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0 Preliminaries 

Welcome to the world of efficient statistic inference based on exploiting structure 
captured by probabilistic graphical models. As we will see, the resulting framework 
is remarkably powerful, with a wealth of applications. 

In these notes, we assume fluency with basic probabilistic system analysis. Ac
cordingly, we need only to establish some notation to get started. 

0.1 Notation 

First, we denote random variables using san-serif fonts, e.g, x . By contrast, sample 
values of such variables, and other deterministic quantities, are denoted using regular 
serifed fonts, e.g., x. At times, we also need to distinguish between deterministic 
and randomized functions. We use our notation in the same way. In particular, 
f(·), for example, denotes a deterministic function, while f (·) denotes a randomized 
function. With such notation, f (x) is a random variable, as is f(x), as well as the 
doubly-random f (x). 

Likewise, we use caligraphic letters to denote sets and events. An example of a 
set, when x is numeric, would be E = {x ∈ X : x > 0}. We will typically denote the 
alphabet of values that x can take on using X. As additional notation, we use | · | to 
denote the cardinality of its set argument, i.e., the number of elements in the set, so, 
for example, |X| denotes the number of possible values x can take on. Similarly, 

XN = X × · · · × X" -v " 
N -fold 

denotes the alphabet of N -tuples, each of whose elements are drawn from the alphabet 
X, i.e., (x1, x2, . . . , xN ) ∈ XN is equivalent to xn ∈ X for n = 1, 2, . . . , N . 

We denote the probability mass function for a discrete random variable x using 
px (·), so with x denoting some fixed value in the alphabet X, we have 

P [x = x] = px (x), 

where P denotes the probability operator. The alphabet over which a discrete ran
dom variable is defined need not have any algebraic structure—it can be simply an 
arbitrary collection of symbols, e.g., X = {♣, ♥, ♠, ♦}. 

We likewise use px (·) to denote the probability density function of a continuous 
random variable x . In addition, we use E [·] as our notation for the expectation 
operator, and, when well-defined, use the notation Mx (jv) = E [ejvx ] to denote the 
characteristic function associated with the random variable x . Recall that the char
acteristic function is the Fourier transform of the probabilty mass or density function, 
and thus when it exists is an equivalent characterization of the random variable. 



We will also frequently consider collections of random variables. For instance, a 
random variable pair (x , y) is characterized by the joint probability density px ,y (·, ·). 
However, it will often be convenient to assemble such collections into a vector and use 
more compact notation. For example, we can form the random vector z according to   

x 
z = , 

y

and express the joint density for x and y in the form pz(·), which is a scalar function of 
a vector argument. Of course, for discrete-valued quantities, the distinction between 
scalars and vectors is strictly unnecessary, though it can be useful at times in creat
ing logical groupings of quantities of interest, such as for the purpose of computing 
conditional probabilities such as py |x (·|·). 

It will sometimes be useful to explicitly define classes of distributions. In particu
lar, we use PX to denote the set of all possible probability mass (or density) functions 
defined over the alphabet X. When the alphabet is clear from context, we sometimes 
omit the superscript. We analogously define the related notation PX×Y and PY|X for 
joint and conditional probability distributions, respectively, etc. 

Note that we are using bold face fonts to distinguish vector-valued quantities from 
scalar-valued ones. So z refers to a scalar, while z refers to a vector. Moreover, as 
demonstrated above, various combinations of our notation will be useful. For example, 
we distinguish a deterministic vector, e.g., z, from a random vector, e.g., z, using bold 
serifed font for the former and bold sans-serif font for the latter. 

In general, we will reserve lowercase boldface letters for specifically column vectors, 
and uppercase boldface letters (e.g., A) for matrices, i.e., when the row and column 
dimensions are each at least two. Row vectors can be denoted using transpose-
operator notation (e.g., zT). By contrast, for scalars, we attach no significance to 
whether the quantity is lowercase (e.g., z), or uppercase (e.g., Z). 

When needed, we use bracket notation to identify elements of vector and matrix 
quantities. For example, [A]i,j denotes the (i, j)th element of the matrix A, and [z]i 
denotes the ith element of the vector z. 

Finally, it will also be convenient at times to use script notation for sequences. In 
particular, for a sequence x1, x2, . . . , we use 

xj
i = (xi, xi+1, . . . , xj ) 

when j ≥ i as subsequence notation. And, as a further shorthand, we often let 
xn = xn 

1 , for n ≥ 1. 
Of course, quantities such as xi

j can also be represented in (column) vector notation 
(i.e., as x), though the alternative subsequence notation makes explicit which elements 
constitute the vector, which will prove convenient. It is also worth emphasizing that 
vector and subsequence notation can and will be used at times in combination, where 
it serves to logically group quantities. An example would be yi

j and yn, which would 
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refer to subsequences of the vector sequence y1, y2, . . . . As always, such notation can 
be combined with serifed and sans-serif fonts to distinguish determinstic from random 
quantities, e.g., yn vs. yn . 

0.2 Special Functions 

There are a variety of special functions that will be useful in our development. One 
example is the Kronecker function: for any event A,  

1 if A is true 
1A / . 

0 otherwise 

In addition, as a variant of this notation, for arbitrary variables x and y we will also 
use 

1x(y) = 1y(x) / 1x=y, 

and, for a set S, 
1S(x) / 1x∈S. 

As matrix notation, in addition to transpose notation T mentioned earlier, whereby 
[AT]i,j = [A]j,i, we use the superscript notation −1 to denote matrix inversion, 
whereby for any nonsingular matrix A we have x = A−1y if y = Ax. 

In addition, if x and y are arbitrary random vectors, we denote their means via 

µx = E [x] and µy = E [y] , 

respectively, and the covariance between them via   
cov(x, y) / E (x − µx)(y − µy)

T . 

0.3 Special Distributions 

A few of basic distributions will arise regularly in our treatment, and thus warrant 
their own special notation. All are members of exponential families, the concept of 
which we will ultimately explore in more detail. 

First is the Bernoulli distribution, denoted using B. In particular, the notation 
x ∼ B(p) means that x is a binary random variable where one of the symbols has 
probability p (and the other with probability 1 − p). 

Another is the uniform distribution, denoted using U. In particular, the notation 
x ∼ U(X) means that x is uniformly distributed over the set X. 

Finally, there is the Gaussian (or “normal”) distribution, denoted using N. We 
use the notation x ∼ N(µ, σ2) to indicate that x is a scalar Gaussian random variable 
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with mean E [x ] = µ and variance E [(x − µ)2] = σ2 . The tail probability under the 
unit Gaussian is denoted using Q (·)-notation � ∞1 

Q (x) = √ e −t2/2 dt. 
2π x 

Although at times we also use Q(·) to denote a distribution, the risk of confusion will 
be minimal. 

Finally, we use x ∼ N(µ, Λ) to indicate that x is a Gaussian random vector with 
mean E [x] = µ and covariance matrix E (x − µ)(x − µ)T = Λ. When Λ is nonsin
gular, such random vectors have a probability density function of the form1 

exp −1 (x − µ)TΛ−1(x − µ) 
px(x) = 2 ,

|2πΛ|1/2 

the equiprobability contours of which are appropriately located, oriented and propor
tioned ellipses. 

1The operator | · | denotes the determinant of its matrix argument. 
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