Spring 2016

6.441 - Information Theory Homework 9

Due: Thur, Apr 28, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapter 8,9]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Let $\left\{Z_{j}, j=1,2, \ldots\right\}$ be a stationary Gaussian process with variance 1 such that Z_{j} form a Markov chain $Z_{1} \rightarrow \ldots \rightarrow Z_{n} \rightarrow \ldots$ Consider an additive channel

$$
Y^{n}=X^{n}+Z^{n}
$$

with power constraint $\sum_{j=1}^{n}\left|x_{j}\right|^{2} \leq n P$. Suppose that $I\left(Z_{1} ; Z_{2}\right)=\epsilon \ll 1$, then capacity-cost function

$$
C(P)=\frac{1}{2} \log (1+P)+B \epsilon+o(\epsilon)
$$

as $\epsilon \rightarrow 0$. Compute B and interpret your answer.
How does the frequency spectrum of optimal signal change with increasing ϵ ?
2 A semiconductor company offers a random number generator that outputs a block of random n bits Y_{1}, \ldots, Y_{n}. The company wants to secretly embed a signature in every chip. To that end, it decides to encode the k-bit signature in n real numbers $X_{j} \in[0,1]$. To each individual signature a chip is manufactured that produces the outputs $Y_{j} \sim \operatorname{Bern}\left(X_{j}\right)$. In order for the embedding to be inconspicuous the average bias P should be small:

$$
\frac{1}{n} \sum_{j=1}^{n}\left|X_{j}-\frac{1}{2}\right| \leq P
$$

As a function of P how many signature bits per output (k / n) can be reliably embedded in this fashion? Is there a simple coding scheme achieving this performance?

3 (Strong converse for BSC) In this exercise we give a combinatorial proof of the strong converse for the binary symmetric channel. For $\operatorname{BSC}(\delta)$ with $0<\delta<\frac{1}{2}$,

1. Given any $(n, M, \epsilon)_{\text {max }}$-code with deterministic encoder f and decoder g, recall that the decoding regions $\left\{D_{i}=g^{-1}(i)\right\}_{i=1}^{M}$ form a partition of the output space. Prove that for all $i \in[M]$,

$$
\left|D_{i}\right| \geq \sum_{j=0}^{L}\binom{n}{j}
$$

where L is the smallest integer such that $\mathbb{P}[\operatorname{Binomial}(n, \delta) \geq L] \geq 1-\epsilon$.
2. Conclude that

$$
\begin{equation*}
M \leq 2^{n(1-h(\delta))+o(n)} . \tag{1}
\end{equation*}
$$

3. Show that (1) holds for average probability of error. (Hint: how to go from maximal to averange probability of error?)
4. Conclude that strong converse holds for BSC. (Hint: argue that requiring deterministic encoder/decoder does not change the asymptotics.)

4 Recall that AWGN is specified by

$$
Y^{n}=X^{n}+Z^{n}, \quad Z^{n} \sim \mathcal{N}\left(0, I_{n}\right), \quad \mathrm{c}\left(x^{n}\right)=\frac{1}{n}\left\|x^{n}\right\|^{2}
$$

Prove the strong converse for the AWGN via the following steps:

1. Let $c_{i}=f(i)$ and $D_{i}=g^{-1}(i), i=1, \ldots, M$ be the codewords and the decoding regions of an $(n, M, P, \epsilon)_{\max }$ code. Let

$$
Q_{Y^{n}}=\mathcal{N}\left(0,(1+P) I_{n}\right) .
$$

Show that there must exist a codeword c and a decoding region D such that

$$
\begin{align*}
& \quad P_{Y^{n} \mid X^{n}=c}[D] \geq 1-\epsilon \tag{2}\\
& Q_{Y^{n}}[D] \leq \frac{1}{M} . \tag{3}
\end{align*}
$$

2. Show that then

$$
\begin{equation*}
\beta_{1-\epsilon}\left(P_{Y^{n} \mid X^{n}=c}, Q_{Y^{n}}\right) \leq \frac{1}{M} . \tag{4}
\end{equation*}
$$

3. Show that hypothesis testing problem

$$
P_{Y^{n} \mid X^{n}=c} \quad \text { vs. } \quad Q_{Y^{n}}
$$

is equivalent to

$$
P_{Y^{n} \mid X^{n}=U c} \quad \text { vs. } \quad Q_{Y^{n}}
$$

where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix. (Hint: use spherical symmetry of white Gaussian distributions.)
4. Choose U such that

$$
P_{Y^{n} \mid X^{n}=U c}=P^{n},
$$

where P^{n} is an iid Gaussian distribution of mean that depends on $\|c\|^{2}$.
5. Apply Stein's lemma to show:

$$
\beta_{1-\epsilon}\left(P^{n}, Q_{Y^{n}}\right)=\exp \{-n E+o(n)\}
$$

6. Conclude via (4) that

$$
\log M \leq n E+o(n) \quad \Longrightarrow \quad C_{\epsilon} \leq \frac{1}{2} \log (1+P)
$$

5 Mixtures of DMCs. Consider two DMCs $U_{Y \mid X}$ and $V_{Y \mid X}$ with a common capacity achieving input distribution and capacities $C_{U}<C_{V}$. Let $T=\{0,1\}$ be uniform and consider a channel $P_{Y^{n} \mid X^{n}}$ that uses U if $T=0$ and V if $T=1$, or more formally:

$$
\begin{equation*}
P_{Y^{n} \mid X^{n}}\left(y^{n} \mid x^{n}\right)=\frac{1}{2} U_{Y \mid X}^{n}\left(y^{n} \mid x^{n}\right)+\frac{1}{2} V_{Y \mid X}^{n}\left(y^{n} \mid x^{n}\right) . \tag{5}
\end{equation*}
$$

Show:

1. Is this channel $\left\{P_{Y^{n} \mid X^{n}}\right\}_{n \geq 1}$ stationary? Memoryless?
2. Show that the Shannon capacity C of this channel is not greater than C_{U} (Hint: use strong converse. In fact the capacity equals C_{U}.)
3. the maximal mutual information is

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sup _{X^{n}} I\left(X^{n} ; Y^{n}\right)=\frac{C_{U}+C_{V}}{2}
$$

4. conclude that

$$
C<\lim _{n \rightarrow \infty} \frac{1}{n} \sup _{X^{n}} I\left(X^{n} ; Y^{n}\right)
$$

6 Routers A and B are setting up a covert communication channel in which the data is encoded in the ordering of packets. Formally: router A receives n packets, each of type A or D (for Ack/Data), where type is i.i.d. $\operatorname{Bernoulli}(p)$ with $p \approx 0.9$. It encodes k bits of secret data by reordering these packets. The network between A and B delivers packets in-order with loss rate $\delta \approx 5 \%$ (Note: packets have sequence numbers, so each loss is detected by B).
What is the maximum rate $\frac{k}{n}$ of reliable communication achievable for large n ? Justify your answer!

References

[1] T. Cover and J. Thomas, Elements of Information Theory, Second Edition, Wiley, 2006

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

