
§ 10. Binary hypothesis testing

10.1 Binary Hypothesis Testing

Two possible distributions on a space X

H0 ∶ X ∼ P

H1 X Q

Where under hypothesis H0 (the null hypothesis)

∶

X

∼

is distributed according to P , and under H1

(the alternative hypothesis) X is distributed according to Q. A test between two distributions
chooses either H0 or H1 based on an observation of X

• Deterministic test: f

Randomized

∶ X → 0,1

• test: PZ X

{

0

}

Let

∣ ∶ X → { ,1}, so that PZ

Z 0 denote that the test chooses P , and Z 1 when

∣X(0∣x) ∈ [0,1].

= the test chooses Q.
Remark: This setting is called “testing simple

=

hypothesis against simple hypothesis”. Simple
here refers to the fact that under each hypothesis

∼

there is only one distribution that could generate
the data. Composite hypothesis is when X P and P is only known to belong to some class of
distributions.

10.1.1 Performance Metrics

In order to determine the “effectiveness” of a test, we look at two metrics. Let πi
othesis

∣j denote the
probability of the test choosing i when the correct hyp is j. With this

α =

=

π0

π0

∣0 = P

β 1 Q

[ = ] ( )

Remark: P Z 0 is

∣

a sligh

= [

Z

=

0

] (

Probability of success given H0 true

Z 0 Probability of error given H1 true

[ = ]

[ − ( )]

t abuse of notation, more accurately P Z 0

)

x

EX PX 1 f x . Also, the choice of these two metrics to judge the
many oth

[

test
=

is
]

not
= ∑

unique,
er pairs from π ,π , π , π .

∈X P x P x

∼
Z X 0

{

we can
∣

use

0∣0 0∣1 1∣0 1 1

( ) ( ∣ ) =

So for any test P

∣

Z∣X there is an associated

}

(α,β). There are a few ways to determine the “best
test”

• Bayesian: Assume prior distributions P[H0

Pb min
tests

] = π0 and P[H1

π0π1 0 π1π0 1

] = π1, minimize the expected error

∗ = ∣ + ∣

112



• Minimax: Assume there is a prior distribution but it is unknown, so choose the test that
preforms the best for the worst case priors

Pm
∗ = min maxπ0π1 0 π1π0 1

tests π0
∣ + ∣

• Neyman-Pearson: Minimize error β subject to success probability at least α.

In this course, the Neyman-Pearson formulation will play a vital role.

10.2 Neyman-Pearson formulation

Definition 10.1. Given that we require P Z 0 α,

βα P,Q

[ =

inf

] ≥

Q Z 0
P Z 0 α

Definition 10.2. Given P,Q , the region

( )

of

≜

ac

[

hiev

= ]≥

able

[

poin

=

ts

]

( ) for all randomized tests is

R(P,Q) = ⋃ {(P 0
Z

[Z Z (10.1)
P ∣

= 0],Q[ = ])} ⊂ [0,1]2

X

R(P,Q)

β

βα(P,Q)

α

Remark 10.1. This region encodes a lot of useful information about the relationship between P
and Q. For example,1

P = Q⇔R(P,Q) = P ⊥ Q⇔R(P,Q) =

Moreover, TV(P,Q maximal length of vertical line intersecting the lower half of P,Q (HW).

Theorem 10.1 (Prop

) =

erties of P,Q ).

R( )

1. R(P,Q) is a closed, convex

R(

subset

)

of [0,1]2.

2. R(P,Q) contains the diagonal.

1Recall that P is mutually singular w.r.t. Q, denoted by P ⊥ Q, if P [E] = 0 and Q[E] = 1 for some E.
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3. Symmetry: (α,β

Pr

) ∈R P,Q 1 α,1 β P,Q .

oof. 1. For convexity, supp

(

ose

)⇔

α

(

0, β

−

0 , α

−

1, β

)

1

∈R(

P,Q

)

, then each specifies a test PZ0 X , PZ1 X

respectively. Randomize b
(

¯etween these two test to get the test λPZ0 X λPZ1 X for λ
∣

0,1
∣
,

¯ ¯which achieves the point λα0

(

λα

) ( ) ∈R(

+ 1, λβ0 R(P,Q

)

+ λβ1) ∈ ).
∣ + ∣

Closedness will follow from the explicit determination of all boundary points via Neyman-

∈ [ ]

Pearson Lemma – see Remark 10.2. In more complicated situations (e.g. in testing against
composite hypothesis) simple explicit solutions similar to Neyman-Pearson Lemma are not
available but closedness of the

{ ∶

region
X → [

can
]}

frequently be argued still. The basic reason is that
the collection of functions g 0,1 forms a weakly-compact set and hence its image
under a linear functional g

est

∫ g

T

↦ ( dP, ∫ gdQ is closed.

2. by blindly flipping a coin, i.e., let Z ∼ Bern

)

1 α X. This achieves the point α,α .

3. If (α,β
(

ho

( −

) ∈R(P,Q), then form the test that
−

c oses
−

P

)

whenev

⊥⊥ ( )

Q whenever PZ∣X choses P , which gives 1 α,1 β) ∈R(

er PZ∣X choses Q, and chooses
P,Q).

The region R(P,Q) consists of the operating points of all randomized tests, which include
deterministic tests as special cases. The achievable region of deterministic tests are denoted by

Rdet(P,Q) =⋃{(P E
E

( ),Q E . (10.2)

One might wonder the relationship
R (

bet
)

ween these two region

(

s

)}

. It turns out that
by the closed convex hull of det P,Q .

We first recall a couple of notations:

R(P,Q) is given

• Closure: cl E the smallest closed set containing E.

• Convex hull:

( )

co

≜

(E) ≜ the smallest convex = {∑
∈ ∈ } ( (

set
)

con
(

taining
)) ∈

E
∀

n
i=1

(

α
[

n
ix
[
i ∶

(

α
)]
i ≥ 0,∑

(
i=1 αi

1,
(

xi
(

E
))

, n N . A useful example: if f x , g x E, x, then E f X ,E g X
cl co E .

=

)]) ∈

Theorem 10.2 (Randomized test v.s. deterministic tests).

R(P,Q

Conse Q

) = cl(co

quently, if P and are on a finite alphabet

(Rdet(P,Q))).

X , then R(P,Q) is a polygon of at most 2
vertices.

∣X ∣

Pr
R(

oof. “⊃
)

”: Comparing (10.1) and (10.2), by definition, P,Q det P,Q . By Theorem 10.1,
P,
⊂

Q is closed convex, and we are done with the direction.
“ ”: Given any randomized test PZ∣X , put g

R( ) ⊃R (

⊃

(x) = PZ=0∣X=x. Then g is a

))

measurable function.
Moreover,

P [Z = 0] = ∑ g(x

Z

)P
x

Q

(x) = EP

0 g x Q x EQ

[g

g

(X ∫
1

0

1
X

)] = P

Q

[g(X) ≥ t]dt

[ = ] = ∑
x

( ) ( ) = [ ( )] = ∫
0

[g(X) ≥ t]dt
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where we applied the formula E[U] = ∫ P [

]) ∈R ( [ ( ) ≥

U t dt for U 0. Therefore the point P Z 0 ,Q Z
0 is a mixture of points P g X t ,Q g X t det, averaged according to t uniformly
distributed on the unit interval. Hence cl

≥ ] ≥ ( [ = ] [ =

The last claim follows because there

] [ ( ) ≥ ]) ∈R

R

are
⊂

at
(co(Rdet)).

most 2∣X ∣ subsets in (10.2).

Example: Testing Bern(p) versus Bern(q), p < 1

=

q. Using Theorem 10.2, note that there are2
22 4 events E ,

<

= ∅ {0},{1},{0,1}. Then

0

1

β

1
α

( qp, q)
B
er

n
))

B
er

n(
),

(

p

R(
(p,̄ q̄)

10.3 Likelihood ratio tests

Definition 10.3. The log likelihood ratio (LLR) is F = log dP R . The likelihooddQ

ratio test (LRT) with threshold τ

∶ X → ∪ {±∞}

∈ R is 1{log dP
dQ ≤ τ}. Formally, we assume that dP = p(x)dµ and

dQ = q(x)dµ (one can take µ = P +Q, for example) and set

F (x) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
p(x)

+∞

qq(x) , p(x) > 0, x 0

−∞

, p(

(

x) >

) =

0, q(x

>

) = 0

, p x

( )

n a, p

( ) >

Notes:

/ (x) =

0, q x

0, q(x) =

0

0

• Q x
LRT is a deterministic test. The intuition is that upon observing x, if

( )
exceeds a certainP x

threshold, suggesting Q is more likely, one should reject the null hypothesis
( )

and declare Q.

• The rationale for defining extended values ±∞ of F (x

x,

) are the following observations:

∀ ∀τ ∈ R ∶ (p(x

p x

q x

) − exp }q(x

exp

{τ

τ q x

exp τ p

)) {

( ( ) − {

1 F (

} (

x) > }

)) { ( ) ≥

τ

}

0

( ( ) − {− } (

1 F x τ 0

( (

x))

) − {− } ( ))

1{F (x) <

{ ( ) ≤

τ

≥

q x exp τ p x 1 F x τ

≥

} ≥

} ≥

0

0

This leads to the following useful consequence: For any g 0 and any τ R (note: τ is
excluded) we have

EP [
[

g(

(

X)

)

1{

{

F

≥ =

g

≥ τ

∈ ±∞

EQ X 1 F τ

}] ≥ { } ⋅ [ ( ) { ≥ }]

≤ }] ≥

exp τ EQ g X 1 F τ (10.3)

exp{−τ} ⋅EP [g(X)1{F ≤ τ}] (10.4)
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Below, these and similar inequalities are only checked for the cases of F not taking extended
values, but from this remark it should be clear how to treat the general case.

• Another useful observation:

Q[F = +∞] = P [F = −∞] = 0 . (10.5)

Theorem 10.3.

1. F is a sufficient statistic for testing H0 vs H1.

2. For discrete alphabet X and when Q≪ P we have

Q[F = f] = exp(−f)P [F f

More generally, we have for any g R

=

R

] ∀f ∈ R ∪ {+∞}

EQ

∶ ∪ {±∞}→

[g

EP g

( )] = (−∞) [ = −∞] + [ {− } ( )]

Proof. (2)

[ (

F g Q F EP exp

F )] = g(+∞)P [F = +∞] +

F g F (10.6)

EQ[exp{F}g(F )] (10.7)

QF (f) =∑
X
Q(x)1{

P
log

(x)

Q(x)
= f} =∑

X
Q(x)1{efQ(x) = P (x)}

= e−f∑
X
P (x)1{log

P (x)
f

Q(x

To prove the general version (10.6), note that

)
= } = e−fPF (f)

EQ[g(F )] = ∫{−∞< ( )<∞}
dµ q(x g

F x
) (F (x)) + g(−∞)Q[F = −∞] (10.8)

= ∫{−∞< ( )<∞}
dµ p(x) exp{−F (x)}g(F (x)) + g(−∞)Q F

F
[ = −∞] (10.9)

= EP

is

[exp

where we used (10.5) to justify
(1) To show F a s.s, w

{

x

−F}g(F )] + g(−∞)Q[F , (10.10)

restriction to finite values of F .
e need to show PX ∣F = Q

= −∞]

X ∣F . For the discrete case we have:

PX ∣
PX x PF X f x

F (x∣f) =
( ) ∣ ( ∣ )

PF (f)
=
P (x)1{

P (x)
Q(x) = e

f}

PF (f)
=
efQ(x)1{

P (x)
Q(x) = e

f}

PF (f)

=
QXF (xf)

e−fPF (f)

(2)
=
QXF

Q
QF

= X ∣F (x∣f).

The general argument is done similarly to the proof of (10.6).

From Theorem 10.2 we know that
R

to
(

obtain
)

the achievable region P,Q , one can iterate over
all subsets and compute the region det P,Q first, then take its closed
formidable task if the alphabet is huge or infinite. But we know that

R

the

(

conv
)

ex hull. But this is a
LLR log dP

dQ is a sufficient

statistic. Next we give bounds to the region R(P,Q) in terms of the statistics of log dP . As usual,dQ
there are two types of statements:

• Converse (outer bounds): any point in R(P,Q) must satisfy ...

• Achievability (inner bounds): the following point belong to R(P,Q)...

116



10.4 Converse bounds on

α

R P,Q

Theorem 10.4 (Weak Converse). ∀( , β

( )

) ∈R(P,Q),

d(α∥β) ≤D(P

d β α D Q

∥ )

where d is the binary divergence.

( ∥ ) ≤ ( ∥

Q

P )

Proof. Use

(⋅∥⋅)

data processing with PZ∣X .

Lemma 10.1 (Deterministic tests). ∀E, ∀γ > 0 ∶ P [E] − γQ[E] ≤ P [ log dP logdQ > γ

Proof. (Discrete version)

]

P [E] − γQ[E] = ∑
∈
p(x) − γq(x p

x E

) ≤
x

∑
∈E

( (x) − γq(x

dP
P log

))1{p(x)>γq(x)}

= [
dQ

> log γ,X ∈ E] − γQ[ log
dP

dQ
> log γ,X ∈ E] ≤ P [ log

dP
log γ .

dQ

=

(General version) WLOG, suppose P,Q ≪ µ for some measure µ (since we can alw

>

ays

]

take
µ P Q). Then dP p x dµ, dQ q x dµ. Then

P

+ = ( ) = ( )

[E] − γQ[E] = ∫ dµ p x γq x
E

d
P

(

P
log

( ) − ( )) ≤ ∫ dµ p(x) − γq(x))1 p
E

( { (x)>γq(x)}

= [
dQ

> log γ,X ∈ E] −Q[ log
dP

dQ
> log γ,X ∈ E] ≤ P [ log

dP

dQ
> log γ].

where the second line follows from p
q =

dP
dµ
dQ
dµ

= dP .dQ

[So we see that the only difference between the discrete and the general case is that the counting
measure is replaced by some other measure µ.]

Note: In this case, we do not need P Q, since is a reasonable and meaningful value for the
log likelihood ratio.

Lemma 10.2 (Randomized tests). P

≪ ±∞

[Z = 0] − γQ[Z = 0] ≤ P [ log dP
d > log γ .Q

Proof. Almost identical to the proof of the previous Lemma 10.1:

]

P [Z = 0] − γQ[Z = 0] = ∑PZ∣X(0
x

∣x

dP
P log

)(p(x) − γq(x)) ≤∑PZ∣X(0∣x)(p(x) − γq γq
x

(x))1{p(x)> (x)}

= [
dQ

> log γ,Z = 0] −Q[ log
dP

dQ
> log γ,Z = 0]

≤ P [ log
dP

dQ
> log γ].

Theorem 10.5 (Strong Converse). ∀(α,β) ∈R(P,Q

d
α

),∀γ > 0,

− γβ ≤ P [
P

log
dQ

> log γ] (10.11)

β −
1 d
α

γ
≤ Q[

P
log log

dQ
< γ] (10.12)
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Proof. Apply Lemma 10.2 to (P,Q, γ) and (Q,P,1/γ).

Note: Theorem 10.5 provides an outer bound for the region P,Q in terms of half-spaces. To
see this, suppose one fixes γ

R( )

> 0 and lo
∗
oks at the line α − γβ = c and slowing increases c from zero,

there is going to be a maximal c,
∗
say c , at which poin

[

t the line touches the lower boundary of the
region. Then (10.11) says that c cannot exceed P log dP log γ . Hence must lie to the leftdQ

of the line.
R

Simil
(

arly, (10.12) provides bounds for the upper boundary. Altogether Theorem 10.5
states that P,Q is contained in the intersection of a collection

> ]

of half-spaces

R

indexed by γ.
Note: To apply the

)

strong converse Theorem 10.5, we need to know the CDF of the LLR, whereas
to apply the weak converse Theorem 10.4 we need only to know the expectation of the LLR, i.e.,
divergence.

10.5 Achievability bounds on P,Q

Since we know that the set P,Q is convex, it is natural to try to find all of its supporting lines
(hyperplanes), as it is well kno

R(

wn th
)

at closed

R

con

(

vex set

)

equals the intersection of the halfspaces
correposponding to all supporting hyperplanes. So thus, we are naturally lead to solving the problem

max α tβ α,β P,Q .

This can be done rather simply:

{ − ∶ ( ) ∈R( )}

α∗ − tβ∗ =
(
max
α,β

where the last equalit

)

y

∈R

follo

(α − tβ) = max
PZ∣X x

∣
+

ws from the

∑
∈X

(x PZ X

fact

(P (x )) (0∣x

to

) =
x

that

) − tQ

we are free choose

∑
∈X

∣P (x

P

) − tQ(x)∣

Z∣X(0∣x), and the best
choice is obvious:

PZ∣X(0∣x) = 1{
P

log
(x)

log
Q(x)

≥ t .

Thus, we have shown that all supporting hyperplanes are parameterized

}

by LLR-tests. This
completely recovers the region P,Q except for the points corresponding to the faces (linear
pieces) of the region. To be precise,

R(

we
)

state the following result.

Theorem 10.6 (Neyman-Pearson Lemma). “LRT is optimal”: For any α, βα is attained by the
following test:

PZ∣X(0∣x

⎧⎪⎪⎪
) =

⎪⎪

P

⎨

1 log d

⎪
⎪⎪⎪
⎪
⎩

dQ > τ

λ log dP
dQ = τ

0 log dP
dQ < τ

(10.13)

where τ ∈ R and λ ∈ [0,1] are the unique solutions to α = P [log dP
dQ > τ] + λP [log dP τ .dQ

Proof of Theorem 10.6. Let t = exp(τ). Given any test PZ∣X , let g(x) = PZ∣X 0 x

=

0, 1

]

. We want
to show that

)]
d

α =
P

( ∣ ) ∈ [ ]

P [Z = 0] = EP [g(X = P [
dQ

> t] + λP [
dP

dQ
= t] (10.14)

⇒ β = Q[Z = 0] = EQ[g(X)]
goal
≥ Q[

dP d
t

dQ
> ] + λQ[

P
t

dQ
= ] (10.15)
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Using the simple fact that EQ[f(X)1{ dP t
t

dQ
≤ }] ≥

−1EP [f(X)1{ dP for
t

dQ
≤ }] any f ≥ 0 twice, we have

β = EQ[g(X)1{ dP
dQ

≤t}] +EQ[g(X)1{ dP
dQ

>t}]

≥
1

t
EP [g(X)1{ dP

dQ
≤t}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+EQ[g(X)1{ dP t
dQ

> }]

(10
=
.14) 1

t
(EP [(1 − g(X))1{ dP

dQ
>t}] + λP [

dP
E

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

t Q g X 1
d

)

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Q

= ] ) + [ (

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{ dP

dQ
>t}]

≥ EQ[(1 − g(X))1{ dP
dQ

>t}] + λQ[
dP

dQ
= t] +EQ[g(X)1{ dP

dQ
>t}]

= Q[
dP d

t
dQ

> ] + λQ[
P

dQ
= t].

Remark 10.2.
R(

As
)

a consequence of the Neyman-Pearson lemma, all the points on the boundary of
the region P,Q are attainable. Therefore

R(P,Q) = {(α,β) ∶ βα ≤ β ≤ 1 − β1 α .

Since α ↦ βα is convex on [0,1], hence continuous, the region

− }

P,Q is a closed convex set.
Consequently, the infimum in the definition of βα is in fact a minimum.

Furthermore, the lower half of the region Q

( )

R(P,

R

) is the convex hull of the union of the following
two sets:

⎧⎪⎪
⎨
⎪⎪

α = P [ log dP

⎩

dQ > τ]

β = Q[ log dP
dQ > τ]

τ ∈ R ∪ {±∞}.

and
⎧⎪⎪
⎨
⎪⎪⎩

α = P [ log dP
dQ ≥ τ]

β = Q[ log dP
τ R .

τdQ

Therefore it does not lose optimality to restrict

≥

our

]

atten

∈

tion

∪ {

on

±∞

tests

}

of the form 1{log dP
dQ ≥ τ} or

1{log dP τdQ > }.

Remark 10.3. The test (10.13) is related to LRT2 as follows:

t

1

P [log dP
dQ > t]

α

τ
t

1

P [log dP
dQ > t]

α

τ

1. Left figure: If α = P [log dP

=

τdQ > ] for some τ , then λ = 0, and (10.13) becomes the LRT
Z 1{log dP

dQ
≤τ}.

2. Right figure: If α ≠ P [log dP
dQ > τ] for any τ , then we have λ ∈ (0,1), and (10.13) is equivalent

to randomize over tests: Z = 1{log dP
¯with

τ
dQ

≤ } probability λ or 1{log dP
dQ

<τ} with probability λ.

2Note that it so happens that in Definition 10.3 the LRT is defined with an ≤ instead of <.
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Corollary 10.1. ∀τ ∈ R, there exists (α,β) ∈R(P,Q) s.t.

α = P [
dP

log τ
dQ

β

> ]

≤ exp(−τ)P [
dP

log τ
dQ

> ] ≤ exp(−τ)

Proof.

Q[
dP

log
dQ

> τ] =∑Q(x)1{
P (x)

e
Q(x)

> τ}

≤∑P (x)e−τ1{
P (x)

Q(x)
> eτ} = e−τP [ log

dP

dQ
> τ].

10.6 Asymptotics

Now we have many samples from the underlying distribution

H0 ∶
i.i.d.

X1, . . . ,Xn ∼ P

i.i.d.
H1 X1, . . . ,Xn Q

We’re interested in the asymptotics of the

∶

error probabilities

∼

π0 1 and π1 0. There are two main
types of tests, both which the convergence rate to zero error is ex

∣
ponential.

∣

1. Stein
≤

Regime: What is the best exponential rate of convergence for π0∣1 when π1∣0 has to be
ε?

⎧⎪⎪
⎨
⎪⎪

π1∣0 ≤ ε

⎩π0∣1 0

2. Chernoff Regime: What is the trade off between

→

exponents of the convergence rates of π1 0

and π0∣1 when we want both errors to go to 0?
∣

⎧⎪⎪
⎨
⎪⎪

π1∣0 → 0

⎩π0∣1 → 0
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