
§ 18. Lattice codes (by O. Ordentlich)

Consider the n-dimensional additive white Gaussian noise (AWGN) channel

Y X Z

where Z ∼ N (0, In×n) is statistically independen

=

t

+

of the input X. Our goal is to communicate
reliably over this channel, under the power constraint

1
X

n
∥ ∥2 ≤ SNR

where SNR is the signal-to-noise-ratio. The capacity of the AWGN channel is

C = 1 log2 (1 + SNR bits/channel use,

and is achieved with high probability by a codeb

)

ook drawn at random from the Gaussian i.i.d.
ensemble. However, a typical codebook from this ensemble has very little structure, and is therefore
not applicable for practical systems. A similar problem occurs in discrete additive memoryless
stationary channels, e.g., BSC, where most members of the capacity achieving i.i.d. uniform
codebook ensemble have no structure. In the discrete case, engineers resort to linear codes to
circumvent the lack of structure. Lattice codes are the Euclidean space counterpart of linear codes,
and as we shall see, enable to achieve the capacity of the AWGN channel with much more structure
than random codes. In fact, we will construct a lattice code with rate that approaches 1 log 1 SNR2
that is guaranteed to achieve small error probability for essentially all additive noise channels with
the same noise second moment. More precisely, our scheme will work if the noise vector

(

Z

+

is semi

)

norm-ergodic.

Definition 18.1. We
≜

say that a sequence in n of random noise vectors Z(n) of length n with (finite)
effective variance σ2 1

Z nE∥Z(n)∥2, is semi norm-ergodic if for any ε, δ > 0 and n large enough

Pr(Z(n) ∉ B(
√

1 δ nσ2 ε, (18.1)Z

where B(r) is an n-dimensional ball of radius r.

( + ) ) ≤

18.1 Lattice Definitions

A lattice Λ is a discrete subgroup of
×

Rn which is closed under reflection and real addition. Any
lattice Λ in Rn is spanned by some n n matrix G such that

Λ = {t = Ga ∶ a ∈ Zn}.
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We will assume G is full-rank. Denote the nearest neighbor quantizer associated with the lattice Λ
by

QΛ(x

where ties are broken in a systematic manner.

) ≜ arg min ∥, (18.2)
t∈Λ

∥x − t

We define the modulo operation w.r.t. a lattice Λ as

[x] mod Λ ≜ x −QΛ(x),

and note that it satisfies the distributive law,

[[x

The

] mod Λ + y] mod Λ = [x + y

basic Voronoi region of Λ, denoted by , is the set of

] mod Λ.

all points in Rn which are quantized
to the zero vector. The systematic tie-breaking

V

in (18.2) ensures that

t Rn,

V

t

where

⊍
Λ

union.

∈
(V +

⊍ denotes disjoint Thus, is a fundamental

) =

cell of Λ.

Definition 18.2. A measurable set S ∈ Rn is called a fundamental cell of Λ if

S t Rn.
t Λ

We denote the volume of a set S R

⊍
∈

( + ) =

∈ n by Vol S .

Proposition 18.1. If S is a fundamental cell of

(

Λ

)

, then Vol S Vol . Furthermore

S mod Λ

( ) = (V)

= {[s] mod Λ ∶ s ∈ S} = V.

Proof ([Zam14]). For any t ∈ Λ define

At ≜ S ∩ (t + V); Dt ≜ V ∩ (t + S).

Note that

Dt = [(−t

t

+ V) S] + t

t.

∩

Thus

= A− +

Vol(S) =
t

∑
∈

Vol t Vol t t Vol
Λ

Moreo

(A ) =
t

∑
∈Λ

(A− + ) =
t

∑
∈Λ

ver

(Dt) = Vol(V).

S =
t
⊍
∈Λ
At =

t
⊍
∈Λ
A−t =

t

and therefore

⊍
∈
Dt − t,

Λ

[S] mod Λ =
t
⊍
∈Λ
Dt = V.
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Corollary
∣

18.1. If S is a fundamental cell of a lattice Λ with generating matrix G, then Vol S
det G

( ) =

( )∣. In Particular, Vol

, 1

(V det G .

Proof. Let P = G ⋅ [0 )n and note

) = ∣

that

(

it

)∣

is a fundamental cell of Λ as Rn Zn 0, 1 n. The claim
now follows from Proposition 18.1 since Vol det G Vol 0,1 n

=

det
+ [ )

(P) = ∣ ( )∣ ⋅ ([ ) ) = ∣ (G)∣.

Definition 18.3
)

(Lattice decoder). A lattice decoder w.r.t. the lattice Λ returns for every y Rn
the point QΛ(y .

Remark 18.1. Recall that for linear codes, the ML decoder merely consisted of mapping syndromes

∈

to shifts. Similarly, it can be shown that a lattice decoder can be expressed as

QΛ y y gsynd G−1y mod 1 , (18.3)

for some g n
synd 0, 1 n R , where

(

the

) = − ([ ] )

∶ [ ) ↦ mod 1 operation above is to be understood as componentwise
modulo reduction. Thus, a lattice decoder is indeed much more “structured” than ML decoder for a
random code.

Note that for an additive channel Y X Z, if X Λ we have that

Pe = Pr

= + ∈

(QΛ(Y

We therefore see that the resilience of a lattice

)

to

≠ X) = Pr(Z ∉ V). (18.4)

additiv
Since we know that Z will be inside a ball of radius

√ e noise is dictated by its Voronoi region.
n 1 δ with high probability, we would like

the Voronoi
(

region
)

to be as close as possible to a ball. We define the effective radius of a lattice,
denoted reff Λ as the radius of a ball with the same volume

( +

as

)

, namely Vol reff Λ Vol .

Definition 18.4 (Goodness for coding). A sequence of lattices

V

Λ(n) with

(B

gro
satisfying

(

wing

( )))

dimension,

= (V)

r2

lim
n→∞

eff(Λ
(n))

Φ
n

for some Φ

=

( )
> 0, is called good for

=

channel coding if for any additive semi norm-ergodic noise sequence
Z n with effective variance σ2 1

Z ZnE∥ ∥2 Φ

lim Pr

<

Z
n

(n) (n) 0.

An alternative interpretation of this

→∞

propert

(

y, is

∉

that

V

for

) =

a sequence Λ n that is good for coding,
for any 0

( )

< δ < 1 holds

Vol (B ((1 δ
lim
n→∞

− )reff(Λ
(n))) ∩ V(n))

Vol (B ((1

Roughly speaking, the Voronoi region of a lattice

−
1.

δ)reff(Λ(n)

that is

)

go

))

od for

=

coding is as resilient to semi
norm-ergodic noise as a ball with the same volume.
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(a)

reff

(b)

Figure 18.1: (a) shows a lattice in R2, and (b) shows its Voronoi region and the corresponding
effective ball.

18.2 First Attempt at AWGN Capacity

Assume we have a lattice Λ ⊂ Rn with reff(Λ) =
√
n(1 + δ) that is good for coding, and we would like

to use it for communicating over an additive noise channel. In order to meet the power constraint,
we must first intersect Λ, or a shifted version of Λ, with some compact set S that enforces the power
constraint. The most obvious choice is taking S to be a ball with radius

√

∈

nSNR, and take some
shift v Rn, such that the codebook

C = (v +Λ)⋂B(
√
nSNR (18.5)

satisfies the power constraint. Moreover [Loe97

(

],

)

there exist a

)

shift v such that

∣C∣ ≥
Vol S

Vol(V)

= (

√
nSNR

reff(Λ)
)

n

= 2
n

12 (log(SNR)−log( +δ)).

To see this, let V ∼ Uniform(V), and write the expected size of ∣C∣ as

E∣C∣ = E
t

∑ 1
∈Λ

((t V

1

+ ) ∈ S)

=
Vol(V)

∫
v∈V

∑
t∈Λ

1((t + v) ∈ S)dv

=
1

1
Vol(V)

∫
x∈Rn

(x ∈ S)dx

=
Vol(S)

. (18.6)
Vol

For decoding, we will simply apply the lattice decoder QΛ output. Since
Y −

Y v
v =

on the shifted
t +Z for some t

(V)

∈ Λ, the error probability is

Pe = Pr Q

( − )

( Λ(Y − v) ≠ t

188
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Since Λ is good for coding and
r2
eff(Λ)
n = (1 + δ) > 1 scnE Z 2, the error probability of this heme over

an
<

additive semi norm-ergodic noise channel will vanish
∥

with n. Taking δ → 0 we see that any rate
R 1

∥

log(SNR) can be achieved reliably. Note that for this coding scheme (encoder+decoder) the2
average error probability and the maximal error probability are the same.

The construction ab
+

ove gets us close to the AWGN channel capacity. We note that a possible
reason for

C

the loss of 1 in the achievable rate is the suboptimality of the lattice decoder for the
codebook . The lattice decoder assumes all points of Λ were equally likely to be transmitted.
However, in
that if

C only lattice points inside the ball can be transmitted. Indeed, it was shown [UR98]
one replaces the lattice decoder with a decoder that takes the shaping region into account,

there exist lattices and shifts for which the codebook (v +Λ)⋂B(
√
nSNR is capacity achieving.

The main drawback of this approach is that the decoder no longer exploits the full structure of the
lattice, so the advantages of using a lattice code w.r.t. some typical member

)

of the Gaussian i.i.d.
ensemble are not so clear anymore.

18.3 Nested Lattice Codes/Voronoi Constellations

A lattice Λc is said to be nested in Λf if Λc ⊂ Λf . The lattice Λc is referred to as the coarse lattice
and Λf as the fine lattice. The nesting ratio is defined as

V
Γ(Λf ,Λc) ≜ (

ol(Vc)
1 n

Vol(Vf

/
(18.7)

A nested
⊂

lattice code (sometimes also called “Voronoi constellation”)

)

based on the nested lattice
pair Λc Λf is defined as [CS83, For89, EZ04]

)

L ≜ Λf ∩ Vc. (18.8)

Proposition 18.2.

∣L∣ =
Vol(Vc)

Vol(Vf)
.

Thus, the codebook L has rate R = 1 log ∣L∣ = log Γn (Λf ,Λc).

Proof. First note that

Λf ≜
t
⊍
∈L

(t

Let

+Λc).

S ≜
t
⊍
∈L

(t + Vf),

and note that

Rn =
b
⊍
∈

b f

= ⊍

Λf

( + V )

a∈Λc t
⊍
∈L

(a + t + Vf)

=
a
⊍
∈Λc

(a + (
t
⊍
∈L

(t + Vf)))

=
a
⊍
∈Λc

(a + S) .
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Thus, S is a fundamental cell of Λc, and we have

Vol(Vc) = Vol(S) = ∣L∣ ⋅Vol(Vf).

V

We will use the codebook L with a standard lattice decoder, ignoring the fact that only points
in c were transmitted. Therefore, the resilience to noise will be dictated mainly by Λf . The role of
the coarse lattice Λc is to perform shaping. In order

V

to maximize the rate of the codebook without
violating the power constraint, we would like c to have the maximal possible volume, under the
constraint that the average power of a transmitted codeword is no more than nSNR.

L

The average transmission
∼

power of the codebook is related to a quantity called the second
moment of a lattice. Let U Uniform

L

(V). The second moment of Λ is defined as σ2(Λ) ≜ 1
nE∥U∥2.

Let W ∼ Uniform(B(reff(Λ)). By the isoperimetric inequality [Zam14]

σ2(Λ) ≥
1

n
E∥W∥2 =

r2
eff(Λ)

.
n 2

A lattice Λ
B

exhibits
( ( )

a good tradeoff between average power and volume if its second moment is close
to that of reff Λ .

+

Definition 18.5 (Goodness for MSE quantization). A sequence of lattices Λ n with growing
dimension, is called good for MSE quantization if

( )

nσ2

lim
n→∞

(Λ(n))
1.

r2 Λ n
eff

Remark 18.2. Note that both “goodness for co

(

ding”

( ))
=

and “goodness for quantization” are scale
invariant properties: if Λ satisfy them, so does αΛ for any α R.

Theorem 18.1 ([OE15]). If Λ is good for MSE quantization

∈

and U Uniform , then U is semi
norm-ergo

∈

dic. Furthermore, if Z is semi norm-ergodic and statistically independent of U, then for
any α,β R the random vector αU βZ is semi norm-ergodic.

∼ (V)

Theorem
⊂

18.2 ([ELZ05, OE15]). F

+

or any finite nesting ratio Γ Λf ,Λc , there exist a nested lattice
pair Λc Λf where the coarse lattice Λc is good for MSE quantization

(

and
)

the fine lattice Λf is good
for coding.

We now describe the Mod-Λ coding scheme introduced by Erez and Zamir [EZ04]. Let Λc Λf
be a

(

nested
1 )

lattice pair, where the coarse lattice is good for MSE quantization and has σ2 Λc

SNR − ε , whereas the fine lattice is good for coding and has r2 SNR
eff Λf

⊂

( ) =

( ) = n1+SNR(1 + ε). The rate is
therefore

R =
1 V

log
n

(
ol(Vc)

Vol(Vf)
)

=
1

2
log(

r2
eff(Λc)

r2
eff(Λf)

)

→
1

2
log

⎛

⎝

SNR(1 − ε)
SNR

1+SNR(1 + ε)

⎞

⎠
(18.9)

→
1

log
2

(1 + SNR) ,
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Figure 18.2: An example of a nested lattice code. The points and Voronoi region of Λc are plotted
in blue, and the points of the fine lattice in black.

t

U

−

⊕
mod-Λ

⊕X

Z

Y α ⊕ Yeff QΛf
(·) mod-Λ

t̂

Figure 18.3: Schematic illustration of the Mod-Λ scheme.

r2 Λ
where in (18.9) we have used the goodness of Λc for MSE quantization, that implies eff( c) σ2 Λc .n
The scheme also uses common randomness, namely a dither vector U Uniform c statistically
independen

∈

t
[

of everything,
]

known to both the transmitter and the receiver. In

→ ( )

message w 1, . . . , 2nR the encoder maps it to the corresponding point

∼

t

(V )

= t

X t U mod Λ.

( )

order
L

to transmit a
w ∈ and transmits

(18.10)

Lemma 18.1 (Crypto Lemma). Let Λ b

=

e

[

a

+

lattic

]

e in Rn, let U Uniform and let V be a
random vector in Rn, statistically independent of U. The random

∼

vector X
(V)

= [V +U
uniformly

] mod Λ is
distributed over and statistically independent of V.

Proof.
[

F
+

or any v

V

∈ Rn the set v
that v mod Λ and Vol

+ V

V] = V ( +

is
V)

a
=

fundamen
(V)

tal cell of Λ. Th
∈

us, by Proposition 18.1 we have
v Vol . Thus, for any v Rn

X∣V = v ∼ [v +U] mod Λ ∼ Uniform(V).

The Crypto Lemma ensures that 1E X 2 1 ε SNR, but our power constraint was X 2
n

nSNR. Since X is uniformly distributed over c and Λc is good for MSE quantization, Theorem 18.1
implies that ∥X SNR

∥ ∥ = ( − )

V

∥2 ≤ n with high probability. Thus, whenever the power constraint is violated

∥ ∥ ≤

we can just transmit 0 instead of X, and this will have a negligible effect on the error probability of
the scheme.
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The receiver scales its observation by a factor α > 0 to be specified later, subtracts the dither U
and reduces the result modulo the coarse lattice

Yeff = [ − ]

= [

αY U mod Λc

X −U + (α − 1)

= [ + ( − ) +

X αZ mod Λc

= [

t

+

α

]

1 X αZ

t

+

mod

]

Λc (18.11)

Zeff mod Λc,

]

(18.12)

where we have used the modulo distributive law in (18.11), and

Zeff

is effective noise, that is statistically independen

= (α − 1)X + αZ (18.13)

t of t, with effective variance

σ2
eff(α) ≜

1
E

dic,

∥Zeff∥
2 α2 1 α 2SNR. (18.14)

n

Since Z is semi norm-ergo and X is uniformly d

<

istributed

+ ( −

ov

)

er the Voronoi region of a lattice that
is good for MSE
variance σ2

eff

in effective v
The receiv

( )

quantization, Theorem 18.1 implies that Zeff is semi norm-ergodic with effective
α . Setting α SNR 1 SNR , such as to minimize the upper bound on σ2

eff α results
ariance σ2

eff SNR 1 SNR .
er next computes

= /( + ) ( )

< /( + )

t̂ = [QΛf (Yeff

QΛf t Z

)]

= [ ( +

mod Λc

eff)] mod Λc, (18.15)

and outputs the message corresponding to t̂ as its estimate. Since Λf is good for coding, Zeff is
semi norm-ergodic, and

r2
eff(Λf)

n
= (1 + ε)

SNR
σ2

1 SNR eff,

we have that Pr(t̂ ≠ t 0

+
>

) → as the lattice dimension tends to infinity. Thus, we have proved the
following.

Theorem 18.3. There exist a coding scheme based on a nested lattice pair, that reliably achieves
any rate below 1 log 1 SNR with lattice decoding for all additive semi norm-ergodic channels. In2
particular, if the additive noise is AWGN, this scheme is capacity achieving.

Remark 18.3. In t

(

he

+

Mod-Λ

)

=

scheme the error probability does not depend on the chosen message,
such that Pe,max Pe,avg. However, this required common randomness in the form of the dither U.
By a standard averaging argument it follows that there exist some fixed shift u that achieves the
same, or better, Pe,avg. However, for a fixed shift the error probability is no longer independent of
the chosen message.

18.4 Dirty Paper Coding

Assume now that the channel is

Y = X S

192
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where
∥ ∥ ≤

Z is a unit variance semi norm-ergodic noise, X is subject to the same power constraint
X 2 nSNR as before, and S is some arbitrary interference vector, known to the transmitter but

not to the receiver.
Naively, one can think that the encoder can handle the interference S just by subtracting it

from the transmitted codeword. However, if the codebook is designed to exactly meet the power
constraint, after subtracting S the power constraint will be violated. Moreover, if S 2 nSNR, this
approach is just not feasible.

Using the Mod-Λ scheme,
= [

S
+

can
]

be cancelled out with no cost in performance.

∥ ∥ >

Specifically,
instead of transmitting X t U mod Λc, the transmitted signal in the presence of known
interference will be

X t U αS mod Λc.

Clearly, the power constraint is not violated

= [ +

as

−

X

]

∼ Uniform c due to the Crypto Lemma (now,
U should also be independent of S). The decoder is exactly the same as in the Mod-Λ scheme with
no interference. It is easy to verify that the interference is completely

(V )

cancelled out, and any rate
below 1

2 log(1 + SNR) can still be achieved.

Remark 18.4. When Z is Gaussian and S is Gaussian there is a scheme based on random codes
that can reliably achieve 1 log 1 SNR . For arbitrary S, to date, only lattice based coding schemes2
are known to achieve the interference free capacity. There are many more scenarios where lattice
codes can reliably achieve better

( +

rates

)

than the best known random coding schemes.

18.5 Construction of Good Nested Lattice Pairs

We now briefly describe a method for constructing nested lattice pairs. Our construction is based
on starting with a linear code over a prime finite field, and embedding it periodically in Rn to form
a lattice.

Definition 18.6 (p-ary Construction A). Let p be a prime number, and let F ∈ Zk n
p be a k n

matrix whose entries are all members of the finite field Zp. The matrix F generates a

×

linear p-ary
code

×

C(F) ≜ {x ∈ Znp ∶ x

The b

= mo

y

[wTF] d p w

p-ary Construction A lattice induced the matrix F is defined

∈ Zkp} .

as

Λ(F) ≜ p−1C(F) +Zn.

Note that any point in Λ(F) can be decomp
[

osed as x p 1c a for some c F (where we
identify the elements of Zp with the integers 0, 1, . . . , p

= − +

−1]) and a ∈ Zn. Thus, for
∈

an
C

y
(

x
)

1,x2 ∈ Λ(F
we have

)

x + x = p−1
1 2 (c1 + c2) +

=

a1 a2

=

p−1([c1 + c2]

+

mod p
1

+

+ pa) + a1 + a2

p−

∈

c̃ ã

Λ(F)
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where c̃ = [c1 + c2 mod p F due to the linearity of
Zn. It can be verified
co ords in

]

similarly
∈ C( )

that for any x Λ F
dew F are distinct, then Λ F has a finite

C( )

a lattice. Moreover, if F is full-rank over Zp, then

∈ (

the

)

F , and a a are some ve
it −

and
∈

˜

( )

ctors in

C( ) ( )

holds that x Λ F , and that if all
minimum distance. Thus, Λ F is indeed
number of distinct codewords in F is

pk. Consequently, the number of lattice points
(V

in
)

ev
=

ery integer shift of the unit cube

(

is

)

pk, so the
corresponding Voronoi region must satisfy Vol p k.

C( )

Similarly, we can construct a nested lattice pair from

−

′
a linear code. Let 0 k k and let F be

the sub-matrix
C′(

obtained by taking only the first k rows of F. The matrix F

′

generates a linear

′

code F that is nested in F , i.e., F F . Consequently we hav

≤

e

′

that

<

Λ F Λ F ,
and the nesting

′)
ratio is

C( ) C′( ′) ⊂ C( ) ( ′) ⊂ ( )

Γ(Λ(F),Λ(F′)) =
k

p
−k′

n .

An advantage of this nested lattice construction for Voronoi constellations is that there is a very
simple mapping

= −
between messages and codewords in Λf c. Namely, we can index our set

of 2nR pk k′ messages by all vectors in Zk k
p

′

. Then, for each message vector w Zk k
p

′

, the
corresponding codeword in Λ F Λ F

−

is obtained

L =

b

∩

y

V

constructing the vector
∈ −

L = ( ) ∩ V( ( ′

w̃T

))

= [
²
0 ⋯ 0 wT ] ∈ Zkp, (18.16)

k′ zeros

and taking t = t(w w̃TF mod p mod Λ F
the (finite field) generating

If

) = [[

matrix
]

F

]

is needed.
( ′

we take the elements of F to be i.i.d. and

). Also, in order to specify the codebook , only

uniform over Zp, we get a random ensem

L

ble of
nested
= (

lattice
( + )/ )

codes. It can be shown that if p grows fast enough with the dimension n (taking
p O n 1 ε 2 suffices) almost all pairs in the ensemble have the property that both the fine and
coarse lattice are good for both coding and for MSE quantization [OE15].

Disclaimer: This text is a very brief and non-exhaustive survey of the applications of lattices
in information theory. For a comprehensive treatment, see [Zam14].
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