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18	 Markov Chain Monte Carlo Methods and Ap­

proximate MAP 

In the recent lectures we have explored ways to perform approximate inference in 
graphical models with structures that make efficient inference intractable. First we 
saw loopy belief propagation and then found that it fit into a larger framework of 
variational approximation. Unfortunately, simple distributions may not always ap­
proximate our distribution well. In these cases, we may settle for characterizing the 
distribution with samples. Intuitively, if we have enough samples, we can recover any 
important information about the distribution. 

Today, in the first half, we’ll see a technique for sampling from a distribution 
without knowing the partition function. Amazingly, we can easily create a Markov 
chain whose stationary distribution is the distribution of interest. This area is very 
rich and we’ll only briefly scratch the surface of it. In the second half, we’ll switch 
gears and look at an algorithm for approximately finding the MAP through graph 
partitioning. 

First, we’ll see how sampling can capture essentially any aspect of interest of the 
distribution. 

18.1 Why sampling? 

Given {x1 , . . . , xN } samples from px(x). Recall that the sample mean 

N1 
N

i)f(x 
N 

i=1 

is an unbiased estimator of E [f(x)] for any f irrespective of whether the samples are 
independent because of the linearity of expectation. If the samples are i.i.d. then 
by the law of large numbers, we have that the sample mean converges to the true 
expectation 

NN1 
f(x i) → E [f(x)]

N 
i=1 

as k → ∞. With different choices of f , we can capture essentially any aspect of 
interest of p. For example, choosing 

f(x) = (x − E [x])2 gives the variance 

f(x) = − log(p(x)) gives differential entropy 

f(x) = 1x>x∗ gives p(x > x∗) where x∗ is a parameter 



So if we have samples from the joint distribution p(x), we can probe aspects of the 
distribution. However, our previous algorithms focused on the marginals p(xi). Can 
we use samples from the joint distribution p(x) to tell us about the marginals? In 
fact, it is simple to see that if x1 , . . . , xN are samples from the joint distribution, 
then xi 

1 , . . . , xN
i are samples from the marginal distribution p(xi). Hence, if we have 

samples from the joint distribution, we can project to the components to get samples 
from the marginals. Alternatively, if we’re interested in just the marginals, we might 
come up with an algorithm to sample from the marginal distributions directly. One 
might wonder if there is any advantage to doing this. The marginal distributions 
tend to be much less complex than the joint distribution, so it may turn out to be 
much simpler to sample from the marginal distributions directly, rather than sampling 
from the joint distribution and projecting. For the moment, we’ll focus on generating 
samples from p(x) and in the next lecture, we’ll return to sampling from the marginal 
distributions. 

It’s clear that the sampling framework is powerful, but naively drawing samples 
from p(x) when we don’t know the partition function is intractable. In the next 
section, we describe one approach to sampling from p(x) called Metropolis-Hastings. 

18.2 Markov Chain Monte Carlo 

Suppose, we are interested in sampling from px(x), but we only know px up to a 
multiplicative constant (i.e. px(x) = px

∗(x)/Z and we can calculate px
∗(x)). Initially, 

this seems like an immensely complicated problem because we do not know Z. 
Our approach will be to construct a Markov chain P whose stationary distribution 

π is equal to px while only using px 
∗ in our construction. Once we have created 

the Markov chain, we can start from an arbitrary x, run the Markov chain until it 
converges to π and we will have a sample from px. Such an approach is called a 
Markov Chain Monte Carlo approach. To develop this, we will have to answer 

1. How to construct such a Markov chain P? 

2. How long it takes for the Markov chain to converge to its stationary distribution? 

We’ll describe the Metropolis-Hastings algorithm to answer the first question. To 
answer the second, we’ll look at the “mixing time” of Markov chains through Cheeger’s 
inequality. 

18.2.1 Metropolis-Hastings 

First, we’ll introduce some notation to make the exposition clearer. Let Ω be the 
state space of possible values of x and we’ll assume x is discrete. For example, if x 
was a binary vector of length 10, then Ω would be {0, 1}10 and have 210 elements. We 
will construct a Markov chain P which we will represent as a matrix [Pij ] where the 
(i, j) entry corresponds to the probability of transitioning from state i ∈ Ω to state 
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Figure 1: Detailed balance says the πiPij = πj Pji, in other words the probability 
flowing from i to j is the same as the flow from j to i. 

j ∈ Ω. We want the stationary distribution of P denoted by a vector π = [πi] to 
be equal to px (i.e. πi = px(i)). Furthermore, we will require P to be a reversible 
Markov chain. 

Definition 1 (Reversible Markov chain). A Markov Chain P is called reversible with 
respect to π if it satisfies 

πiPij = πj Pji. 

This equation is also referred to as detailed balance. 

Intuitively, detailed balance says that the probability “flowing” from i to j is the 
same amount of probability “flowing” from j to i, where by probability “flow” from 
i to j we mean πiPij (i.e. the probability of being in i and transitioning to j). 

Importantly, if P is reversible with respect to π and we did not assume π was the 
stationary distribution, detailed balance implies that π is a stationary distribution 
because   N N N 

πj Pji = πiPij = πi Pij = πi. 
j j j 

So showing that P satisfies the detailed balance equation with π is one way of showing 
the π is a stationary distribution of P. 

To obtain such a P, we will start with a “proposed” Markov chain K which we 
will modify to create P and as we’ll see the conditions that K must satisfy are very 
mild and K may have little or no relation to px. Again, we will represent K as a 
matrix [Kij ] and we require that 

Kii > 0 for all i ∈ Ω and 

G(K) = (Ω, E(K)) is connected where E(K) ; {(i, j) : Kij Kji > 0}. 

In other words, all self-transitions must be possible and it must be possible to move 
from any state to another state in some number of transitions of the Markov chain. 
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Then, define
     
p ∗(j)Kji px(j)Kji 

R(i, j) ; min 1, x = 1 min 1, 2 

p ∗ 
x(i)Kij px(i)Kij

and  
Kij R(i, j) j = i 

Pij ;  . 
1 − j  Pij j = i =i 

This is the Metropolis-Hastings Markov chain P that we were after. Now it remains 
to show that px is the stationary distribution of P, and as we commented above it 
suffices to show that P satisfies the detailed balance equation with px. 

Lemma 1. For all i, j ∈ Ω, detailed balance px(i)Pij = px(j)Pji holds. 

Proof. For (i, j) ∈/ E(K) this is trivially true. For (i, j) ∈ E(K), without loss of 
∗ ∗ x (i)Kijgenerality let px(j)Kji ≥ px(i)Kij . This implies that R(i, j) = 1 and R(j, i) = 

p

p 
∗

∗ 

. 
x (j)Kji 

Then   
px(j)Kji px(i)Kij

px(i)Pij = px(i)Kij = px(i)Kij = Kjipx(j) 
px(j)Kji px(j)Kji

= R(j, i)Kjipx(j) = Pjipx(j). 

Thus, we conclude that px is the stationary distribution of P as desired. 
Because the matrices describing K and P are enormously large3, it can be helpful 

to think of K and P as describing a process that explains how to generate a new state 
j in the Markov chain given our current state i. From this perspective, the process 
describing P is as follows, starting from state i, to generate state j: 

Generate j/ according to K with current state i. 

Flip a coin with bias R(i, j/) 

If heads, then the new state j = j/. 

If tails, then the new state j = i, the old state. 

This gives a convenient description of P, which can easily be implemented in code. 
Also, R(i, j) is commonly referred to as the acceptance probability because it describes 
the probability of accepting the proposed new state j/. 

1The equality holds because Z cancels out. 
2The astute reader will notice that the ratio in R(i, j) is directly related to the detailed balance 

equation. 
3They’re |Ω| × |Ω| and the reason we cannot calculate px is that Ω is so large. 
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Intuitively, we can think of Metropolis-Hastings as forcing K to be reversible in 
a specific way. Given an arbitrary K, there’s no reason that px(i)Kij will be equal 
to px(j)Kji, in other words, the probability flow from i to j will not necessarily be 
equal to the flow from j to i. To fix this, we could scale the flow on one side to be 
equal to the other and that’s what Metropolis-Hastings does. To make this notion 
more precise, let R(px) be the space of all reversible Markov chains that have px as a 
stationary distribution. Then the Metropolis-Hastings algorithm takes K and gives 
us P ∈ R(px) that satisfies 

Theorem 1. N N 
P = arg min d(K, Q) ; arg min px(i) |Kij − Qij |. 

Q∈R(px) Q∈R(px) 
i j i 

Hence, P is the l1-projection of K on R(px). 

18.2.2 Example: MRF 

We’ll describe a simple example of using Metropolis-Hastings to sample from an MRF. 
Suppose we have x1, . . . , xn binary with ⎛ ⎞ N N 

p(x) ∝ exp ⎝ φi(xi) + ψij (xi, xj )⎠, 
i∈V (i,j)∈E "   " 

U(x) 

for some graph G. Here Ω = {0, 1}n, so it has 2n elements. Suppose we have K = [ 1 ]
2n 

the matrix with all entries equal to 
2
1 
n that is the probability of transitioning from i 

to j is equally probable for all j. Then the Metropolis-Hastings algorithm would give 

exp(U(i))
Pij = Kij min 1, 

exp(U(j)) 
1 

= min (1, exp(U(i) − U(j))) . 
2n 

Is there any downside to choosing such a simple K? If i has moderate probability, 
the chance of randomly choosing a j that has higher probability is very low, so we’re 
very unlikely to transition away from i. Thus it make take a long time for the Markov 
chain to reach its stationary distribution. 

18.2.3 Example: Gibbs Sampling 

Gibbs sampling is an example of Metropolis-Hastings, where x = (x1, . . . , xn) and K 
/is defined by the following process for going from x → x
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Select k ∈ {1, . . . , n} from a uniform distribution. 

Set x−
/
k = x−k and sample x/ from p(xk

/ |x−k).k 

where x−k ; x1, . . . , xk−1, xk+1, . . . , xn. The practical applicability of Gibbs sam­
pling depends on the ease with which samples can be drawn from the conditional 
distributions p(xk|x−k). In the case of undirected graphical models, the conditional 
distributions for individual nodes depends only on the neighboring nodes, so in many 
cases, it is simple to sample from the conditional distributions. 

If p > 0 then it follows that the graph for K is connected and all self-transitions 
are possible. Below, we’ll see that K satisfies detailed balance, so the acceptance 
probability will always be 1, hence the Metropolis-Hastings transition matrix P will 
be equal to K. 

Lemma 2. K satisfies detailed balance with respect to px. 

Proof. For x and x/, we must show that p(x)Kxx' = p(x/)Kx'x. If x = x/, then the 
equation is satisfied trivially. Suppose x = x/ and suppose they differ in at least two 
positions. By construction Kxx' = Kx'x = 0, so the equation is satisfied trivially. 
Lastly, suppose x = x/ and they differ in exactly one position k. Then, 

1 /p(x)Kxx' = p(x)p(xk|x−k) 
n 
1 

= p(xk|x/ )p(x/ )p(x/ |x/ )−k −k k −kn 
1 

= p(xk|x−
/
k)p(x

/) 
n 

= p(x/)Kx'x. 
/using the fact that x−k = x−k. 

In practice, Gibbs sampling works well and in many cases it is simple to implement. 
Explicitly, we start from an initial state x0 and generate putative samples x1 , . . . , xT 

according to the following process: 

for t = 0, . . . , T − 1: 

Select i ∈ {1, . . . , n} uniformly. 
t+1 t t+1 t+1 tSet x = x and sample x from p(x |x ).−i −i i i −i

However, all of the caveats about using the samples generated by Metropolis-Hastings 
apply. For example, we need to run the Markov chain until it has reached its sta­
tionary distribution, so we need to toss out a number of initial samples in a process 
called “burn-in”. In the next section, we’ll see theoretical results on the time it takes 
the Markov chain to reach its stationary distribution, but in practice people rely on 
heuristics. More advanced forms of Gibbs sampling exist, such as block Gibbs sam­
pling as seen on Problem Set 8, but their full development is beyond the scope of this 
class. 
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18.3 Mixing Time 

Now that we’ve constructed the Markov chain, we can sample from it, but we want 
samples from the stationary distribution. We turn to the second question: how long 
does it take for the Markov chain to converge to its stationary distribution? 

For simplicity of exposition, we’ll focus on a generic reversible Markov chain P 
with state space Ω and unique stationary distribution π. We’ll also assume that 
P regular, that is Pk > 0 for some k > 0. Intuitively, that means that for some 
k > 0, it is possible to transition from any i ∈ Ω to any j ∈ Ω in exactly k steps. 
Additionally, we’ll assume that P is a lazy Markov chain, which means that Pii > 0 
for all i ∈ Ω. This is a mild condition because we can take any Markov chain Q 
and turn it into a lazy Markov chain without changing its stationary distribution by 
considering 1

2 (Q + I). The lazy condition ensures that all of the eigenvalues of P are 
positive and it does not substantially increase the mixing time. 

We’re interested in measuring the time it takes P to go from any initial state to 
its stationary distribution. Precisely, we’ll define 

Definition 2 (f-mixing time of P). Given f > 0, Tmix(f) is the smallest time such 
that for t ≥ Tmix(f) 

|µPt − π|TV ≤ f, 

for any initial distribution µ where |µPt − π|TV = |(µPt)i − πi| is the total i 
variation. 

To get a bound on Tmix(f), we will focus our attention how what the operation of 
multiplying with P does. Recall that as we apply P to any vector, the eigenvector 
with the largest eigenvalue dominates and how quickly it dominates is determined by 
the second largest eigenvalue. We will exploit this intuition to get a bound on Tmix(f) 
that depends on the difference between the largest and second largest eigenvalues. 

The following is technical and is included for completeness. First, we’ll the total 
variation by a term that does not depend on the initial distribution µ. N N N 

|(µPt)i − πi| = | µj (P
t)ji − πi|

i i jN N 
= | µj ((P

t)ji − πi)|
i jN 

≤ µj |(Pt)ji − πi|
ijN N 

= µj |(Pt)ji − πi|
j i N 

≤ ||µ||1 max |(Pt)ji − πi|
j N i 

= max |(Pt)ji − πi|. 
j 

i 
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where used Holder’s inequality. Now we show how to bound |(Pt)ji − πi| for every i 
j ∈ Ω. NN (Pt)ij √ √ |(Pt)ji − πi| = |

i 

− 1| πi πi
πii   
 
 1 

2N 
πi πi , 

    
(Pt)ij 
πi 

− 1


    
2N
 
≤


i i 

where we used Cauchy-Schwarz to get the inequality. After some algebraic manipu­
lation  
 
 11    
(Pt)ij 

πi 
− 1


    
2N
 N2N 
πi πi = 1 − 

(Pt)2 
ji 

2
2(Pt)ji 

πi+
 
π2 

iπii i i 
1 N
(Pt)2 

ji − 1 
2 

=
 .
 
πii 

Now we’ll use the reversibility of P, 

11 N
(Pt)2 
ji − 1
 

N2 

=
 
(Pt)ji(P

t)jiπj 
2 

1 

− 1
 
i 

πi i 
πiπj 

N
(Pt)ji(P
t)ij πi − 1 

2 

=
 
i 

πiπj 

1 N
(Pt)ji(P
t)ij − 1 

2 

=
 
i 

πj 

(P2t)jj 
= − 1 

1 
2 

,

πj 

where we used the reversibility of P to exchange πj (P
t)ji for πi(P

t)ij . Putting this 
together, we conclude that 

N
 

i 

(P2t)jj |(Pt)ji − πi| ≤ − 1 
πj 

1 
2 

.
 

So we need to find a bound on the diagonal entries of P2t . Consider the following 
matrix √ √ −1 

M ; diag( π)P diag( π ) 
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√ √ 
where diag( π) is the diagonal matrix with π along the diagonal. Note that M is 
symmetric because  

Mij =
πi 

πj 
Pij = 

πiPij√ 
πiπj = 

πj Pji √ 
πiπj 

πj
= Pji = Mji,

πi 

using the reversibility of P. Recall the spectral theorem from linear algebra which says 
that for any real symmetric matrix A, there exist orthonormal eigenvectors v1, . . . , vn 

with eigenvalues λ1 ≥ . . . ≥ λn such that 

nN 
A = λkvkvk 

T = V diag(λ)VT , 
k=1 

where V is the matrix with v1, . . . , vn as columns and λ = (λ1, . . . , λn). 
Decomposing M in this way, shows that 

Mt = (V diag(λ)VT)t = V diag(λ)tVT 

because V is orthogonal. Hence 

√ √ 
Pt = diag( π 

−1 
)Mt diag( π) 

√ −1 √ 
= diag( π )V diag(λ)tVT diag( π) 

√ −1 √ 
= diag( π )V diag(λ)tVT diag( π). 

From this representation of Pt, we conclude that N 
(Pt)jj = λi

t(vi)j 
2 . 

i 

It can be shown by the Perron-Frobenius theorem, that λ1 = 1 and |λk| < 1 for 
k < 1 and the first eigenvector of P is π. M is similar4 to P hence they have the 
same eigenvalues and their eigenspaces have the same dimensions. By construction, √ −1
an eigenvector u of P implies that u diag( π ) is an eigenvector of M with the √ −1
same eigenvalue. Thus π diag( π ) is eigenvector of M and because the eigenspace 
corresponding to the eigenvalue 1 has dimension 1, v1 ∝ π diag( 

√ 
π

−1
). Furthermore, √ ||v1||2 = 1 because V is orthogonal, so we conclude that v1 = ±π diag( π

−1
). Using 

4Matrices A and B are similar if A = C−1BC for some invertible matrix C. 
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this, we can simplify the expression for (P2t)jj and upper bound it 

nN 
(P2t)jj = πj + λi 

2t(vi)j 
2 

i=2 
nN 

≤ πj + λ2t (vi)
2 

2 j 
i=2 
nN 

≤ πj + λ2t (vi)
2 

2 j 
i=1 

= πj + λ22 
t , 

because V is orthogonal. Putting this into our earlier expression yields 

11 

(P2t)jj 2 

− 1 ≤
 
πj + λ2t 2 

2 

− 1
 
πj πj 

1 
2λ2t 

= 2 .
 
πj 

Putting all of the bounds together we have 

11 

λ2t 2 
2 1
 2 

|µPt − π|TV = λt≤ max
 .
2
j πj minj πj 

Setting the right hand side equal to f and solving for t gives 

log f + 
2
1 log(minj πj ) 

t = . 
log λ2 

This gives an upper bound on the time it takes the Markov chain to mix so that 
|µPt − π|TV < f. Because we used inequalities to arrive at t, we can only conclude 
that 

1log f + log(minj πj ) log 1 
E + 1

2 log 
min

1 
j πjTmix(f) ≤ t = 2 = 

log λ2 log 1/λ2 

log 1 + 1 log 1 
E 2 minj πj≤ . 

1 − λ2 

So, as expected, the mixing time depends on the difference between the largest and 
second largest eigenvalues. In this case, Cheeger’s celebrated inequality states that 

1 2 ≤ ,
Φ21 − λ2 
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where the conductance Φ of P is defined as 

i∈S,j∈Sc πiPij
Φ = Φ(P) = min 

S⊂Ω π(S)π(Sc) 

where π(S) = and similarly for π(Sc). Conductance takes the minimum k∈S πk 

over S of the probability of starting in S and transitioning to Sc in one time step 
normalized by the “sizes” of S and Sc . If the conductance is small, then there is a set 
S such that transitioning out of S is difficult, so if the Markov chain gets stuck in S, 
it will be unlikely to leave S, hence we would expect the mixing time to be large. 

�

Sc

S

i j

transitions across

Figure 2 

Thus we conclude that 

Tmix(f) ≤ 
2 
Φ2 

log 
1 

mini πi 
+ log 

1 
f 

. 

In fact, it can be shown that without converting our Markov chain to a lazy Markov
 
chain, we improve the bound by a factor of 2 

1 1 1 
Tmix(f) ≤ 

Φ2 
log 

πmin 
+ log 

f 
. 

18.3.1 Two-state example 

Consider the simple Markov chain depicted in Figure 3 with a single binary variable x . 
By symmetry, the stationary distribution π = [0.5, 0.5]. It’s clear that Φ is minimized 
when S = {0} and Sc = {1} so that 

0.5δ 
Φ = = 2δ. 

0.5 × 0.5 
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Figure 3
 

18.3.2 Concluding Remarks 

We’ve seen how to sample from a distribution without knowing the partition function 
via Metropolis-Hastings. And we saw how we could bound the time it takes for the 
Markov chain to reach its stationary distribution from any initial distribution. In 
the next lecture we’ll continue to discuss sampling techniques and in particular, we’ll 
focus on techniques for a restricted set of models. For now, we’ll take a brief aside to 
talk about approximate MAP algorithms. 

18.4 Approximate MAP and Partitioning 

Analogously to loopy belief propagation, we can run max-product (or min-sum) on a 
loopy graph to approximate the MAP. Unfortunately, we have limited understanding 
of the approximation it generates, as in the case with loopy belief propagation. The 
cases that are well understood suggest that max-product is akin to linear program­
ming relaxation, but the discussion of this is beyond the scope of this class5 . 

As we saw earlier, in the Gaussian setup, MAP and inference are equivalent. An 
interesting fact is that if Gaussian BP converges on a loopy graph, the estimated 
means are always correct6 . 

Instead of pursuing loopy max-product, we’ll focus on another generic procedure 
for approximating the MAP based on graph partitionings. The key steps in this 
approach are: 

1. Partition the graph into small disjoint sets. 

2. Estimate the MAP for each partition independently. 

5For more information see Sanghavi, S.; Malioutov, D.; Willsky, A.’s “Belief Propagation and LP 
Relaxation for Weighted Matching in General Graphs” (2011). 

6For more information see Weiss, Y; Freeman, W.’s “Correctness of Belief Propagation in Gaus­
sian Graphical Models of Arbitrary Topology” (2001). 
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3. Concatenate the MAPs for the subproblems to form a global estimate. 

Because of its simplicity, this algorithm seems almost too good to be true and in 
fact given a specific partition on a graph, we can choose the clique potentials so that 
this algorithm will give a poor approximation to the MAP. The key is to exploit 
randomness! Instead of choosing a single partition, we’ll define a distribution on 
partitions and when we select a partition from this distribution, we can guarantee 
that on average the algorithm will do well. 

When a clever distribution on partitions of the graph exists, this produces a 
linear time algorithm and can be quite accurate. Unfortunately, not all graphs admit 
a good distribution on partitions, but in this case, we will can produce a bound on 
the approximation error. In the following section, we’ll precisely define the algorithm 
and derive bounds on the approximation error. At the end, we’ll explore how to find 
a clever distribution on partitions. 

To make the notion of a “good” distribution on partitions precise, we’ll define 

Definition 3. An (f, k)-partitioning of graph G = (V, E) is a distribution on finite 
partitions of V such that for any partition {V1, . . . , VM } with non zero probability, 
|Vm| ≤ k for all 1 ≤ m ≤ M . Furthermore, we require that for any e ∈ E, p(e ∈ 
Ec) ≤ f where Ec = E\ ∪m (Vm × Vm) the set of cut edges and the probability is with 
respect to the distribution on partitions. 

Intuitively, an (f, k)-partitioning is a weighted set of partitions, such that in every 
partition all of the Vm are small and the set of cut edges is small. This aligns well 
with our algorithm because it means that the subproblems will be small because Vm 

is small, so our algorithm will be efficient. Because our algorithm evaluates the MAP 
for each partition independently, it misses out on the information contained on the 
cut edges, so as long as the set of cut edges is small, we do not miss much by ignoring 
them. √ √ 

Let us consider a simple example of an N × N grid graph G. We’ll show that  
1 
e2 1it’s possible to find an (f,

E )-partitioning for G for any f > 0. In this case, k = 
E2 . 

Our strategy will be to first construct a single partition has |Vm| ≤ k and a small 
|Ec|. Then we will construct a distribution on partitions that satisfies the constraint 
that for any e ∈ E, p(e ∈ Ec).√ √ 

Sub-divide the grid into k × k squares, each containing k nodes (Figure 5). 
There are M ; N such sub-squares; call them V1, . . . , VM . By construction |Vm| ≤ k.

k 
The edges in Ec are the ones that cross between sub-squares. The number of edges √ 
crossing out of each such square is at most 4 k, so the total number of such edges are √ 
at most 4M k 1

2 where 2
1 is for doubling counting edges. The total number of edges √ 

in the grid is roughly 2N . Therefore, the fraction of cut edges is 2 k N 1 = √1 = f.
k 2N k√ √ 

Thinking of the sub-division into k × k squares as a coarse grid, we could 
shift the grid to the right and/or down to create a new partition. If we randomly √ 
shift the entire sub-grid uniformly 0, . . . , k − 1 to the right and then uniformly 
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V1

V3

V2

VM

cut edges Ec and |Ec| � �|E| on average

Figure 4: The nodes are partitioned into subsets V1, . . . , VM and the red edges cor­
respond to cut edges. 

�
k

�
N

√ √
 
Figure 5: The original grid is sub-divided into a grid of k × k squares.
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√ 
0, . . . , k − 1 down this gives a distribution on partitions. By symmetry, it ensures 
the distributional guarantee that p(e ∈ Ec) ≤ f. Thus the grid graph admits an 
(f, 1 

E 

e2 
)−partitioning for any f > 0. 

18.4.1 Approximate MAP using (f, k)-partitioning 

In this section, we’ll prove a bound on the approximation error when we have an 
(f, k)-partitioning. For our analysis we will restrict our attention to pairwise MRFs 
that have non-negative potentials, so p takes the form ⎛ ⎞ N N 

px(x) ∝ exp ⎝ φi(xi) + ψij (xi, xj )⎠ 
i∈V (i,j)∈E "	 " 

;U(x) 

for a graph G = (V, E) and where ψi, φij ≥ 0. Then formally, the approximate MAP 
algorithm is 

1. Given an (f, k)-partitioning of G, sample a partition {V1, . . . , VM } of V. 

2. For each 1 ≤ m ≤ M : Using max-product on Gm = (Vm, E ∩ Vm × Vm) find N N 
x̂m ∈ arg max φi(yi) + ψij (yi, yj ) 

y∈X|Vm| 
i∈Vm	 (i,j)∈E 

i,j∈Vm"	 " 
;Um(y) 

3. Set x̂ = ((x̂m)m) as an approximation of the MAP. 

We can get a handle on the approximation error by understanding how much error 
arises from ignoring the edge potentials corresponding to Ec . If we use an (f, k)­
partitioning, then we expect Ec to be small, so we can bound our approximation 
error. The following theorem makes this intuition rigorous. 

Theorem 2 (Jung-Shah). 

E [U(x̂)] ≥ U(x ∗ )(1 − f). 

where the expectation is taken over the (f, k)-partitioning. 
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︷︷

︷︷



 

 

Proof.
 NN 
∗ ∗	 ∗ U(x ∗ ) = φi(xi ) + ψij (xi , x j ) 

i∈V (i,j)∈E ⎡
 ⎤
 
M

m=1 i∈Vm	 (i,j)∈E (i,j)∈Ec 

i,j∈Vm 

N NNN⎢⎢⎣
 
⎥⎥⎦


∗	 ∗ ∗ ∗ ∗ φi(xi ) + ψij (xi , x j ) + ψij (xi , x j )=
 

M

= Um(x ∗ ) + ψij (xi 
∗ , x j 

∗ ) 
m=1 (i,j)∈Ec 

N N
 

N
 
≤ U(x̂) + 1(i,j)∈Ec ψij (xi 

∗ , x j 
∗ ).
 

(i,j)∈E
 

Therefore, by taking expectation with respect to randomness in partitioning and using 
the fact that φi, ψi,j ≥ 0 and U(x ∗) ≥ ψij (xi 

∗ , x ∗),(i,j)∈E j 

U(x ∗ ) ≤ E [U(x̂)] + fU(x ∗ ). 

This means that given our choice of f, we can ensure that E [U(x̂)] is close to the 
correct answer (i.e. the approximation error is small). 

18.4.2 Generating (f, k)-partitionings 

We’ve seen that as long as we have an (f, k)-partitioning for an MRF, then we can 
make guarantees about the approximation algorithm. Now we will show that a large 
class of graphs have (f, k)-partitionings. First we’ll describe a procedure for generating 
a potential (f, k)-paritioning and then we’ll see which class of graphs this realizes 
an (f, k)-partitioning. 

The procedure for generating a potential (f, k)-partitioning on a graph is given by 
the following method for sampling a partition 

1. Given	 G = (V, E), k, and f > 0. Define the truncated geometric distribution 
with parameter f truncated at k as follows 

(1 − f)l−1f l < k 
p(x = l) =	 . 

(1 − f)k−1 l = k 

2. Order the nodes V arbitrarily 1, . . . , N . For node i: 

Sample Ri from a truncated geometric distribution with parameter f trun­
cated at k. 
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Assign all nodes within distance7 Ri from i color i. If the node is already 
colored, recolor it to i. 

3. All nodes with the same color form a partition. 

This gives a partition and defines a distribution on partitions. The questions is: for 
what graphs G is this distribution an (f, k)-partitioning? 

Intuitively, for any given node, we want the number of nodes within some distance 
of it not to grow too quickly. Precisely, 

Definition 4 (Poly-growth graph). A graph G is a poly-growth graph if there exists 
ρ > 0, C > 0 such that for any vertex v in the graph, 

|Nv(r)| ≤ Crρ , 

where Nv(r) is the number of nodes within distance r of v in G. 

In this case, we know that 

Theorem 3 (Jung-Shah). If G is a poly-growth graph then by selecting k = Θ(ρ
E log ρ

E ), 
8 the above procedure results in an (f, Ckρ) partition.9 

This shows that we have a large class of graphs where we can apply the procedure 
to generate an (f, k)-partitioning, which guarantees that our approximation error is 
small and controlled by our choice of f. 

7Where distance is defined as the path length on the graph.
 
8This notation means that k is asymptotically bounded above and below by 7

ρ log ρ7 .
 
9A similar procedure exists for all planar graphs.
 

17 



MIT OpenCourseWare
http://ocw.mit.edu

6.438 Algorithms for Inference
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



