Spring 2016 6.441 - Information Theory Homework 2 Due: Thur, Feb 18, 2016 (in class) Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapter 2]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Consider the following Z-channel given by $P_{Y|X}[1|1] = 1$ and $P_{Y|X}[1|0] = P_{Y|X}[0|0] = 1/2$.

1. Find the capacity

$$C = \max_{Y} I(X;Y) \,.$$

- 2. Find $D(P_{Y|X=0}||P_Y^*)$ and $D(P_{Y|X=1}||P_Y^*)$ where P_Y^* is the capacity-achieving output distribution, or *caod*, i.e., the distribution of Y induced by the maximizer of I(X;Y).
- **2** Consider the following *multiple-access channel*

$$Y = X_1 + X_2 \,,$$

where $X_i \in \{0,1\}$ and $Y \in \{0,1,2\}$ (addition over \mathbb{Z}). Compute $\max_{X_1,X_2} I(X_1,X_2;Y)$ over:

- a) all distributions P_{X_1,X_2} ;
- b) all product distributions $P_{X_1,X_2} = P_{X_1}P_{X_2}$.

Let (X_1^*, X_2^*, Y^*) be the random variables achieving the maximum for case b (thus $X_1^* \perp X_2^*$). Is it true that

$$D(P_{Y|X_1=a,X_2=b}||P_{Y_*}) \le I(X_1^*,X_2^*;Y^*)$$

for all $a, b \in \{0, 1\}$? Does this violate the capacity saddle point theorem?

3 For any Gaussian random variable X_{G} and any random variable Y with finite variance, show that

$$I(X_{\mathsf{G}};Y_{\mathsf{G}}) \le I(X_{\mathsf{G}};Y)$$

where Y_{G} is jointly Gaussian with X_{G} with the same mean and variance as Y and $E[X_{\mathsf{G}}Y_{\mathsf{G}}] = E[X_{\mathsf{G}}Y]$. Does the claim also hold if Y_{G} is Gaussian but not jointly Gaussian with X_{G} ?

4 Consider a binary symmetric random walk X_n on \mathbb{Z} that starts at zero. In other words, $X_n = \sum_{j=1}^{n} B_j$, where (B_1, B_2, \ldots) are independent and equally likely to be ± 1 . Question: When $n \gg 1$ does knowing X_{2n} provide any information about X_n ? Namely, prove or disprove:

$$\lim_{n \to \infty} I(X_n; X_{2n}) = 0$$

(Hint: lower-semicontinuity and central-limit theorem). Bonus: Try to prove an asymptotically tight lower bound on $I(X_n; X_{2n})$.

- **5** (Combinatorial meaning of entropy)
 - 1 Fix $n \ge 1$ and $0 \le k \le n$. Let $p = \frac{k}{n}$ and define $T_p \subset \{0,1\}^n$ to be the set of all binary sequences with p fraction of ones. Show that if $k \in [1, n-1]$ then

$$|T_p| = \sqrt{\frac{1}{np(1-p)}} \exp\{nh(p)\}C(n,k)$$

where C(n,k) is bounded by two universal constants $C_0 \leq C(n,k) \leq C_1$, and $h(\cdot)$ is the binary entropy. Conclude that for all $0 \leq k \leq n$ we have

$$\log |T_p| = nh(p) + O(\log n).$$

Hint: Stirling's approximation:

$$e^{\frac{1}{12n+1}} \le \frac{n!}{\sqrt{2\pi n}(n/e)^n} \le e^{\frac{1}{12n}}, \quad n \ge 1$$

2 Let $Q^n = \text{Bern}(q)^n$ be iid Bernoulli distribution on $\{0,1\}^n$. Show that

$$\log Q^n[T_p] = -nd(p||q) + O(\log n)$$

3* (optional) More generally, let \mathcal{X} be a finite alphabet, \hat{P}, Q distributions on \mathcal{X} , and $T_{\hat{P}}$ a set of all strings in \mathcal{X}^n with composition \hat{P} . If $T_{\hat{P}}$ is non-empty (i.e. if $n\hat{P}(\cdot)$ is integral) then

$$\begin{split} \log |T_{\hat{P}}| &= nH(\hat{P}) + O(\log n)\\ \log Q^n[T_{\hat{P}}] &= -nD(\hat{P}\|Q) + O(\log n) \end{split}$$

and furthermore, both $O(\log n)$ terms can be bounded as $|O(\log n)| \le |\mathcal{X}|\log(n+1)$. (Hint: show that number of non-empty $T_{\hat{P}}$ is $\le (n+1)^{|\mathcal{X}|}$.)

6 (Effective de Finetti) We will show that for any distribution P_{X^n} invariant to permutation and k < n there exists a distribution Q_{X^k} , which is a mixture of iid's, approximating P_{X^k} well:

$$\mathrm{TV}(P_{X^k}, Q_{X^k}) \le \sqrt{\frac{k^2 \log_e |\mathcal{X}|}{2n}} \tag{1}$$

Follow the steps:

1. Show the identity (here P_{X^k} is arbitrary)

$$D(P_{X^k} \| \prod P_{X_j}) = \sum_{j=1}^{k-1} I(X^j; X_{j+1})$$

2. Show that there must exist some $t \in [k,n]$ such that

$$I(X^{k-1}; X_k | X_{t+1}^n) \le \frac{k \log |\mathcal{X}|}{n-k}$$

(Hint: expand $I(X^{k-1}; X_k^n)$ via chain rule, use permutation invariance and $H(X^k) \le k \log |\mathcal{X}|$.)

3. Show from 1 and 2 that

$$D(P_{X^k|T} \| \prod P_{X_j|T} | P_T) \le \frac{k^2 \log |\mathcal{X}|}{n-k}$$

where $T = X_{t+1}^n$.

4. By Pinsker inequality

$$\mathbb{E}_{T}[\mathrm{TV}(P_{X^{k}|T}, \prod P_{X_{j}|T})] \leq \sqrt{\frac{k^{2}\log_{e}|\mathcal{X}|}{2(n-k)}}$$

Conclude the proof of (1) by convexity of total variation.

References

[1] T. Cover and J. Thomas, Elements of Information Theory, Second Edition, Wiley, 2006

6.441 Information Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.