
§ 4. Extremization of mutual information: capacity saddle point

4.1 Convexity of information measures

Theorem 4.1. (P,Q)↦D(P ∥Q) is convex.

Proof. First proof : Let X ∈ {0,1}, PX = [λ,1 − λ]. Select two conditional kernels:

PY ∣X=0 = P0, PY ∣X=1 =

= =

P1 (4.1)

QY ∣X=0 Q0, QY ∣X=1 Q1 (4.2)

Conditioning increases divergence, hence

D PY X QY X PX D PY QY

pSecond proof : (p, q

( ∣

) → p log is conv

∥

ex on

∣ ∣

R2

) ≥ ( ∥

computing

)

+ [Verify by the Hessian matrix andq

showing that it is positive semidefinite]1

Third proof : By the Donsker-Varadhan variational representation,

D P Q supEP f X logEQ exp f X .
f

where for fixed P →
( )

f
↦

,
( ∥

EP

( ∥ ) =
∈C

[ ( )]

[f

− [ { ( )}]

Therefore P,Q D P Q is
(

)

X)] is affine (hence convex), Q logEQ exp f X is concave.
pointwise supremum of convex functions,

↦

hence
[ {

con
(

v
)}]

ex.

Remark
( )↦

4.1.
D(

The
∥ )

first proof shows that for an arbitrary measure of similarity P Q convexity
of P,Q P Q is equivalent to “conditioning increases divergence” property of . Convexity
can also be understood as “mixing decreases divergence”.

D( ∥ )

Remark 4.2 (f -divergences). Any f -divergence, cf. (1.15), satisfies all the key prop

D

erties of the
usual divergence: positivity, monotonicity, data processing (DP), conditioning increases divergence
(CID) and convexity in the pair. Indeed, by previous remark the last two are equivalent. Furthermore,
proof of Theorem 2.2 showed that DP and CID are implied by monotonicity. Thus, consider PXY
and QXY and note

PXY
Df(PXY ∥QXY ) = EQXY [f ( (4.3)

QXY
)]

=
P P

EQY EQX∣

Y X Y

Y
(4.4)

Y

P

[f (
QY

⋅
QX

∣
)]

≥ E Y
QY f

∣

[ (
QY

)] , (4.5)

where inequality follows by applying Jensen’s inequality to convex function f . Finally, positivity
follows from monotonicity by taking Y to be a constant and recalling that f 1 0.

1This is a general phenomenon: for a convex f the perspective function p, q qf

(

p

) =

(⋅) ( )↦ (
q
) is convex too.
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Theorem 4.2 (Entropy). PX H PX is concave.

Proof. If PX is on a finite alphab

↦ (

et,

)

then proof is complete by H X log D PX UX .
Otherwise, set

P0 Y 0
P , P Y 0

( ) = ∣X ∣ − ( ∥ )

X ∣Y = {
P1 Y

=

= Y1

Then apply H X Y H X .

( = ) = λ

Recall that

(

I

∣ ) ≤ ( )

(X,Y ) is a function of PXY , or equivalently, (PX , PY ∣X
I X;Y .

Theorem 4.3 (Mutual Information).

) (

(

. Denote I X) =

)

PX , PY ∣

• For fixed PY ∣X , PX

X

↦ I

F

(PX , PY X is concave.

• or fixed P , PY ∣X ↦ I(PX , PY

∣ )

∣X) is convex.

Proof.

• First proof
=

: Introduce θ ∈ Bern(λ)
+ ( ) =

.
(

Define PX θ 0 P 0
X and PX 1 P 1

θ X . Then θ X Y .
¯Then P

(

λP 0

+

λP 1
X X X . I X;Y

¯ ¯desired I λP 0 P

∣ = ∣ =

X λP 1
X , Y X λI

= = → →

Second proof : I X;Y

∣

min

) = ( ) + ( ∣ ) ≥ ( ∣ )

concav

) ≥

QD
e.

(

I X, θ;Y I θ;Y I X;Y θ I X;Y θ , which is our
P 0

( ) = (

X , PY ∣X) + λI(P 0
X , P X .

PY ∣X∥Q∣PX)

Y

– pointwise

∣ )

minimum of affine functions is

Third proof
↦

: Pic
(

k a
∥

Q
)

and use the golden formula: I P

X

(X;Y ) = D Y

where P D PY Q is convex, as the composition of the PX
D

↦ P
P Q (convex).

( ∣X Q PX D PY Q ,

(
Y (affine) and PY

Y

∥ ∣ ) − ( ∥ )

↦

• I

∥ )

(X;Y ) =D(PY ∣X

eha

∥PY

b

∣PX

4.2* Local vior

)

of divergence

pDue to smoothness of the function (p, q)↦ p log at (1, 1) it is natural to expect that the functionalq

P D P Q

should also be smooth as P Q. Due to non-negativit

↦ ( ∥ )

y and convexity, it is then also natural to
expect that this functional deca

→

ys quadratically. In this section, we show that generally decay is
sublinear and it is quadratic

(

in

∥

the

) <

sp

∞

ecial case when χ2(P ∥Q) <∞ (see

=

below).

Proposition 4.1. When D P Q , the one-sided derivative in λ 0 vanishes:

d ¯D
dλ

∣
λ=0

(λP + λQ∥Q) = 0
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Proof.
1 1¯ ¯ ¯D λP
λ

( + λQ∥Q) = EQ [
λ
(λf + λ) log

dP
where f . As λ 0 the function under expectation decreases

(λf + λ

to

)]

Indeed,

=
dQ

on

→ f 1 log e monotonically.

the functi
¯ ¯λ g λ λf λ log λf λ

( − )

g λ
is convex and equals zero at λ

↦ ( )

)

+ ) ( +

= 0. Thus
(

≜

is

(

increasing in λ. Moreo

)

ver, by convexity of x x logxλ

1
(λf + λ)(log(λf + λ)) ≤

1
(λf log f + λ1 log 1) = f log f

↦

λ λ

and by assumption f log f is Q-integrable. Thus the Monotone Convergence Theorem applies.

Note: More generally, under suitable technical conditions,

d
∣ D

dλ λ=0
(λP + λQ

and

∥R) = EP [
dQ

log
dR

] −D(Q∥R) .

d
∣
=

(
dP dQ¯ + ∥¯ + ) = E [

1
] − ( ∥ ) +E [ −

0
D λP1 λQ1 λP0 λQ0 Q log D P1 P0 P

dλ 1
λ 0 dP 1 1 log e

0 dP0

The message of Proposition 4.1 is that the function

]

λ↦D(λP + λ̄Q∥Q) ,

is o(λ) as λ
define the concept

→ 0. In fact, in most cases it is quadratic in λ. To state a precise version, we need to
of χ2-divergence – a version of f -divergence (1.15):

2

χ2 dP
P Q dQ 1 .

dQ

This is a very popular measure of distance

( ∥ )

b

≜

et

∫

ween

(

P and

−

Q

)

, frequently used in statistics. It has
many important properties, but we will only mention that χ2 dominates KL-divergence:

D(P ∥Q

Our second result about local properties

) ≤ log(1 + χ2(P ∥Q)) .

of KL-divergence is the following:

Proposition 4.2 (KL is locally χ2-like). If χ2 P Q then

( +
λ2 log e¯D λP λQ

( ∥ )

∥Q

<∞

) = χ2

2

Proof. First, notice that

(P ∥Q) + o(λ2) , λ→ 0 .

D(
dP

P

where

∥Q) = EQ [g (
dQ

)] ,

g x x logx x 1 log e .

↦ ( −
g
)
x

Note that x
x 1

(
2
)
log e

( ) ≜ − ( − )

= ∫
1 sds

0 x(1−s)+ is decreasing in x ons (0,∞). Therefore

0 ≤ g(x) ≤ (x 1
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and hence
1 dP dP 2

¯0 g λ λ 1 log e.
λ2 dQ dQ

By the dominated convergence theorem

≤ (

(whic

+

h is

) ≤

applicable

( − )

since χ2 P Q ) we have

1
[ ( +

dP
)]

g
lim

( ∥ ) <∞

2
E ¯
Q g λ λ

λ 0 λ dQ
=

′′ 1

→ 2

( )
EQ [(

dP

dQ
− 1)

2

] =
log e

χ2

2
(P ∥Q) .

4.3* Local behavior of divergence and Fisher information

Consider a parameterized set of distributions Pθ, θ Θ and assume Θ is an open subset of Rd.
Furthermore, suppose that distribution Pθ are all

{

given
∈

in
}

the form of

Pθ dx f x θ µ dx ,

where
→ (

µ
∣

is some common dominating meas

(

ure

) =

(e.g.

( ∣

Leb

)

esgue

( )

)

or counting). If for a fixed x functions
θ f x θ are smooth, one can define Fisher information matrix with respect to parameter θ as

JF (θ) ≜ EX∼
T

Pθ [V V ] , V

Under suitable regularity conditions, Fisher information

≜ ∇θ log f(X ∣θ) . (4.6)

matrix has several equivalent expressions:

JF (θ) = covX∼Pθ [∇θ log f(X ∣θ

e

)] (4.7)

= (4 log )∫ µ(dx)(∇θ
√
f(x∣θ))(∇θ

√
f(x∣θ))T (4.8)

where the latter is obtained b

=

y

−(log e)Eθ[Hessθ(log f(X ∣θ))] , (4.9)

differentiating

0

in θj .

= ∫ (
∂

µ dx)f(x∣θ) log f
∂θi

(x∣θ)

Trace of this matrix is called Fisher information and similarly can be expressed in a variety of
forms:

( ) = ∫ ( )
∥∇ f(x∣θ)∥2

θ
trJF θ µ dx (4.10)

=

f x θ

4∫ µ(dx 2
θ

( ∣ )

)∥∇
√
f(x∣θ)∥ (4.11)

Significance of Fisher information

= −( EX∼
d ∂2

log e) ⋅ Pθ log f X θ , (4.12)
i 1 ∂θi∂θi

matrix arises

[

from

∑
=

the fact that

( ∣

it

)]

gauges the local behaviour
of divergence for smooth parametric families. Namely, we have (again under suitable technical
conditions):

D(Pθ0∥Pθ0+ξ) =
1

ξTJF θ0 ξ o ξ 2 , (4.13)
2 log e
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which is obtained by integrating the Taylor expansion:

log f(x∣θ0 + ξ) = x∣
1

log f(x∣θ0) + ξ
T∇θ log f( θ0) + ξTHessθ log f x θ0 ξ o ξ 2 .

2

Property (4.13) is of paramount importance in statistics. We should

( (

remem

∣ ))

ber

+

it

(∥

as:

∥

Diver

)

gence
is locally quadratic on the parameter space, with Hessian given by the Fisher information matrix.

˜ ˜Remark 4.3. It can be seen that if one introduces another parametrization θ Θ by means of a
˜smooth invertible map Θ Θ, then Fisher information matrix changes as

˜J θ ATJ θ A ,

∈

→

F F

dθ

( ) = ) (4.14)

where A

(

= ˜ is the Jacobian of the map. So we can see that JF transforms similarly to the metric
dθ

tensor in Riemannian geometry. This idea can be used to define a Riemannian metric on the
space of parameters Θ, called Fisher-Rao metric. This is explored in a field known as information
geometry [AN07].

Example
{ }

: Consider Θ to be the interior of a simplex of all distributions on a finite alphabet
0, . . . , d . We will take θ1, . . . , θd as free parameters and set θ0 = 1

with respect to θ1, . . . , θd only. Then we have
−∑di=1 θi. So all derivatives are

Pθ(x

⎧

) = f(x∣θ

and for Fisher information matrix we get

) =
⎪

⎪

θx, x =

⎪
⎨
⎪

−∑ =

1, . . . , d

⎩1 x≠0 θx, x 0

1
JF (θ) = (log2 e){diag(

θ1
, . . . ,

1

θd
) +

1
1

1 −∑di=1 θi

where 1 1T is the d d matrix of all ones. For future reference, we also

⋅ 1T} , (4.15)

compute determinant of
JF T

⋅

(θ .
×

) o that end notice that det
we used the identity det I AB

( + ) = ⋅ ( + − ) = ⋅ ( + − )

det

(

JF

+

θ

) =

A
(

xyT detA det I 1xyT detA 1 yTA , where
det I +BA)

A 1x
. Thus, we have

( ) = (log e)
d

2d

x
∏

1

=0 θx
= (log e)2d 1

1 −∑dx=1 θx

d

∏
x=1

1
. (4.16)

θx

4.4 Extremization of mutual information

Two problems of interest

• Fix PY ∣X →max I X;Y — channel coding
PX

Note: This maxim

(

um is

)

called “capacity” of a set of distributions {PY

• Fix PX min I X;Y — lossy compression

∣X=x, x

→
PY X

∈ X}.

∣

Theorem 4.4 (Saddle

(

poin

)

t). Let be a convex set of distributions on . Suppose there exists
PX
∗

P

∈ P such that
sup
∈P
I(PX , PY ∣X) = I(PX

∗ , PY ∣X) ≜ C

X

PX

and let PX
∗ Ð

P
Ð
Y
Ð
∣X
→ PY

∗ . Then for all PX and for all QY , we have

D(PY

P

∣X P

∈

∥ Y
∗ ∣PX) ≤D(PY ∣X∥PY

∗
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Note: PX
∗ (resp., PY

(resp., the caod).

∗) is called a capacity-achieving input (resp., output) distribution, or a caid

Proof. Right inequality:
=

obvious P )

∞

from C = I(PX
∗ , Y ∣X = minQY D(PY ∣X∥QY ∣

<∞

PX

∈

n

∗ .
Left inequality: If C , then trivial. I the sequel assume that C , hence

)

I(

P = +

PX , PY X

for all PX . Let PXλ λPX

∣ ) <∞

λPX by convexity of , and introduce θ Bern λ , so that
PXλ∣θ=0 PXλ

∗

= PX
∗ , ∣θ

C

=1

∈ P P ∼ (

= PX , and θ →Xλ → Yλ. Then
)

≥ I(Xλ;Yλ) = I(θ,Xλ;Yλ) = I(

= ( ∥ ∣ )

θ

+

;Yλ) + I(

(

Xλ;Y

)

λ

+

θ

D PYλ∣θ PYλ Pθ λI PX , PY

∣ )

∣X λC

= λD(PY ∥PYλ) + λD(P ∗
Y ∥PYλ) + λI(PX , PY ∣X) + λC

≥ λD(PY ∥PYλ) + λI(PX , PY ∣X) + λC.

Since I(PX , PY ∣X) <∞, we can subtract it to obtain

λ C I PX , PY X λD PY PYλ .

Dividing both sides by λ, taking

(

the

−

lim

(

inf and

∣

using

)) ≥

low

(

er semicon

∥ )

tinuity of D, we have

C − I(PX , PY ∣X) ≥ lim
→
infD(PY ∥PYλ) ≥D(PY ∥PY

∗)

Here

Ô⇒ C

is

≥ I

an ev

(

λ 0

PX , PY ∣X) +D(PY PY
∗

en shorter proof:

∥ ) =D(PY ∣X∥PY ∣PX) +D(PY ∥PY
∗) =D(PY ∣X∥PY

∗ ∣PX).

C ≥ I(Xλ;Yλ) =D(

= ( ∥ ∣

PY X PYλ PXλ (4.18)

¯

≥

λD

(

PY ∣X PYλ PX

∣ ∥ ∣ )

) + λD(PY ∣X∥PYλ ∣PX
∗ ) (4.19)

¯

=

λD PY X PYλ

λD(

PX λC (4.20)

¯PX

∣

,Y

∥ ∣ ) +

where inequality is by the right part of (4.17

∥PXPYλ) + λC , (4.21)

¯) (already shown). Thus, subtracting λC and dividing
by λ we get

D PX,Y PXPYλ C

and the proof is completed by taking lim inf

(

λ

∥ ) ≤

→0 and applying lower semincontinuity of divergence.

Corollary 4.1. In addition to the assumptions of Theorem 4.4, suppose C . Then cao
unique. It satisfies the property that for any PY induced by some PX

<∞ ∗

have
D PY

∈ P (i.e. PY PY

C

∣X

PY

= ○

d PY is
PX) we

articular PY

∗

≪

(4.22)

and in p PY
∗ .

( ∥ ) ≤ <∞

Proof. The statement is: I(PX , PY ∣X) = C ⇒ PY = PY
∗ . Indeed:

C =D(PY ∣X∥PY ∣PX) =D(

≤ (

PY ∣X∥ Y
∗ ∣PX) −D(P ∥

∥

P

∣ ) −

P
∗ ∗ (

Y

∥

Y

=

D

−

PY ∣

(

X P

∥

Y PX

)⇒

D P

=

Y P
∗

Y

∗

∗
)

C D PY PY PY PY
∗

)

Statement (4.22) follows from the left inequality in (4.17) and “conditioning increases divergence”.
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Notes:

• Finiteness of C is necessary. Counterexample: The identity channel Y X, where X takes
values on integers. Then any distribution with infinite entropy is caid or

• Non-uniqueness of caid. Unlike the caod, caid does not need to be unique.

=

caod.

Let Z1 ∼ Bern(1

=

.2
Consider Y1 X

)

1 ⊕ Z1 = (

= ( × (

and Y2 X2. Then maxPX X
I X1,X2;Y1, Y2) = log 4, achieved by

1 2

PX1X2 Bern p Bern 1

)

2) for any p. Note that the caod is unique: P ∗
Y1Y2

= Bern(1
2)×Bern(1 .2

Review: Minimax and saddlepoint

)

Suppose we have a bivariate function f . Then we always have the minimax inequality :

inf sup f
y x

(x, y) ≥ sup inf f
yx

(x, y).

When does it hold with equality?

1. It turns out minimax equality is implied by the existence of a saddle point (x∗, y∗),
i.e.,

f

Furthermore, minimax

(x, y∗) ≤ f(x∗, y∗) ≤ f(x

equality also implies existence

∗, y x, y

of saddle point if inf and sup
are achieved c.f. [BNO03, Section 2.6]) for all x, y

)

[Straigh

∀

tforward to check. See
proof of corollary below].

2. There are a number of known criteria establishing

inf sup f(x, y) = sup inf f(x, y
y yx x

They usually require some continuity of f , compactness

)

of domains and convexity
in x and concavity in y. One of the most general version is due to M. Sion [Sio58].

3. The mother result of all this minimax theory is a theorem of von Neumann on
bilinear functions: Let A and B have finite alphabets, and g a, b be arbitrary, then

min maxE g A,B max minE g A,B
P

( )

A PB PB PA

Here (x, y)↔ (PA, PB

[ ( )] =

B

[

) and f(x, y)↔ ∑a,b PA(a)P (b

( )]

)g(a, b).

4. A more general version
)

is: if X and Y
(

are compact convex domains in Rn, f x, y
continuous in x, y , concave in x and convex in y then

( )

max min f x, y min max f x, y
x∈X y∈Y

( ) =
y∈Y x∈X

( )

Applying Theorem 4.4 to conditional divergence gives the following result.

Corollary 4.2 (Minimax). Under

(

assumptions

) =

of Theorem 4.4, we have

max I
X∈P

X;Y max minD PY X QY PX
P

=

PX

min

∈P QY

max

(

Y

∣

Y PX

∥ ∣ )

∈P
D(P

Q
∣X∥QY ∣PX
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Proof. This follows from saddle-point trivially: Maximizing/minimizing the leftmost/rightmost
sides of (4.17) gives

min max
∈P
D(PY ∣X∥QY ∣PX) ≤ max X∥PY

∗
∈P
D(PY ∣X∥PY

∗ ∣PX) ≤ D(PY ∣ ∣PX
QY PX PX

∗

≤ minD(PY ∣X∥QY
Q

)

Y

∣PX
∗ ) ≤ max

PX∈P
minD
QY

(PY ∣X∥QY ∣PX).

but by definition min max max min.

4.5 Capacity = information

≥

radius

Review: Radius and diameter

Let (X,d) be a metric space. Let A be a bounded subset.

1. Radius (aka Chebyshev radius) of A: the radius of the smallest ball that covers A,
i.e., rad (A) = infy∈X supx∈A d(x, y).

2. Diameter of A: diam A supx,y A d x, y .

3. Note that the radius and

( )

the

=

diameter

∈ (

both

)

measure how big/rich a set is.

4. From definition and triangle inequality we have

1
diam (A rad A diam A

2

5. In fact, the rightmost upper bound

) ≤

can

(

frequen

) ≤

tly

(

b

)

e improved. A result of
Bohnen

( )

blust
≤

[Boh38
(

] sho
)

ws that in Rn equipped with any norm we always have
rad

(

A
) =

n
+ diam

( )

A . For Rn with ` the situation is even simpler:n 1
rad A 1diam A called

∞-norm
(such spaces are centrable).2

The
X}

next simple corollary shows that capacity is just the radius of the set of distributions PY X x, x
when distances are measured by divergence (although, we remind, divergence is not a

∣
metric).
=

Corollary 4.3. For fixed kernel PY X , let {all dist. on } and is finite, then

{ ∈

max I(X;Y

∣

P

P

D

= X X

) = max
X x

(PY ∣X=x∥PY
∗

D PY X x PY
∗

)

The last corollary gives a geometric

=

interpretation

( ∣ = ∥

to

)

of
div {

capacit

∀x ∶ PX
∗ (x) > 0 .

y: it equals the radius the smallest
ergence-“ball” that encompasses all distributions P

com
=

∣
Y ∣X x

those.
∶ x

bination of some PY X=x and it is equidistant to
∈ X}. Moreover, PY

∗ is a convex

4.6 Existence of caod (general case)

We have shown above that the solution to

C = sup
PX∈P

I(X;Y
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can be a) interpreted as a saddle point; b) written in the minimax form and c) that caod PY
∗ is

unique. This was all done under the extra assumption that supremum over PX is attainable. It
turns out, properties b) and c) can be shown without that extra assumption.

Theorem 4.5 (Kemperman). For any PY ∣X and a convex set of distributions such that

C = sup
∈P
I(PX , PY

P

P

X

∣X (4.23)

there exists a unique PY
∗ with the property that

) <∞

C = sup
∈P
D(PY ∣X∥PY

∗ ∣PX) . (4.24)
PX

Furthermore,

C = sup
∈P

minD(PY ∣X∥QY ∣PX (4.25)
QP YX

)

= min sup
QY PX∈P

D PY ∣X

min supD P
Q

(

Y X x

∥QY

QY

∣PX (4.26)

=
∈X

( ∣ = ∥ ) ,

)

(if all PX .) (4.27)
Y x

Note: Condition (4.23) is automatically satisfied if there is an

P

y

=

Q

{

Y such

}

that

sup D PY QY P
PX

∣X X

Example: Non-existence of caid. Let

∈

Z

P
(

0,1

∥

and

∣

consider

) <∞ . (4.28)

∼ N ( ) the problem

C =
[ ]

sup
= [ ]=

I(X;X +Z) . (4.29)

∶E X 0,E X2 P
PX E X4 s

If
≠

we remove the constraint E X4 s the

[

unique

]=

caid is P
s 3P 2 then such PX is no longer

[ ]

inside
=

the constraint set

1

= N ( )

C log 1 P
2

P
X 0, P , see Theorem 4.6. When
. However, for s > 3P 2 the maximum

is still attainable. Indeed, we can add a small

=

“bump”

( +

to

)

the gaussian distribution as follows:

PX

where p 0, px2 0 but px4 s 3P 2

= (1 − p)N (0, P ) + pδx ,

→ → → −
∗

>

= N (

0. This
+ )

shows that for the problem (4.29) with s 3P 2

the caid does not exist, the caod PY 0,1 P exists and unique as Theorem 4.5 postulates.
>

Proof of Theorem 4.5. Let PX
′

P

be a sequence of input distributions achieving C, i.e., I P ,P
n

{
Xn Y X

C. Let n be the convex
(

hull of
)

PX
′

↦

, . . . , P
1 X

′

P

′ . Since n is a finite-dimensional simplex, the
n

concave function X I PX , PY ∣X attains its maxim
}

um at
P

some point P

∣

Xn n, i.e.,

( )→

In ≜ I(PXn , PY ∣X) = max I
PX

∈ P

∈Pn

Denote by PYn be the sequence of output distributions cor

(PX , PY ∣X) .

responding to PXn . We have then:

D(PYn∥PYn+k) = D(PY ∣X∥PYn+k ∣PXn

I PXn+k , PY X I

C I ,

) −

≤

D(

)

n ∣

(

PY ∣X∥

) − (

PY PXn

P

) (4.30)

≤ −

∣ Xn , PY ∣X (4.31)

n (4.32)
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where in (4.31) we applied Theorem 4.4 to (P

↗
n+k, PYn+k). By the Pinsker-Csiszár inequality (1.14)

and since In C, we conclude that the sequence PYn is Cauchy in total variation:

sup
≥

TV(PYn , PYn+k)→ 0 , n .
k 1

Since the space of probability distributions is complete in total

→

variation,

∞

→ ∗
the sequence must have a

limit point PYn PY . By taking a limit as k →∞ in (4.32) and applying the lower semi-continuity
of divergence (Theorem 3.6) we get

D

and therefore, PYn PY in the

(PYn∥PY
∗) ≤ lim

k→∞
D(PYn∥PYn+k) ≤ C − In ,

→ ∗ (stronger) sense of D PYn PY
∗ 0. Therefore,

D PY X PY
∗ PXn In D

(

PY

∥

n P

)

Y
∗

→

C . (4.33)

Take any PX

( ∣ ∥ ∣ ) =

sufficien

+ (

tly

∥

∈ ⋃k≥1Pk. Then PX ∈ Pn for all large

)→

n and thus by Theorem 4.4

D PY X PYn PX In C , (4.34)

which by lower semi-continuity of divergence

( ∣ ∥

implies

∣ ) ≤ ≤

D PY X PY
∗ PX C . (4.35)

P

Finally, to prove that (4.35) holds for arbitrary

( ∣ ∥

PX

∣ ) ≤

∈ P

P = ( ∪ P )

, we may repeat the argument above with
˜ ˜ ˜

n replaced
∗

by n conv PX n , denoting the resulting sequences by PXn , PYn and the limit
˜point by PY we have:

D(PYn∥P̃Yn) = D(PY ∣X∥

≤ −

P̃Yn ∣PXn) −D(PY ∣X∥PYn ∣PXn) (4.36)

C In , (4.37)

∈ P̃ →∞ ˜where (4.37) follows from (4.35) since PXn n. Hence taking limit as n we have PY
∗ PY

∗ and
therefore (4.35) holds.

Finally, to see (4.26), note that by definition capacity as a max-min is at most the min-max,

=

i.e.,

C = sup
∈P

minD(PY ∣X∥QY ∣PX) ≤ min sup
∈P
D(PY ∣X∥QY ∣PX) ≤ sup

∈P
D(PY ∣X∥PY

∗ ∣PX C
QY QP YX PX PX

in view of (4.34).

) =

Corollary 4.4. Let X be countable and P a convex set of distributions on X . If supPX∈P H(X
then

1
sup H X min sup PX x log

) <∞

∈ QPX P
( ) =

X PX∈P
∑
x

( )
QX(x

and the optimizer QX exist and is unique. If QX then it is also

)

a

<

unique

∞

∗ ∗ ∈ P maximizer of H(X).

Proof. Just apply Kemperman’s result to channel Y =X.

Example: Assume that f ∶ Z→ R is such that ∑n∈ exp{−λf(n)} <∞ for all λ 0. ThenZ

∶ [
max

( )]≤
H(X) ≤ inf

>
λa + log∑ exp{−λf(n

>

)} .
X E f X a λ 0 n

This follows from taking ( ) = {− ( )}

( ) = {− ( )}

Q n c exp λf n . This bound is often tight and achieved by
PX n c exp λf n , known as the Gibbs distribution for energy function f .
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4.7 Gaussian saddle point

For additive noise, there is also a different kind of saddle point between PX and the distribution of
noise:

Theorem 4.6. Let X ∼ N (0, σ2 ) , N ∼ N (0, σ2
g X g N , Xg Ng. Then:

1. “Gaussian capacity”:

) ⊥⊥

C = I(Xg;Xg +Ng) =
1

2
log (1 +

σ2
X

σ2
N

2. “Gaussian input is the best”: For all X ⊥⊥ Ng and varX σ2

)

X ,

I(X;X +Ng) ≤ I(Xg;Xg

≤

+Ng),

D
with equality iff X=Xg.

3. “Gaussian noise is the worst”: For for all N s.t. E XgN 0 and EN2 σ2
N ,

I(Xg;Xg N I Xg

[

;Xg

]

N

=

g ,

≤

D
with equality iff N

+ ) ≥ ( + )

=Ng and independent of Xg.

Note: Intuitive remarks

1. For AWGN channel, Gaussian input is the most favorable. Indeed, immediately from the
second statement we have

1
max

X ∶varX≤
I

σX

(X;X +Ng
2

) =
2

log (1 +
σ2
X

σ2
N

which is the capacity formula for the AWGN channel.

)

2. For Gaussian source, additive Gaussian noise is the worst in the sense that it minimizes the
mutual information provided by the noisy version.

Proof. WLOG, assume all random variables have zero mean. Let Yg =Xg +Ng. Define

g( 2 1
x) =D(PYg ∣Xg=

2 2
x∥PYg) =D(N (x,σN)∥N (0, σX + σN)) =

2
log (1 +

σ2
X

σ2
N

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=C

+
log e

2

x2 − σ2
X

σ2
X + σ2

N

1. Compute I(Xg;Xg +Ng) = E

2.

[g(Xg)] = C

Recall the inf-representation I(X;Y ) = minQD PY X Q PX . Then

I(X;X +Ng D

( ∣ ∥ ∣

) ≤ (PYg ∣Xg∥PYg ∣PX) = E[g

)

X C .

Furthermore,
=

if I X;X Ng then uniqueness of caod, cf. Corollary
2

( )] ≤

4.1

<

,

∞

implies PY PYg . But
P P 2
Y X ,

(

∗ 0
+

N ( σN

)

). Then it must be that X 0, σX simply by considering characteristic
functions:

=

( ) ⋅ − 1

∼ N ( )

ΨX t e 2
σ2
N t

2

= e−
1
2
(σ2
X+σ2

N )t2 ⇒ ΨX(t) = e−
1
2
σ2
X t

2

Ô⇒X ∼ N (0, σ2
X)
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3. Let Y =Xg +N and let PY ∣Xg b
[

e the
]

resp
=

ective kernel. [Note that here we only assume that N
is uncorrelated with Xg, i.e., E NXg 0, not necessarily independent.] Then

I(Xg;Xg +N) = D(PXg ∣Y ∥PXg ∣PY )

= ( ∣ ∥ ∣ ∣ ) +
P

E Xg ∣Y X
D PXg Y PXg Yg PY log

g
( g ∣Y )

PXg(Xg)

≥ E log
PXg ∣Yg(Xg ∣Y )

(4.38)
PXg(Xg)

=
P

E Y
log

g ∣Xg(Y ∣Xg)

PYg(Y )
(4.39)

= C +
log e Y

E
2

[
2

σ2
X + σ2

N

−
N2

σ2
N

] (4.40)

= C +
log e

2

σ2
X

σ2
X + σ2

N

(1 −
EN2

(4.41)
σ2
N

)

≥ C , (4.42)

where

•
P

(4.39):
Xg ∣Yg

PXg
=
PYg ∣Xg
PYg

• (4.41): E XgN 0 and E Y 2 E N2 E X2
g .

• (4.42): E

[

N2

] = [ ] = [ ] + [ ]

≤ σ2
N .

Finally, the conditions for equality in (4.38) say

D PXg ∣Y PXg ∣Yg PY 0

Thus, P 2
Xg Y

∥ ) =

∣ = PXg ∣Yg , i.e., Xg is conditionally

(

Gaussian:

∣

PXg Y y by, c for some constant
b, c. In other words, under PXgY , we have

∣ = = N ( )

Xg = bY + cZ , Z ∼ Gaussian ⊥⊥ Y.

But then Y must be Gaussian itself by Cramer’s Theorem or simply by considering characteristic
functions:

ΨY (t

Therefore, Xg, Y must b

)

e

⋅ ect
2

= ec
′t2 ⇒ ec

′′t2Ψ t Y– Gaussian

( )

Y

jointly Gaussian and hence N Y Xg is Gaussian. Thus we
conclude that it is only possible to attain I X

( ) = Ô⇒

C
=

( g;Xg +N) = if N
−

is Gaussian of variance σ2
N

and independent of Xg.
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