will either stay the same
or improve. This idea is precisely what we’ll use to secure a lower bound on log Z:
rather than optimizing over all distributions in M, we’ll optimize over a subset of M.
Our solution will thus yield a lower bound on the log partition function.

The simplest family of distributions that is guaranteed to be a subset of M is the
set of distributions that fully factorize as singleton factors:

μ(x) = μi(xi).
i∈V

This factorization is called the mean field factorization, and the family of distributions
with such a factorization will be denoted MMF. At a first glance, mean field might
seem too simplistic as there is no neighbor structure; all μi’s are independent! But as
we’ll see, by optimizing over μ ∈ MMF, the solution will involve looking at neighbors
in the original graph. Furthermore, in literature, the mean field factorization is far
and away the most popular way to do variational inference.

By looking at the original log partition variational problem and plugging in the
mean field factorization constraint on μ, a few lines of algebra show that the mean
field variational inference problem is as follows. ⎫⎬

⎧⎨
log ZMF = max Eμi [φi(xi)] + Eμiμj [ψij (xi, xj)] + H(μi) (5)

μ ⎭⎩
i∈V (i,j)∈E i∈V

subject to:

μi(xi) ≥ 0 for all i ∈ V, xi ∈ X

μi(xi) = 1 for all i ∈ V
xi∈X

The μi’s can be viewed as approximate node marginals of px. As we’ve already
justified, we are guaranteed that log ZMF ≤ log Z.

Let’s actually optimize for μ by slapping in some Lagrange multipliers and setting
derivatives to 0. As with the Bethe variational problem, we need not introduce La-
grange multipliers for the nonnegativity constraints; we’ll find that without explicitly
enforcing nonnegativity, our solution will have nonnegative μi(xi)’s anyways. Thus,
for each i, we introduce Lagrange multiplier λi for constraint μi(xi) = 1. The xi∈X

3

∏

∑ ∑ ∑

∑

∑

� �

� �

Lagrangian is given by:

L(μ, λ) = Eμi [φi(xi)] + Eμiμj [ψij (xi, xj)] + H(μi) + λi
i∈V (i,j)∈E i∈V i∈V

μi(xi) − 1
xi∈X

= μi(xi)φi(xi) + μi(xi)μj (xj)ψij (xi, xj)
i∈V xi∈X (i,j)∈E xi,xj ∈X

− μi(xi) log μi(xi) + λi μi(xi) − 1 .
i∈V xi∈X i∈V xi∈X

Hence,

∂L(μ, λ)
= φi(xi) + μj (xj)ψij (xi, xj) − (log μi(xi) + 1) + λi.

∂μi(xi)
j∈N(i)

Setting this to zero, we obtain ⎫⎬
⎧⎨

μi(xi) ∝ exp φi(xi) + μj (xj)ψ(xi, xj) . ⎭⎩
j∈N(i)

As advertised earlier, the solution at node i involves its neighb ors. To actually com
pute the approximate marginals μi’s now, we typically will need to do an iterative
update, such as: ⎫⎬

⎧⎨
t+1 tμ (xi) ∝ exp φi(xi) +i μj (xj)ψ(xi, xj) , ⎩ ⎭

j∈N(i)

where t indexes iteration numbers. If we manage to procure an optimal μ, then
plugging it back into the objective function yields log ZMF. Analyzing convergence in
general requires work, similar to analyzing loopy BP convergence. For example, if px
has structure that makes the mean field variation problem (5) a convex optimization
problem, then our iterative updates will converge to the globally optimal solution.

17.3 Other lower bounds
Because MMF ⊂ M, restricting the log partition variational problem to optimize over
MMF instead of M results in a lower bound for log Z. Of course, optimizing over any
subset of M yields a lower bound. For example, in principle we could optimize over
Mtree, the space of all tree distributions over nodes V. This would be overkill as there
are NN−2 such trees. We could instead restrict our attention to one specific tree τ
that connects all of V. Then we could optimize over Mtree(τ), defined to be the family

4

∑ ∑ ∑ ∑ ∑
∑∑ ∑ ∑
∑∑ ∑ ∑

∑

∑

∑

of distributions with factorization (3) except where the edges are from tree τ . Unlike
Bethe approximation, since τ is a tree, we are never optimizing over a loopy graph.
A hierarchical diagram relating these families is in Figure 1.

ࣧ

ࣧ�	

ࣧ����

�ࣧ���ሺఛሻ

Figure 1: Hierarchy of a few probability family distributions.

Denoting log Ztree and log Ztree(τ) to be the outputs of the log partition variational
problem restricted to Mtree and Mtree(τ) respectively, then our earlier argument and
the hierarchy diagram indicate that:

log ZMF ≤ log Ztree(τ) ≤ log Ztree ≤ log Z.

Of course, other subsets of M can be chosen; we’re just giving the above families as
examples as they’re easy to describe.

Lastly, we mention that the family of “distributions” Mbethe(G) corresponding to
“distributions” with factorization in (3), where specifically the nodes and edges are
from graph G, is not necessarily a subset of M and therefore may include members
that, strictly speaking, don’t correspond to any valid distribution over XN . To see
this, consider a 3-node fully-connected graph G. Then members of Mbethe(G) have
factorization

μ12(x1, x2) μ23(x2, x3) μ13(x1, x3)
μ(x) = μ1(x1)μ2(x2)μ3(x3)

μ1(x1)μ2(x2) μ2(x2)μ3(x3) μ1(x1)μ3(x3)
μ12(x1, x2) μ23(x2, x3) μ13(x1, x3)

= ,
μ1(x1) μ2(x2) μ3(x3)

which, invoking the definition of conditional probability, would mean that μ has a
cyclic directed graphical model! So even though we’re guaranteed that μi’s and μij ’s
are valid distributions, a solution to the Bethe variational problem may have the joint
“distribution” μ not correspond to any consistent distribution over XN . This explains
why log Zbethe may not be a lower bound for log Z.

5

� � �

17.4 Upper bound using tree-reweighted belief propagation
Providing an upper bound for the log partition function turns out to be less straight
forward. One way to do this is via what’s called tree-reweighted belief propagation,
which looks at convex combinations1 of trees. We’ll only sketch the method here,
deferring details to Wainwright, Jaakkola, and Willsky’s paper.2

Suppose we want an upper bound on the log partition function for px defined over
the graph in Figure 2a with only edge potentials. We’ll instead look at its spanning
trees where we cleverly assign new edge potentials as shown in Figures 2b, 2c, and
2d. Here, each tree is given a weight of 1/3 in the convex combination.

1

2 3

߰ଵଶ ߰ଵଷ

߰ଶଷ

1

2 3

͵
ʹ ߰ ଵଶ

͵
ʹ ߰ ଵଷ

1

2 3͵
߰ଶଷ

͵
ʹ ߰ ଵଷ

1

2 3͵
߰ଶଷ

͵
ʹ ߰ ଵଶ

ʹ ʹ
(a) Original graph (b) Tree τ1 (c) Tree τ2 (d) Tree τ3

Figure 2: A loopy graph and all its spanning trees τ1, τ2, and τ3. Edge potentials are
shown next to each edge.

Where do the edge potentials in the spanning trees come from? We’ll illustrate the
basic idea by explaining how the potentials for edge (1,2) across the spanning trees
are defined. The same idea works for defining potentials on the other edges of the
spanning trees. Observe that

1 3 1 1 3
ψ12 = ψ12 + (0 · ψ12) + ψ12 .

3 2 3 3 2
edge (1,2)’s

weight of weight of weight of edge (1,2)’s potential in edge (1,2)’s tree τ1 tree τ2 tree τ3potential in tree τ2 potential in
tree τ1 tree τ3

The next critical observation will involve optimizing over the family of distributions
Mtree(τk) defined in the previous section, where τk = (V, Ek) is now one of our spanning
trees. We shall denote ψk to be the potential for edge (i, j) ∈ E in tree τk, where ij
if the edge isn’t present in tree τk, then the potential is just the 0 function. As a
reminder, we are assuming that we only have edge potentials, which is fine since if
we had singleton potentials, these could always be folded into edge potentials. We

1A convex combination of n items x1, . . . , xn is like a linear combination except that the weights
n

must be nonnegative and sum to 1, e.g., αixi is a convex combination of x1, . . . , xn if all αi’si=1
n

are nonnegative and αi = 1. i=1
2See M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky’s “A New Class of Upper Bounds on the

Log Partition Function” (2005).

6

︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸
)

︸ ︷︷ ︸

∑∑

� � � �

arrive at the following pivotal equation: ⎡ ⎤ ⎡ ⎤

⎦ = Eμ
1 3

ψk⎣ ⎣ ⎦Eμ ψij (xi, xj) ij (xi, xj)3
(i,j)∈E (i,j)∈E k=1 ⎡ ⎤

3
1 ⎣ ψk ⎦= Eμ ij (xi, xj)3

k=1 (i,j)∈E ⎡ ⎤
3

1 ⎣ ψk ⎦= Eμ ij (xi, xj) . (6)
3

k=1 (i,j)∈Ek

We are now ready to upper-bound the partition function: ⎧ ⎡ ⎤ ⎫ ⎨ ⎬ ⎣ log Z = sup Eμ ψij (xi, xj)⎦ + H(μ)
μ∈M ⎩ ⎭

(i,j)∈E ⎧ ⎡ ⎤ ⎫ ⎨ 3 ⎬ ⎣ = sup
1

Eμ ψk (xi, xj)⎦ + H(μ) (using equation (6)) ij
μ∈M ⎩3 ⎭

k=1 (i,j)∈Ek ⎧ ⎧ ⎡ ⎤ ⎫⎫ ⎨ ⎨ ⎬⎬3
1 ⎣ ψk = sup Eμ ij (xi, xj)⎦ + H(μ)

μ∈M ⎩3 ⎩ ⎭⎭
k=1 (i,j)∈Ek ⎧ ⎡ ⎤ ⎫

3 ⎨ ⎬ 1 ⎣ ψk≤ sup Eμ ij (xi, xj)⎦ + H(μ) ,
3 μ∈M ⎩ ⎭

k=1 (i,j)∈Ek

where the last step uses the fact that for any functions f1, f2 defined over the same
domain and range, we have:

sup {f1(x) + f2(x)} ≤ sup f1(x) + sup f2(x) .
x x x

Note that for each spanning tree τk, ⎧ ⎡ ⎤ ⎫ ⎧ ⎡ ⎤ ⎫ ⎨ ⎬ ⎨ ⎬
sup Eμ ⎣ ψk ⎦ + H(μ) = sup Eμ ⎣ ψk ⎦ + H(μ) ,ij (xi, xj) ij (xi, xj) ⎩ ⎭ ⎭μ∈M μ∈Mtree(τk) ⎩

(i,j)∈Ek (i,j)∈Ek

since the underlying distribution is actually just tree τk so it suffices to optimize over
family Mtree(τk). This optimization is a specific case of when the Bethe variational
problem is exact, so we can solve it using belief propagation!

Of course, we’ve only worked out a simple example for which we could have
chosen different weights for our convex combination, not just one where the weights

7

∑ ∑ ∑
∑ ∑
∑ ∑

∑
∑ ∑
∑ ∑

∑ ∑

() ()

∑ ∑

� �

� � � �

� � � �

� �

are all equal. Furthermore, we didn’t give an algorithm that actually produces an
approximating distribution! Worse yet, for larger graphs still defined over pairwise
potentials, the number of spanning trees explodes and optimizing the choice of weights
to get the tightest upper bound requires care. Luckily, all of these loose ends are
resolved in the paper by Wainwright et al. We encourage those who are interested to
peruse the paper for the gory details.

17.5 Larger cliques and information-theoretic interpretation
We now consider if px still has graph G = (V, E) but now has factorization

1 1
px(x) = ψC (xC) = exp log ψC (xC) , (7)

Z Z
C∈C C∈C

where C is the set of maximal cliques, which may be larger than just pairwise cliques.
The log partition variational problem in this case is

log Z = sup Eμ log ψC (xC) + H(μ) . (8)
μ∈M

C∈C

As a sanity check, we repeat a calculation from the loopy BP lecture to ensure that
the right-hand side optimization does yield log Z. First note that

log ψC (xC) = log Z + log px(x).
C∈C

Then

Eμ log ψC (xC) + H(μ) = Eμ log ψC (xC) − log μ(x)
C∈C C∈C

= Eμ [log Z + log px(x) − log μ(x)]
μ(x)

= log Z − Eμ log
px(x)

= log Z − D(μ I px), (9)

where D(p I q) is the KL divergence between distributions p and q over the same
alphabet. Since D(p I q) ≥ 0 and with equality if and only if p ≡ q, plugging this
inequality into (9) gives

Eμ log ψC (xC) ≤ log Z,
C∈C

8

∏ ∑

∑

∑

∑ ∑

∑

� � � �

 � �

 � �

 � �
� � � � � �

 �

 �

where equality is achieved by setting μ ≡ px. Thus, indeed the right-hand side
maximization of (8) yields log Z. Note that our earlier discussion on lower-bounding
the log partition function easily carries over to this more general case. However, the
upper bound requires some heavier machinery, which we’ll skip.

The last line of (9) says that maximizing the objective of (8) over μ ∈ M is
tantamount to minimizing D(μ I px), so

argmin D(μ I px) = argmax Eμ log ψC (xC) + H(μ) .
μ∈M μ∈M

C∈C

This has a nice information-theoretic implication: constraining which family of dis
tributions we optimize over can be viewed in terms of KL divergence. For example, if
we just want the approximating mean field distribution and don’t care for the value
of log ZMF, then we solve

argmin D(μ I px). (10)
μ∈MMF

Thus, variational inference can be viewed as finding a member within a family of
approximating distributions that is closest to original distribution px in KL divergence!
This can be interpreted as projecting px onto a family of approximating distributions
that we must pre-specify.

We end by solving for optima of mean field variational problem (10) using the more
general clique factorization (7) for px. The steps are nearly identical to the pairwise
factorization case but involves a little more bookkeeping. As before, we introduce
Lagrange multiplier λi for constraint xi∈X μi(xi) = 1. Then the Lagrangian is

L(μ, λ) = D(μ I px) + λi μi(xi) − 1
i∈V xi∈X

μ(x)
= Eμ log + λi μi(xi) − 1

px(x)
i∈V xi∈X

= Eμ[log μ(x)] − Eμ[log px(x)] + λi μi(xi) − 1
i∈V xi∈X

= Eμ log μi(xi) − Eμ − log Z + log ψC (xC) + λi μi(xi) − 1
i∈V C∈C i∈V xi∈X

= Eμ[log μi(xi)] − Eμ[log ψC (xC)] + λi μi(xi) − 1 + log Z
i∈V C∈C i∈V xi∈X

9

{ [∑] }

∑
∑ (∑)

[] ∑ (∑)
∑ (∑)

[∏] [∑] ∑ (∑)
∑ ∑ ∑ (∑)

 � �

 � �

= μi(xi) log μi(xi) −	 μj (xj) log ψC (xC)
i∈V xi∈X	 C∈C xC ∈X|C| j∈C

+	 λi μi(xi) − 1 + log Z.
i∈V xi∈X

Thus,

∂L(μ, λ)
= log μi(xi) + 1 − log ψC (xC) μj (xj) + λi.

∂μi(xi)
C∈C xC \xi j∈C

s.t. i∈C	 j =i

Setting this to 0 gives the mean field update equation ⎫ ⎪⎪⎬
⎧ ⎪⎪⎨

μi(xi) ∝ exp log ψC (xC) μj (xj) . ⎪⎪⎩ C∈C xC \xi j∈C
s.t. i∈C	 j =i

⎪⎪⎭

17.6 Concluding remarks
We’ve presented variational inference as a way to approximate distributions. This
approach has interpretations of approximating the log partition function or doing an
information-theoretic projection. We’ve also given a flavor of the calculations involved
for obtaining update rules (which describe an algorithm) that find an approximating
distribution. In practice, simple approximating distributions such as mean field are
typically used because more complicated distributions can have update rules that are
hard to derive or, even if we do have formulas for them, computationally expensive
to compute.

Unfortunately, simple approximating distributions may not characterize our origi
nal distribution well. A different way to characterize a distribution is through samples
from it. Intuitively, if we have enough samples, then we have a good idea of what the
distribution looks like. With this inspiration, our next stop will be on how to sample
from a distribution without knowing its partition function, leading to a different class
of approximate inference algorithms.

10

∑∑ ∑ ∑ (∏)
∑ (∑)

∑ ∑ ∏
6

∑ ∑ ∏
6

MIT OpenCourseWare
http://ocw.mit.edu

6.438 Algorithms for Inference
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

