Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.438 Algorithms for Inference

Fall 2011

0 Preliminaries

Welcome to the world of efficient statistic inference based on exploiting structure captured by probabilistic graphical models. As we will see, the resulting framework is remarkably powerful, with a wealth of applications.

In these notes, we assume fluency with basic probabilistic system analysis. Accordingly, we need only to establish some notation to get started.

0.1 Notation

First, we denote random variables using san-serif fonts, e.g, x. By contrast, sample values of such variables, and other deterministic quantities, are denoted using regular serifed fonts, e.g., x. At times, we also need to distinguish between deterministic and randomized functions. We use our notation in the same way. In particular, $f(\cdot)$, for example, denotes a deterministic function, while $f(\cdot)$ denotes a randomized function. With such notation, $f(x)$ is a random variable, as is $f(x)$, as well as the doubly-random $f(x)$.

Likewise, we use caligraphic letters to denote sets and events. An example of a set, when x is numeric, would be $\mathcal{E}=\{x \in \mathcal{X}: x>0\}$. We will typically denote the alphabet of values that x can take on using X. As additional notation, we use $|\cdot|$ to denote the cardinality of its set argument, i.e., the number of elements in the set, so, for example, $|X|$ denotes the number of possible values x can take on. Similarly,

$$
X^{N}=\underbrace{x \times \cdots \times x}_{N \text {-fold }}
$$

denotes the alphabet of N-tuples, each of whose elements are drawn from the alphabet \mathcal{X}, i.e., $\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathcal{X}^{N}$ is equivalent to $x_{n} \in \mathcal{X}$ for $n=1,2, \ldots, N$.

We denote the probability mass function for a discrete random variable x using $p_{x}(\cdot)$, so with x denoting some fixed value in the alphabet X, we have

$$
\mathbb{P}[x=x]=p_{x}(x),
$$

where \mathbb{P} denotes the probability operator. The alphabet over which a discrete random variable is defined need not have any algebraic structure - it can be simply an arbitrary collection of symbols, e.g., $\mathcal{X}=\{\boldsymbol{\phi}, ~ \circlearrowleft, \boldsymbol{\uparrow}, \diamond\}$.

We likewise use $p_{x}(\cdot)$ to denote the probability density function of a continuous random variable x. In addition, we use $\mathbb{E}[\cdot]$ as our notation for the expectation operator, and, when well-defined, use the notation $M_{x}(j v)=\mathbb{E}\left[e^{j v x}\right]$ to denote the characteristic function associated with the random variable x. Recall that the characteristic function is the Fourier transform of the probabilty mass or density function, and thus when it exists is an equivalent characterization of the random variable.

We will also frequently consider collections of random variables. For instance, a random variable pair (x, y) is characterized by the joint probability density $p_{x, y}(\cdot, \cdot)$. However, it will often be convenient to assemble such collections into a vector and use more compact notation. For example, we can form the random vector \mathbf{z} according to

$$
\mathbf{z}=\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

and express the joint density for x and y in the form $p_{\mathbf{z}}(\cdot)$, which is a scalar function of a vector argument. Of course, for discrete-valued quantities, the distinction between scalars and vectors is strictly unnecessary, though it can be useful at times in creating logical groupings of quantities of interest, such as for the purpose of computing conditional probabilities such as $p_{y \mid x}(\cdot \mid \cdot)$.

It will sometimes be useful to explicitly define classes of distributions. In particular, we use \mathcal{P}^{X} to denote the set of all possible probability mass (or density) functions defined over the alphabet \mathcal{X}. When the alphabet is clear from context, we sometimes omit the superscript. We analogously define the related notation $\mathcal{P}^{x \times y}$ and $\mathcal{P}^{y \mid x}$ for joint and conditional probability distributions, respectively, etc.

Note that we are using bold face fonts to distinguish vector-valued quantities from scalar-valued ones. So z refers to a scalar, while \mathbf{z} refers to a vector. Moreover, as demonstrated above, various combinations of our notation will be useful. For example, we distinguish a deterministic vector, e.g., \mathbf{z}, from a random vector, e.g., z, using bold serifed font for the former and bold sans-serif font for the latter.

In general, we will reserve lowercase boldface letters for specifically column vectors, and uppercase boldface letters (e.g., A) for matrices, i.e., when the row and column dimensions are each at least two. Row vectors can be denoted using transposeoperator notation (e.g., \mathbf{z}^{T}). By contrast, for scalars, we attach no significance to whether the quantity is lowercase (e.g., z), or uppercase (e.g., Z).

When needed, we use bracket notation to identify elements of vector and matrix quantities. For example, $[\mathbf{A}]_{i, j}$ denotes the (i, j) th element of the matrix \mathbf{A}, and $[\mathbf{z}]_{i}$ denotes the i th element of the vector \mathbf{z}.

Finally, it will also be convenient at times to use script notation for sequences. In particular, for a sequence x_{1}, x_{2}, \ldots, we use

$$
x_{i}^{j}=\left(x_{i}, x_{i+1}, \ldots, x_{j}\right)
$$

when $j \geq i$ as subsequence notation. And, as a further shorthand, we often let $x^{n}=x_{1}^{n}$, for $n \geq 1$.

Of course, quantities such as x_{i}^{j} can also be represented in (column) vector notation (i.e., as \mathbf{x}), though the alternative subsequence notation makes explicit which elements constitute the vector, which will prove convenient. It is also worth emphasizing that vector and subsequence notation can and will be used at times in combination, where it serves to logically group quantities. An example would be \mathbf{y}_{i}^{j} and \mathbf{y}^{n}, which would
refer to subsequences of the vector sequence $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots$. As always, such notation can be combined with serifed and sans-serif fonts to distinguish determinstic from random quantities, e.g., \mathbf{y}^{n} vs. \mathbf{y}^{n}.

0.2 Special Functions

There are a variety of special functions that will be useful in our development. One example is the Kronecker function: for any event \mathcal{A},

$$
\mathbb{1}_{\mathcal{A}} \triangleq \begin{cases}1 & \text { if } \mathcal{A} \text { is true } \\ 0 & \text { otherwise }\end{cases}
$$

In addition, as a variant of this notation, for arbitrary variables x and y we will also use

$$
\mathbb{1}_{x}(y)=\mathbb{1}_{y}(x) \triangleq \mathbb{1}_{x=y},
$$

and, for a set \mathcal{S},

$$
\mathbb{1}_{s}(x) \triangleq \mathbb{1}_{x \in \mathcal{S}}
$$

As matrix notation, in addition to transpose notation ${ }^{\mathrm{T}}$ mentioned earlier, whereby $\left[\mathbf{A}^{\mathrm{T}}\right]_{i, j}=[\mathbf{A}]_{j, i}$, we use the superscript notation ${ }^{-1}$ to denote matrix inversion, whereby for any nonsingular matrix \mathbf{A} we have $\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}$ if $\mathbf{y}=\mathbf{A x}$.

In addition, if \mathbf{x} and \mathbf{y} are arbitrary random vectors, we denote their means via

$$
\boldsymbol{\mu}_{\mathbf{x}}=\mathbb{E}[\mathbf{x}] \quad \text { and } \quad \boldsymbol{\mu}_{\mathbf{y}}=\mathbb{E}[\mathbf{y}],
$$

respectively, and the covariance between them via

$$
\operatorname{cov}(\mathbf{x}, \mathbf{y}) \triangleq \mathbb{E}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}}\right)^{\mathrm{T}}\right]
$$

0.3 Special Distributions

A few of basic distributions will arise regularly in our treatment, and thus warrant their own special notation. All are members of exponential families, the concept of which we will ultimately explore in more detail.

First is the Bernoulli distribution, denoted using B. In particular, the notation $x \sim \mathrm{~B}(p)$ means that x is a binary random variable where one of the symbols has probability p (and the other with probability $1-p$).

Another is the uniform distribution, denoted using U. In particular, the notation $x \sim \mathrm{U}(X)$ means that x is uniformly distributed over the set X.

Finally, there is the Gaussian (or "normal") distribution, denoted using N. We use the notation $x \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ to indicate that x is a scalar Gaussian random variable
with mean $\mathbb{E}[x]=\mu$ and variance $\mathbb{E}\left[(x-\mu)^{2}\right]=\sigma^{2}$. The tail probability under the unit Gaussian is denoted using $Q(\cdot)$-notation

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t
$$

Although at times we also use $Q(\cdot)$ to denote a distribution, the risk of confusion will be minimal.

Finally, we use $\mathbf{x} \sim \mathbb{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda})$ to indicate that \mathbf{x} is a Gaussian random vector with mean $\mathbb{E}[\mathbf{x}]=\boldsymbol{\mu}$ and covariance matrix $\mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\right]=\boldsymbol{\Lambda}$. When $\boldsymbol{\Lambda}$ is nonsingular, such random vectors have a probability density function of the form -1

$$
p_{\mathbf{x}}(\mathbf{x})=\frac{\exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]}{|2 \pi \boldsymbol{\Lambda}|^{1 / 2}},
$$

the equiprobability contours of which are appropriately located, oriented and proportioned ellipses.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

6.438 Algorithms for Inference

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The operator $|\cdot|$ denotes the determinant of its matrix argument.

