
§ 23. Rate-distortion theory

Big picture so far:

1. Lossless data
∈

compression:
[ ]

Given a discrete ergodic source Sk, we know how to encode to
pure bits W 2k .

2. Binary HT: Given two distribution P and Q, we know how to distinguish them optimally.

3. Channel coding: How to send bits over a channel 2k W X Y .

4. JSCC: how to send discrete data optimally over a

[

noisy

] ∋

channel.

→ →

Next topic, lossy data compres ˆsion: Given X, find a k-bit representation W , X W X, such
ˆthat X is a good reconstruction of X.

Real-world examples: codecs consist of a compressor and a decompressor

→ →

• Image: JPEG...

• Audio: MP3, CD...

• Video: MPEG...

23.1 Scalar quantization

Problem: Data isn’t discrete! Often, a signal (function) comes from voltage levels or other
continuous quantities. The question of how to map (naturally occurring) continuous time/analog
signals into (electronics friendly) discrete/digital signals is known as quantization, or in information
theory, as rate distortion theory.

Domain

Continuous
time

Discrete
time

Signal

Range

Analog

Digital

QuantizationSampling

We will look at several ways to do quantization in the next few sections.
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23.1.1 Scalar Uniform Quantization

The idea of qunatizing an inherently continuous-valued signal was most explicitly expounded in the
patenting of Pulse-Coded Modulation (PCM) by A. Reeves, cf. [Ree65] for some interesting historical
notes. His argument was that unlike AM and FM modulation, quantized (digital) signals could be
sent over long routes without the detrimental accumulation of noise. Some initial theoretical analysis
of the PCM was undertaken in 1947 b

For a random variable X [ A
quantization points partitions the

∈ −

interv
/

y Oliver, Pierce
2,A/2] ⊂

, and Shannon (same Shannon), cf. [OPS48].

[− /

R,
/

the
]

scalar uniform quantizer qU X with N
al A 2,A 2 uniformly

( )

N equally spaced points

−A A
2 2

where the points are in {−A2 + kA , k = 0, . . . ,N 1 .N
What is the quality (or fidelity) of this quan

−

tization?
used

}

Most of the time, mean squared error is
as the quality criterion:

D N EX qU X 2

where D denotes the average distortion

(

. Often

) = ∣

R

−

log

(

2N

)∣

is used instead of N , so that we think
about the number of bits we can use for quantizati
this scalar uniform quantizer, we’ll look at the high-rate

=

on instead of the number of points. To analyze
regime (R≫ 1). The key idea in the high

rate regime is that (assuming a smooth density PX), each quantization interval ∆j looks nearly flat,
so conditioned on ∆j , the distribution is accurately approximately by a uniform distribution.

Nearly flat for
large partition

∆j

Let cj be the j-th quantization point, and ∆j be the j-th quantization interval. Here we have

∣ − ( )∣ =∑
N

EX qU X 2 E
j=1

[∣X − cj ∣
2∣X ∈ ∆j]P

N ∆ 2
j

[X ∈ ∆j]

(high rate approximation) ≈
j
∑

1

∣ ∣

= 12
P[X ∈ ∆j]

=
(AN )2

12
=
A2

2
12

−2R

How much do we gain per bit?

10 log10 SNR =
V ar

10 log10
(X)

E∣X − qU(X)∣2

= 10 log10
12V ar(X)

20
A2

+ ( log10 2)R

= constant + (6.02dB)R

237



For example, when X is uniform on [−A2 ,
A
2 ], the constant is 0. Every engineer knows the rule

of thumb “6dB per bit”; adding one more quantization bit gets you 6 dB improvement in SNR.
However, here we can see that this rule of thumb is valid only in the high rate regime. (Consequently,
widely articulated claims such as “16-bit PCM (CD-quality) provides 96 dB of SNR” should be
taken with a grain of salt.)
Note: The above deals with X with a bounded support. When X is unbounded, a wise thing to do
is to allocate the quantization points to the range of values that are more likely and saturate the
large values at the dynamic range of the quantizer. Then there are two contributions, known as
the granular distortion and overload distortion. This leads us to the question: Perhaps instead of
uniform quantization optimal?

23.1.2 Scalar Non-uniform Quantization

Since our source has density pX , a good idea might be to use more quantization points where pX is
larger, and less where pX is smaller.

Often
( )

the way such quantizers are implemented is to take a monotone transformation of the source
f X , perform uniform quantization, then take the inverse function:

X U

X̂ qU(U)

f

q qU (23.1)

f−1

i.e., q(X) = f−1(qU(f(X))). The function f is usually called the compander (compressor+expander).
One of the choice of f is the CDF of X, which maps X into uniform on
arc

[0, 1]. In fact, this compander
hitecture is optimal in the high-rate regime (fine quantization) but the optimal f is not the CDF

(!). We defer this discussion till Section 23.1.4.
In terms of practical considerations, for example, the human ear can detect sounds with volume

as small as 0 dB, and a painful, ear-damaging sound occurs around 140 dB. Achieveing this is
possible because the human ear inherently uses logarithmic companding function. Furthermore,
many natural signals (such as differences of consecutive samples in speech or music (but not samples
themselves!)) have an approximately Laplace distribution. Due to these two factors, a very popular
and sensible choice for f is the µ-companding function

lf(X) = sign n(1+µ(X) |X|)
ln(1+µ)
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which compresses the dynamic range, uses more bits for smaller X ’s, e.g. X ’s in the range of
human hearing, and less quantization bits outside this region. This results in the so-called µ-law
which is used in the digital telecommunication systems in the US, while

∣ ∣

in Europ

∣

e

∣

they use a slightly
different compander called the A-law.

23.1.3 Optimal Scalar Quantizers

Now we look for the optimal scalar quantizer given R bits for reconstruction. Formally, this is

Dscalar(R) = min
q∶∣Im q∣≤

E
2R

Intuitively, we would think that the optimal quantization

∣X − q(X)∣2

regions should be contiguous; otherwise,
given a point cj , our reconstruction error will be larger. Therefore quantizers are piecewise constant:

q(x) = cj1Tj≤x≤Tj+1

for some cj ∈ [Tj , Tj+1].
Simple example: One-bit quantization of X ∼ N (0, σ2). Then optimal quantization points are

c1 = E[X ∣X ≥ 0] =
√

2
πσ, c2 = E[X ∣X ≤ 0] = −

√
2σ.π

With ideas like this, in 1982 Stuart Lloyd developed an algorithm (called Lloyd’s algorithm)
for iteratively finding optimal quantization regions and points. This works for both the scalar and
vector cases, and goes as follows:

1. Pick any N = 2k points

2. Draw the Voronoi regions around the chosen quantization points (aka minimum distance
tessellation, or set of points closest to cj), which forms a partition of the space.

3. Update the quantization points by the centroids (E

4.

[X ∣X ∈D]) of each Voronoi region.

Repeat.

b

b

b
b

b
b

b

b
b

b

Steps of Lloyd’s algorithm

Lloyd’s clever observation is that the centroid of each Voronoi region is (in general) different than
the original quantization points. Therefore, iterating through this procedure gives the Centroidal
Voronoi Tessellation (CVT - which are very beautiful objects in their own right), which can be
viewed as the fixed point of this iterative mapping. The following theorem gives the results about
Lloyd’s algorithm

Theorem 23.1 (Lloyd).

1. Lloyd’s algorithm always converges to a Centroidal Voronoi Tessellation.
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2. The optimal quantization strategy is always a CVT.

3. CVT’s are non-unique, and the algorithm may converge to non-global optima.

Remark: The third point tells us that Lloyd’s algorithm isn’t always guaranteed to give the
optimal quantization strategy.1 One sufficient condition for uniqueness of a CVT is the log-concavity
of the density of X [Fleischer ’64]. Thus, for Gaussian PX , Lloyd’s algorithm outputs the optimal
quantizer, but even for Gaussian, if N > 3, optimal quantization points are not known in closed
form! So it’s hard to say too much about optimal quantizers. Because of this, we next look for an
approximation in the regime of huge number of points.

23.1.4 Fine quantization

[Panter-Dite ’51] Now
density function λ(x)

we look at the high SNR approximation. For this, introduce the probability
, which represents the density of our quantization points and allows us to

appro

≈

xi

∫

mate summations by integrals2

( )

. Then the number of quantization points in any interval a, b
b

is N a

Then Nλ(
λ x dx.
x ∆

[ ]

( )

) (x) ≈
For

Ô

an
⇒

y poin
(

t
)

x
≈

, denote its distance to the closest quantization point by ∆ x .
1 ∆ x 1 ximation,N ( approλ x) . With this the quality of reconstruction is

N

E∣X − q(X)∣2 =∑ E
=

[∣X − c 2
j

j 1

∣ ∣X ∈ ∆j]P[X ∈ ∆j]

≈
∆

P
j
∑
N

=1

[X ∈ ∆j]
∣ j ∣

2

12
≈ ∫ p(x)

∆2(x)

12
dx

=
1

p x λ 2

N2
− x dx

12

To find the optimal density λ that gives the

∫

best

( )

reconstruction

( )

(minimum MSE) when X has
density p, we use Hölder’s inequality: p1 3 pλ 2 1 3 λ 2 3. Therefore pλ 2 p1 3 3,

with equality iff pλ−2 ∝
f1 3 x

λ. Hence the optimizer

∫
/ ≤

is

(∫

λ

− ) / ( ) /
∫

−

∗
≥ (∫

(x

∫
/

) =
/ ( )

)

∫ f1/3dx
. Therefore when N = 2R,3

Dscalar(R) ≈
1 3

2−2R p1/3 x dx
12

So our optimal quantizer density in the high rate regime

(∫

is

(

prop

) )

ortional to the cubic root of the
density of

∼ N

our
(

source.
)

This approximation is called the Panter-Dite approximation. For example,
when X 0, σ2 , this gives

Dscalar(R) ≈ σ22−2Rπ
√

3

2

Note: In fact, in scalar case the optimal non-uniform quantizer can be realized using the compander
architecture (23.1) that we discussed in Section 23.1.2: As an exercise, use Taylor expansion to

1 As a simple example one may consider PX = 1
3
φ(x − 1) + 1

3
φ(x) + 1

±
φ

3
(x + 1) where φ(⋅) is a very narrow pdf,

symmetric around 0. Here the CVT with centers 2 is not optimal among binary quantizers (just compare to any
3

quantizer that quantizes two adjacent spikes to same value).
2This argument is easy to make rigorous. We only need to define reconstruction points cj as solutions of

∫
cj

−∞

λ(x)dx = j
.

N

3In fact when R →∞, “≈” can be replaced by “= 1 + o(1)” [Zador ’56].
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analyze the quantization error of (23.1) when N →∞. The optimal compander f ∶ R→ [

( ) =
( )

0,1

to be f x ∫−∞
t p1/3

] turns
t dt

out
∫ ∞−∞ p1/3(t) [Bennett ’48, Smith ’57].

dt

23.1.5 Fine quantization and variable rate

So far we were considering quantization with restriction on the cardinality of the image of q . If
one, however, intends to further compress the values q X via noiseless compressor, a more nat
constraint is to bound H q X .

(⋅)

( )

( ( ))

ural

Koshelev [Kos63] discovered in 1963 that in the high rate regime uniform quantization is
asymptotically optimal under the entropy constraint. Indeed, if q∆ is a uniform quantizer with cell
size ∆, then it is easy to see that

H(q∆(X)) = h(X) − log ∆ + o(1) , (23.2)

where h(X) = − ∫ pX(x) log pX(x)
( ( )) =

dx is the differential entropy of X. So a uniform quantizer with
H q X R achieves

D =
∆2

12
≈ 2−2R 22h(X)

.
12

On the other hand,
function such that ∫

any quantizer with unnormalized point density function Λ x (i.e. smooth

−∞
cj Λ x dx j) can be shown to achieve (assuming Λ poin

(

→ t
)

( ) =

1

∞ wise)

D ≈
12
∫ pX(x)

1

Λ2(x)
dx (23.3)

H(q(X)) ≈ ∫ pX(x) log
Λ(x)

dx
pX(x)

(23.4)

Now, from Jensen’s inequality we have

1

12
∫ pX(x)

1

Λ2(x)
dx ≥

1

12
exp{−2∫ pX(x) log Λ(x)dx} ≈ 2−2H(q(X)) 22h(X)

,
12

concluding that uniform quantizer is asymptotically optimal.
Furthermore, it turns out that for any source,

−
even the optimal vector quantizers (to be considered

next) can not achieve distortion better that 2 2R 22h(X)

– i.e. the maximal improvement they can2πe
gain (on any iid source!) is 1.53 dB (or 0.255 bit/sample). This is one reason why scalar uniform
quantizers followed by lossless compression is an overwhelmingly popular solution in practice.

23.2 Information-theoretic vector quantization

By doing vector quantization (namely, compressing X1, . . . ,Xn 2nR points), rate-distortion
theory tells us that when n is large, we can achieve the

(

per-coordinate
) →

MSE:

Dvec R σ22−2R

which saves 4.35 dB (or 0.72 bit/sample). This

( )

should

=

be rather surprising, so we repeat it again:
even when X1, . . . ,Xn are iid, we can get better performance by quantizing Xi jointly. One instance
of this surprising effect is the following:

Hamming Game: Given 100 unbiased bits, we want to look at them and scribble something
down on a piece of paper that can store 50 bits at most. Later we will be asked to guess the
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original 100 bits, with the goal of maximizing the number of correctly guessed bits. What is the
best strategy? Intuitvely, the optimal strategy would be to store half of the bits then guess on the
rest, which gives 25% BER. However, as we will show in the next few lectures, the optimal strategy
amazingly achieves a BER of 11%. Note does this happen? After all we are guessing independent
bits and the utility function (BER) treats all bits equally. Some intuitive explanation:

1. Applying scalar quantization componentwise results in quantization region that are hypercubes,
which might not be efficient for covering.

2. Concentration of measures removes many source realizations that are highly unlikely. For
example, if we think about quantizing a single Gaussian X, then we need to cover large portion
of R in order to co

(

ver the cases of significant deviations of X from 0. However, when we are
quantizing many X1, . . . ,Xn) together, the law of large numbers makes sure that many Xj ’s
cannot conspire together and all produce large values. Thus, we may exclude large portions of
the Rn from consideration.

Math Formalism: A lossy compressor is an encoder/decoder pair (f, g) where

X

• X - continuous source

Ð
f
→W Ð

g
→ X̂

• W

∈

-

X

discrete data

• X̂ ∈ X̂ - reproduction

ˆA distortion metric is a function d ∶ X ×X → R∪{+∞} (loss function). There are various formulations
of the lossy compression problem:

ˆ1. Fixed length (fixed rate), average distortion: W M , minimize E d X,X .

ˆ2. Fixed length, excess distortion: W M , minimize

∈ [

P

]

d X,X D

[

.

( )]

( ) = ( )

ˆ3. Variable length, max distortion: W

∈ [

0

] [ ( ) > ]

∈ { ,1}∗, d(X,X
ˆH X H W .

) ≤ D a.s., minimize E[length(W )] or

Note: In this course we focus on fixed length and average distortion loss compression. The
difference between average distortion and excess distortion is analogous to average risk bound and
high-probability bound in statistics/machine learning.

ˆDefinition 23.1. Rate-distortion ,
letter ⋅

problem is characterized by a pair of alphabets , a single-

(

distortion
)

function d( ˆ, ⋅) ∶ A ×A → R ∪ {+∞} and a source – a sequence of -valued r.v.’s
S1, S2, . . . . A separable distortion metric is defined for n-letter vectors by averaging the

A A

A

single-letter
distortions:

(
1

d an, ân) ≜ ,
n
∑d(ai âi

An

)

(n,M,D

• Encoder

)-code is

f ∶ An → [M

• Decoder g

]

∶ [M]→ Ân
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• Average distortion: E[d(Sn, g(f(Sn)))] ≤D

Fundamental limit:

M∗(n,D) = min{M ∶ ∃(n,M,D)-code

R

}

(D) =
1

lim sup
n→∞

logM∗ n,D
n

Now that we have the definition, we give the (surprisingly

(

simple)

)

general converse

ˆ ˆTheorem 23.2 (General Converse). For all lossy codes X →W → X such that E[d(X,X)] ≤ D,
we have

logM ϕX D inf I X;Y
PY ∣X E d X,Y D

where W ∈ [M .

≥ ( ) ≜
∶ [ ( )]≤

( )

Proof.

]

ˆlogM H W I X;W I X;X ϕX D

where the last inequality follows

≥

from

(

the

) ≥

fact

(

that

)

P

≥

X̂

( ) ≥ ( )

∣ is a feasible solution (by assumption).X

Theorem 23.3 (Properties of ϕX).

1. ϕX is convex, non-increasing.

2. ϕX continuous on (D0,∞), where D0 = inf{D ∶ ϕX(D) <∞}.

3. If

⎧

( ) =
⎪⎪
⎨
⎪⎪>

D0 x

Then

=/

y
d x, y

=

⎩ D0 x y

ϕX(D0

4. Let

) = I(X;X).

Dmax = inf
∈X

Ed X, x̂ .

(

ˆˆ

Then ϕX D) = 0 for all D >Dmax. If D0 >

x

Dmax then

(

also

)

ϕX Dmax 0.

Note: If Dmax = Ed(X, x̂) for some x̂, then x̂ is the “default” reconstruction

( ) =

of X, i.e., the best
estimate when we have no information about X. Therefore D ≥Dmax can be achieved for free. This
is the reason for the notation Dmax despite that it is defined

∼ N (

as
)

an infimum.
Example: (Gaussian with MSE distortion) For X 0, σ2

( ) =

and d y) = (x y
1

− )2, we ha e

ϕX D

(x, v

2 log+ σ2
=

=

. In this case D0 = 0 which is not attained; Dmax σ2 and if D ≥ σ2, we canD
ˆsimply output X 0 as the reconstruction which requires zero bits.

Proof.

1. Convexity follows from the convexity of PY ∣X ↦ I(PX , PY

2.

∣X).

Continuity on interior of the domain follows from convexity.
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3. The only way to satisfy the constraint is to take X Y .

ˆ4. For any D > Dmax we can set X

=

= x̂ deterministically. Thus I(X; x̂
ws

= 0. The second claim
follo from continuity.

)

In channel coding, we looked at the capacity and the information capacity. We define the
Information Rate-Distortion function in an analogous way here, which by itself is not an operational
quantity.

Definition 23.2. The Information Rate-Distortion function for a source is

Ri(D) =
1

lim sup
n→∞

ϕSn
n

(D) where ϕSn

And D inf D R D .

( n ˆD) = inf S
P ˆn ∣ n ∶E[d(

I ;Sn

Sn ˆ,SnS )]≤DS

( )

0 = { i

The reason for

∶

defining

( ) <∞

R

}

i(D)

∀ ( ) ≥

is because from Theorem 23.2 we immediately get:

Corollary 23.1. D, R D Ri

the

(D

,

).

Naturally information rate-distortion function inherit the properties of ϕ:

Theorem 23.4 (Properties of Ri).

1. Ri(D) is convex, non-increasing

2. Ri(D) is continuous on (D0,∞), where D0 ≜ inf{D ∶ Ri(D

3. If

) <∞}.

d(x, y

⎧

) =
⎪⎪
⎨
⎪⎪

D

>

0 x y

⎩ D0 x

=

y

Then for stationary ergodic Sn , Ri D (entropy

=/

rate) or if Sk is not discrete.

4. Ri(D) = 0 for all D D

{ } ( ) =H +∞

> max, where

Dmax lim sup inf
n x̂n

If D0 Dmax, then Ri Dmax 0 too.

≜
→∞ ∈X

Ed(Xn, x̂n .
ˆ

)

5. (Single

<

letterization) If

(

the sour

) =

ce

Ri D

{Si} is i.i.d., then

( ) = φS1(D) =
PŜ∣S ∶ [

inf
E d(

I
ˆS,S)]≤D

( ˆS;S)

Proof. Properties 1-4 follow directly from corresponding properties of φSn and property 5 will be
established in the next section.
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23.3* Converting excess distortion to average

Finally, we discuss how to build a compressor for average distortion if we have a compressor for
excess distortion, which we will not discuss in details in class.

Assumption Dp. Assume that for (S, d), there exists p > 1 such that Dp <∞, where

Dp ≜ sup inf E d Sn, x̂ p 1

n x̂

/p

i.e. that our separable distortion metric d

(

do

∣

esn’t

(

gro

)∣ )

w to

<

o

+∞

fast. Note that (by Minkowski’s
inequality) for stationary memoryless sources we have a single-letter bound:

D ≤ inf(E∣d(S, x̂)∣p)1/p
p (23.5)

x̂

ˆTheorem 23.5 (Excess-to-Average). Suppose there exists X W X such that W M and
P ˆ ˆd X,X D ε. Suppose for some p 1 and x̂ p 1 p

0 , E d X, x̂0 Dp . Then there
ˆexists

[ (

X
) >

→W ′
] ≤

→X ′ code such that W

→

′ 1

→ ∈ [ ]

≥

M and
∈ X ( [ ( )] ) / = <∞

E[d( ˆX,

∈

X

[ + ]

′)] ≤D(1 − ε) +Dpε
1−1/p (23.6)

Remark 23.1. Theorem is only useful for p 1, since for p 1 the right-hand side of (23.6) does
not converge to 0 as ε

> =

→ 0.

Proof. We transform the first code into the second by adding one codeword:

f ′
⎧

(
f g

x) =
⎪⎪
⎨

(

⎪⎪

x) d x, f D

⎩M +

x

⎧⎪

1 o/w

( ( ( ))) ≤

g′(j) =
⎪
⎨
⎪⎪

g(j) j M

⎩x̂0 j

≤

=M + 1

Then

E[d(X,g

(Hölders Inequalit

′ ○ ( ˆ ˆf ′ X)) ≤ E[ ˆ

≤ (

d(X,X)∣W ≠M + 1](1 − ε) +E[d(

− ) +

X,x

− /
0 1 W

y) D 1

) { =M

ε

+ 1

Dpε
1 1 p

}]
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