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11 The Max-Product Algorithm 

In the previous lecture, we introduced the MAP elimination algorithm for computing 
an MAP configuration for any undirected graph. Today, we specialize the algorithm 
to the case of trees. The resulting algorithm is the Max-Product algorithm, which 
recovers the max-marginal at each node of a graph over random variables x1, . . . , xN : 

pxi 
(xi) = max px(x). 

xj :j �=i 

If each x ∗ ∈ argmax p (xi) is uniquely attained, i.e., there are no ties at each node, i xi xi 
∗ ∗ ∗ ∗then the vector x = (x1, x 2, . . . , x N ) is the unique global MAP configuration. Oth

erwise, keeping track of “backpointers” indicating what maximizing values neighbors 
took is needed to recover a global MAP configuration. Note that computing x ∗ 

i is 
computationally not the same as first computing the marginal distribution of xi and 
then looking at what value xi maximizes pxi (xi) because we are actually maximizing 
over all other xj for j  = i as well! 

Max-Product relates to MAP elimination in the same way Sum-Product relates 
to elimination. In particular, for trees, we can just root the tree at an arbitrary 
node and eliminate from the leaves up to the root at which point we can obtain the 
max-marginal at the root node. We pass messages from the root back to the leaves 
to obtain max-marginals at all the nodes. 

11.1 Max-Product for Undirected Trees 

As usual, for undirected graph G = (V, E) with V = {1, 2, . . . , N}, we define a distri
bution over x1, . . . , xN via factorization:   

px(x) ∝ φi(xi) ψij (xi, xj ). 
i∈V (i,j)∈E 

We work through an example to illustrate what happens when G is a tree. The in
tuition is nearly identical to that of Sum-Product. Consider an undirected graph
ical model shown below. We run the MAP elimination algorithm with ordering 
(5, 4, 3, 2, 1), i.e., effectively we’re rooting the tree at node 1: 
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Eliminating nodes 5, 4, and 3, we obtain messages:
 

m5(x2) = max φ5(x5)ψ25(x2, x5) 
x5∈X 

m4(x2) = max φ4(x4)ψ24(x2, x4) 
x4∈X 

m3(x1) = max φ3(x3)ψ13(x1, x3) 
x3∈X 
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Eliminating node 2 yields message: 

m2(x1) = max φ2(x2)ψ12(x1, x2)m4(x2)m5(x2). 
x2 

Finally, we obtain the max-marginal at node 1: 

px1 
(x1) = φ1(x1)m2(x1)m3(x1), 

with maximal point 

x1 
∗ ∈ argmax px1 

(x1) = argmax φ1(x1)m2(x1)m3(x1). 
x1∈X x1∈X 

To obtain max-marginals for all nodes, we could imagine that we instead choose a 
different node to act as the root and eliminate from leaves to the root. As with 
the Sum-Product case, the key insight is that messages computed previously could 
be reused. The bottom line is that it suffices to use the same serial schedule as for 
Sum-Product: pass messages from leaves to the root and then from the root back to 
the leaves. 

Using the above serial schedule for message passing, in general the messages are 
computed as: 

mi→j (xj) = max φi(xi)ψij (xi, xj ) mk→i(xi). (1) 
xi∈X 

k∈N (i)\j 

Once all messages have been computed in both passes, then we compute max-marginals 
at each node: 

p (xi) = φi(xi) (2)xi 
mk→i(xi). 

k∈N(i) 
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As mentioned previously, in general we need to backtrack to obtain a global configu
ration, which requires us to store the argmax for each message: 

δi→j (xj ) = argmax φi(xi)ψij (xi, xj ) mk→i(xi). 
xi∈X 

k∈N(i)\j 

Then the backtracking works as follows: Let x ∗ ∈ argmax p (xi) for an arbitraryi xi xi 

node i. For each j ∈ N(i), assign xj 
∗ = δj→i(xi 

∗). Recurse until all nodes have been 
assigned a configuration. 

Parallel Max-Product for Undirected Trees 

As with Sum-Product, we have a parallel or flood schedule for message passing: 

1. Initialize all messages mi
0 
→j (xj ) = 1 for all (i, j) ∈ E. 

2. Iteratively apply the update for t = 0, 1, 2, . . . until convergence: 

t+1 t m (xj ) = max φi(xi)ψij (xi, xj ) m (xi).i→j k→i
xi∈X 

k∈N(i)\j 

3. Compute max-marginals: 

p (xi) = φi(xi) m t+1 (xi).xi k→i

k∈N(i) 

4. Backtrack to recover an MAP configuration. 

As with parallel Sum-Product, we can reduce the amount of computation by precom
puting at the beginning of each iteration of step 2: 

mm it(xi) = m tk→i(xi). 
k∈N(i) 

Then the update equation in step 2 becomes 

mmi
t(xi) 

m t+1 (xj ) = max φi(xi)ψij(xi, xj ) .i→j t xi∈X m (xi)j→i

Numerical stability, Max-Sum, and Min-Sum 

In the message passing and max-marginal computation equations, we are multiplying 
many potential function values, which can lead to numerical issues. For example, if 
the potential functions represent probabilities, e.g., if our undirected graph is actually 
obtained from a DAG so the potentials are conditional probability distributions, then 
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multiplying many probabilities can result in extremely small values below machine 
precision. A remedy for this is to work in the log domain. 

Denote mbi→j (xj ) = log mi→j (xj ). Then taking the log of equations (1) and (2) 
results in updates for the Max-Sum algorithm, summarized below. 

Message-passing: ⎫⎬ mbk→i(xi) 

⎧⎨ 

k∈N(i)\j 

Max-marginals: 

m log φi(xi) + log ψij (xi, xj ) + .
 ⎩
 ⎭
 
bi→j (xj ) = max 

xi∈X 

⎫⎬ 
⎧⎨ mbk→i(xi) 

k∈N(i) 

We could also take the negative log instead of the log, which results in the Min-
Sum algorithm. A rationale for why this might make sense is that if the potentials 
represent probabilities, then log probabilities take on negative values. In this case, if 
we wish to deal with strictly non-negative entries, then we we would use Min-Sum. 
Denote bi→j (xj ) = − log mi→j (xj ). Taking the negative log of equations (1) and (2), 
we obtain the update rules below. 

Message-passing: 

(xi) = exp log φi(xi) + p
 .
xi ⎩
 ⎭
 

⎫⎬ 
⎧⎨ 

bi→j (xj ) = min 
xi∈X 

− log φi(xi) − log ψij (xi, xj ) + bk→i(xi) .
 ⎩
 ⎭
 
k∈N(i)\j 

Max-marginals: ⎫⎬ 
⎧⎨ 

p
xi 
(xi) = exp log φi(xi) − bk→i(xi) .
 ⎩
 ⎭
 

k∈N(i) 

Lastly, we remark that if there are ties in MAP configurations, one way to remove 
the ties is to perturb the potential functions’ values with a little bit of noise. If the 
model is numerically well-behaved, perturbing the potential functions’ values with a 
little bit of noise should not drastically change the model but may buy us node max
marginals that all have unique optima, implying that the global MAP configuration 
is unique as well. 

11.2 Max-Product for Factor Trees 

The Max-Product algorithm for factor trees is extremely similar to that of undirected 
trees, so we just present the parallel schedule version of Max-Product on factor tree 
G = (V, E, F): 
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1. Initialize all messages m0 
i→a(xi) = ma

0 
→i(xi) = 1 for all i ∈ V, a ∈ F. 

2. Iteratively apply the update for t = 0, 1, 2, . . . until convergence: 

t+1 t ma→i(xi) = max fa({xi} ∪ {xj : j ∈ N(a) \ i}) mj→a(xj ) 
xj :j∈N(a)\i 

j∈N(a)\i 

t+1 t+1 m (xi) = m (xi)i→a b→i


b∈N(i)\a
 

3. Compute max-marginals: 

p (xi) = m t+1 (xi).xi a→i

a∈N(i) 

4. Backtrack to recover an MAP configuration. 

11.3 Max-Product for Hidden Markov Models 

We revisit our convolution code HMM example from Lecture 9, truncating it to have 
four hidden states: 

m1m2 m2m3 m3m4 m4 

y1y2 y3y4 y5y6 y7 

To ease the notation a bit for what’s to follow, let’s denote mimi+1 / mi,i+1 and 
yj yj+1 / yj,j+1. We thus obtain: 

m12 m23 m34 m4 

y12 y34 y56 y7 

  
Fix ε ∈ (0, 1/2). Let wε = log 1−

ε
ε > 0. Then the potential functions are given by: 

ψmi,i+1,mi+1,i+2 (“ab”, “cd”) = 1(b = c) for i ∈ {1, 2}, 
(“ab”, “c”) = 1(b = c),ψm34,m4 

ψmi,i+1,y2i−1,2i (“ab”, “uv”) = exp {1(a = u)wε + 1(a ⊕ b = v)wε} for i ∈ {1, 2, 3}, 
ψm4,y7 (“a”, “u”) = exp {1(a = u)wε} , 
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where a, b, c, d, u, v ∈ {0, 1}, “ab” denotes a length-2 bit-string, and 1(A) is the indi
cator function that is 1 when event A is true and 0 otherwise. 

Suppose we observe y = (0, 0, 0, 1, 0, 0, 0) and want to infer the MAP configuration 
for m = (m1, m2, m3, m4). Let’s solve this using Max-Sum. The first thing to do is 
to incorporate the data into the model by plugging in the observed values; this will 
cause the resulting graphical model to just be a line: 

m12 m23 m34 m4 

ϕm12 ϕm23 ϕm34 ϕm4 

The new singleton potentials are: 

φm12 (“ab”) = exp {1(a = 0)wε + 1(a ⊕ b = 0}wε}
φm23 (“ab”) = exp {1(a = 0)wε + 1(a ⊕ b = 1}wε}
φm34 (“ab”) = exp {1(a = 0)wε + 1(a ⊕ b = 0}wε}
φm4 (“a”) = exp {1(a = 0)wε} 

The pairwise potentials remain the same. 
Since we’re going to use Max-Sum, we write out the log-potentials: 

log φm12 (“ab”) = 1(a = 0)wε + 1(a ⊕ b = 0}wε 

log φm23 (“ab”) = 1(a = 0)wε + 1(a ⊕ b = 1}wε 

log φm34 (“ab”) = 1(a = 0)wε + 1(a ⊕ b = 0}wε 

log φm4 (“a”) = 1(a = 0)wε 
0 if b = c 

log ψmi,i+1,mi+1,i+2 (“ab”, “cd”) = for i ∈ {1, 2}
−∞ otherwise  
0 if b = c 

log ψm34,m4 (“ab”, “c”) = −∞ otherwise 

Using the Max-Sum message update equation, 

log m(i,i+1)→(i+1,i+2)(“cd”)(  
= max log φmi,i+1 (“ab”) + log ψmi,i+1,mi+1,i+2 (“ab”, “cd”) + log m(i−1,i)→(i,i+1)(“ab”)

“ab”∈{0,1}2 (  
= max log φmi,i+1 (“ac”) + log m(i−1,i)→(i,i+1)(“ac”) ,
 

a∈{0,1}
 

where the last equality uses the fact that what the pairwise potentials really are saying 
is that we only allow transitions where the last bit of the previous state is the first 
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bit of the next state. This means that if we know the next state is “cd”, then the 
previous state must end in “c”, so we shouldn’t bother optimizing over all bit-strings 
of length 2. 

Note that if we pass messages from the left-most node to the right-most node, 
then what log m(i,i+1)→(i+1,i+2)(“cd”) represents is the highest “score” achievable that 
ends in mi+1,i+2 = “cd” but that does not include the contribution of the observation 
associated with mi+1,i+2. The goal of Max-Sum would then be to find the MAP con
figuration with the highest overall score, with contributions from all nodes’ singleton 
potentials and pairwise potentials. 

We can visualize this setup using a trellis diagram: 

m12 

00 

01 

log ϕm12(“00”) = 2wε 

log ϕm12(“01”) = 1wε 

10 

log ϕm12(“10”) = 0wε 

11 

log ϕm12(“11”) = 1wε 

m23 

log ϕm23(“00”) = 1wε 

log ϕm23(“01”) = 2wε 

log ϕm23(“10”) = 1wε 

log ϕm23(“11”) = 0wε 

m34 

log ϕm34(“00”) = 2wε 

log ϕm34(“01”) = 1wε 

log ϕm34(“10”) = 0wε 

log ϕm34(“11”) = 1wε 

00 

01 

10 

11 

m4 

0 

log ϕm4(“0”) = 1wε 

00 

10 

Hidden states 

Possible values 
hidden states 

can take 

1 

01 

11 

log ϕm4(“1”) = 0wε 

For each hidden state’s possible value, incoming edges correspond to which possible 
previous states are possible. The MAP configuration is obtained by summing across 
scores (i.e., the log singleton potential values in this case) along a path that goes from 
one of the left-most nodes to the right-most node of the trellis diagram. If we keep 
track of which edges we take that maximizes the score along the path we traverse, 
then we can backtrack once we’re at the end to figure out what the best configuration 
is, as was done in the MAP elimination algorithm from last lecture. 

The key idea for the Max-Sum algorithm is that we basically iterate through the 
vertical layers (i.e., hidden states) in the trellis diagram one at a time from left to 
right. At each vertical layer, we store the highest possible score achievable that arrives 
at each possible value that the hidden state can take. Note that for this example, the 
edges do not have scores associated with them; in general, edges may have scores as 
well. 
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With this intuition, we run the Max-Sum with the modification that we keep track 
of which optimizing values give rise to the “highest score so far” at each hidden state’s 
possible value. At the end, we backtrack to obtain the global MAP configuration 
(00, 00, 00, 0), which achieves a overall score of 6wε. Note that this algorithm of 
essentially using Max-Product on an HMM while keeping track of optimizing values 
to enable backtracking at the end is called the Viterbi algorithm, developed in 1967. 
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