
LECTURE 23 

Last time: 

Finite-state channels • 

Lower capacity and upper capacities • 

Indecomposable channels • 

Markov channels • 

Lecture outline 

Spreading over fading channels • 

Channel model • 

Upper bound to capacity • 

Interpretation • 



Spreading over fading channels 

Channel decorrelates in time T 

Channel decorrelates in frequency W 

Recall Markov channels: difficulty arises when 

we do not know the channel 

Gilbert-Eliot channel: hypothesis testing for 

what channel state is 

Consider several channels in parallel in fre

quency (recall that if channels are known, 

we can water-fill) 



Channel model 

Block fading in bandwidth and in time 

Over each coherence bandwidth of size W ,

the channel experiences Rayleigh flat fading


All the channels over distinct coherence band

widths are independent, yielding a block-

fading model in frequency 

We transmit over µ coherence bandwidths 

The energy of the propagation coefficient 
F [i]j over coherence bandwidth i at sam

pled time j is σF 

For input X[i]j at sample time j (we sample 
at the Nyquist rate W ), the corresponding 
output is Y [i]j = F [i]jX[i]j + N [i]j, where 
the N [i]js are samples of WGN bandlimited 
to a bandwidth of W , with energy normal

ized to 1 



Channel model 

The time variations are block-fading in na

ture 

The propagation coefficient of the channel 
remains constant for T symbols (the co

herence interval), then changes to a value 
independent of previous values 

Thus, F [i](j+1)TW is a constant vector and jT W +1 

the F [i](j+1)TW are mutually independent jT W +1 
for j = 1, 2, . . .. 

Signal constraints: 

For the signals over each coherence band
• 
width, the second moment is upper bounded 
by E[X2] ≤ E

µ 

The amplitude is upper bounded by γ 
�

E[X2]• E 



Upper bound to capacity 

Capacity is C 
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where the fourth central moment of X[j]i is 

upper bounded by γ 
2 and its average energy 

µ

constraint is Eµ . 

Since we have no sender channel side in

formation and all the bandwidth slices are 

independent, we may use the fact that mu

tual information is concave in the input dis

tribution to determine that selecting all the 

inputs to be IID maximizes the RHS of (1). 



Upper bound to capacity


We first rewrite the mutual information term:
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We may upper bound the first term of (2):
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from concavity of ln and our average energy 
constraint. 



Upper bound to capacity 

We now proceed to minimize the second 
term of (1) 

X[j](i+1)TW 
Y [j](i+1)TWConditioned on iT W +1 , iT W +1 

is Gaussian, since F [j](i+1)TW is GaussianiT W +1 

and N
(i+1)TW Gaussian and independentiT W +1 

of F 

T 
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(4) 

Λ (i+1)TW has kth diagonal term σF 
2 x[k]2+ 

Y [j]iT W +1 

1 and off-diagonal (k, j) term equal to x(k)x(j)σF 
2 , 

conditioned on 

X[j](i+1)TW = x = [x(1), . . . , x(TW )]iT W +1 

The eigenvalues λj of ΛY are 1 for j = 
1 . . . TW − 1 and ||x|| 2 σ2 + 1 for j = TW .F 



Upper bound to capacity


Hence, we may rewrite (3) as 
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+ ln(2πe) (5)
2 

We seek to minimize the RHS of (5) sub

ject to the second moment constraint hold

ing with equality and the subject to the 
peak amplitude constraint 

The distribution for X which minimizes the 
RHS of (5) subject to our constraints can 
be found using the concavity of the ln func

tion 

The distribution is such that the only val
ues which X can take are 0 and γ with| | 

2 2 

√
µE 

probabilities 1 − E and E
γ2, respectively. 

γ2 



Upper bound to capacity


Thus, we may lower bound (5) by 
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Combining (6), (3) and (1) yields 
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Upper bound to capacity


What is the limit for µ infinite? 

ln(1 + x) � x for small x 

First term goes to 
σ2 

F W E
2 

Second term also goes to 
σ2 

F W E
2 

Graphical interpretation 



Interpretation


Over any channel (slice of of bandwidth of 

size W ), we do not have enough energy to 

measure the channel satisfactorily 

Necessary assumptions: 

energy scales per bandwidth slice over • 

the whole bandwidth 

peak energy per bandwidth slice over • 

the whole bandwidth 



Interpretation


We may relax the assumption of the peak 

bandwidth 

Assume second moment (variance) scales 

as µ 
1 and fourth moment (kurtosis) scales 
1as 2µ

The mutual information goes to 0 as µ → 

∞ 

We may also relax the assumption regard


ing the channel block-fading in time and


frequency as long as we have decorrelation
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