
MITOCW | ocw-6-450-f06-2003-09-29_300k

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: I want to start out today by reviewing what we covered last time. We sort of covered

two lectures of material, but a little bit lightly last time because I want to spend more

time starting today dealing with wave forms and functions. We will get notes on that

very, very shortly.

To review quantization, we started out by talking about scalar quantizers, in other

words, the thing that we want to do is to take a sequence of real numbers and each

of those real numbers we want to quantizers it into one of a finite set of symbols.

Then, of course, the symbols we're going to encode later on. So basically what

we're doing is we're taking the real line, we're splitting it into a bunch of regions, r1,

r2, r3. The last region of the first region goes off to minus infinity. The last region

goes off to plus infinity. So that clearly, if there's a lot of probability over in here or a

lot of probably over in here, you're going to have a very large distortion. So, when

we talk more about that later and talk about how to avoid it and why we should

avoid it and all of these things.

We then talked about these Lloyd-Max conditions for minimum mean square error.

What we said last time was suppose somebody gives you these representation

points, which you're going to use to represent the actual number on the real line

that comes out. Then you ask when some particular number occurs should we

encode it into this point or into this point? If our criterion is mean square error, and

that's what our criterion is normally going to be, then we're going to minimize the

mean square error for this particular point by mapping it here, if that's the most

probable -- we're going to map it here if this is the closest point, and we're going to

map it here if that's the closest point. Because by doing this we minimize the

squared error between b and a1 or b and a2.

1



So, that says that we're going to define these regions to have the separations

between the regions at the bisector points between the representation points. So

that says that one of the Lloyd-Max conditions for minimum mean square error is

you always want to choose the regions in such a way that they're the mid-points

between the representation points. Any minimum mean square error quantizers has

to satisfy this condition for each of the j's. Namely, for each of these points they

have to be mid-points.

Then the other thing that we observed is that once we choose these regions, the

way we want to choose the representation points to minimize the mean square error

is we now have to look at the probability density on this real line and we have to

choose these points to be the conditional means within the representation area.

That just comes out by formula to be the expected value of the random variable u,

which is this value as it occurs on the real line. The expected value of that

conditional on being in region rj is just the integral of u times the conditional density

of u. The conditional density of u is the real density of u divided by the probability of

being in that region.

So all of this is very simple. I hope you see it as something which is almost trivial,

because if you don't see it as something simple, go back and look at it because, in

fact, this is not rocket science here, this is just what you would normally do.

So Lloyd-Max algorithm then says alternate between the conditions for the mid-

points between the regions and the conditional means. The Lloyd-Max conditions

are necessary but not sufficient. In other words, any time you find a minimum mean

square error quantization, it's going to satisfy those conditions. But if you find a set

of points, b sub j, and a set of points, a sub j, which satisfy those conditions, it

doesn't necessarily mean that you have a minimum. In other words, there are often

multiple sets of points which satisfy the Lloyd-Max conditions, and one or more of

those is going to be optimum, is going to be the smallest one, and the others are

not going to be optimum. In other words, the algorithm is a local hill-climbing

algorithm, which finds the best thing it can find which is close to where it's starting at

some very strange sense of close. The close is not any sense of mean square

2



error, but close is defined in terms of where the algorithm happens to go.

So an example of that that we talked about last time is where you have three spikes

of probability. Two of them are smaller and one of them is bigger. One of them is at

minus 1, one of them is at zero, one of them is at plus 1. One solution to the Lloyd-

Max conditions is this one here where a1 is sitting right in the middle of the spike.

Therefore, any time that the sample value of the random variable is over here, you

get virtually no distortion. The other point is sitting at the conditional mean between

these two points. So it's a little closer to this one than it is to this one -- I hope the

figure shows that. Any time you wind up here or here, you get this amount of the

distortion.

Now without making any calculations you just look at this and you say well, this

spike is bigger than this spike is. Therefore, it makes sense if we're going to do this

kind of strategy to put a 2 underneath that spike, therefore, getting a very small

distortion any time the big spike occurs. Then a1 is going to be midway between

these two points, and you get the larger amount of distortion there but now it's a

less probable event. So you can easily check that both of these solutions satisfy the

Lloyd-Max conditions, but one of them turns out to be optimal and the other one

turns out to be not optimal. If you fiddle around with it for a while, you can pretty

much convince yourself that those are the only solutions to the Lloyd-Max algorithm

for this particular problem.

Yeah?

AUDIENCE: When there's a region that has zero probability throughout, and the Lloyd-Max

algorithm tries to find the mean for that region, it's going to find somewhere outside

the region, it will find zero as the expected value. But that might not necessarily be

inside that region, what does it do in that case?

PROFESSOR: What does it do in that case? Well, I don't think you can argue that it's going to be at

zero. I think you have to argue that it might be anywhere that it wants to be.

Therefore, what the algorithm is going to do when you start with a certain set of

representation points -- well, if you start with a certain set of representation points

3



that picks that separater wherever it happens to be, than this particular point you're

talking about is going to be at some completely unimportant place. You know

eventually the thing that's going to happen is that this thing that's in a region of no

probability is going to spread out and include something that has some probability,

and then you're going to nail that region with some probability. I can't prove this to

you, and I'm not even sure that it's always true, but I think if you try a couple of

examples you will see that it sort of does the right thing.

AUDIENCE: But in the algorithm, you replace the point at the point of expected value in that

region. So, the algorithm doesn't know what to do at that point. It crashes.

PROFESSOR: Well, unless you're smart enough to write the program to do something sensible,

yes.

AUDIENCE: [UNINTELLIGIBLE PHRASE].

PROFESSOR: Yes. And you have to write it so it'll do something reasonable then. The best thing to

do is to start out without having any of the regions have zero probability.

AUDIENCE: We have that [UNINTELLIGIBLE PHRASE].

PROFESSOR: All right. Well then you have to use some common sense on it.

So, after that we say OK, well just like when we were dealing with discrete source

coding, any time we finish talking about encoding a single letter, we talk about what

happens when you encode multiple letters in the same way. Somebody is bound to

think of the idea of encoding multiple real numbers all together. So they're going to

think of the idea of taking this sequence of real numbers, segmenting it into blocks

of n numbers each and then taking the set of n numbers and trying to find a

reasonable quantization for that. In that case, the quantization points are going to

be n vectors. The regions are going to be regions in n dimensional space.

Well, if you think about it a little bit, these n dimensional representation points, if

you're given them, the place where you're going to establish the regions then is on

the perpendicular bisectors between any two points. Namely, for each two points

4



you're going to establish a perpendicular bisector between those two points, you're

going to do that for all sets of points. You're going to take regions which are

enclosed by all of those perpendicular bisectors, and you call those the voronoi

region. Remember, I drew an example of it last time that looked something like this.

You have various points around. It's hard to draw it in more than two dimensions.

So these perpendicular bisectors go like this and so forth. I think you can show that

you've never had the situation -- interesting problem if you want to play with it. I

don't think you can have that, but I'm not sure why.

Anyway, you do have these voronoi regions. You have these perpendicular

bisectors that you set up in two dimensional space or in high dimensional space.

Then given those regions you can then establish representation points, which are at

the conditional means within those regions. You really have the same problem that

you had before, it's just a much grubbier problem because it's using vectors, it's an

n dimensional space. For this reason this problem was enormously popular for

many, many years, because many people loved the complexity of it. It was really

neat to write computer programs that did this. Back in those days you had to be

careful about computer programs because computation was very, very slow, and it

was a lot of fun. When you get all done with it, you don't gain much by doing any of

that. The one thing that you do gain is that if you take square regions, namely, if you

take a whole bunch of points which are laid out on a rectangular grid and you take

regions which are now little rectangles or little squares, and you look at them for a

while, you say that's not a very good thing to do.

A better thing to do is to take all this two dimensional space, for example, and to fill

it in to tile it we say with hexagons as opposed to tiling it with rectangles or to tiling it

with squares. If you tile it with hexagons, for given amount of area you get a smaller

mean square error. If you could tile it with circles that would be the best of all, but

when you try to tile it with circles you find out there's all this stuff left in the middle,

like if you've ever tried to tile a floor with circles you find out you have to fill it in

somehow and it's a little bit awkward. So hexagons work, circles don't. If you then

go on to a higher number of dimensions, you get the same sort of thing happening,

you get these nice n dimensional shapes which will tile n dimensional volume. As n
5



gets larger and larger, these tiling volumes become closer and closer to spheres,

and you can prove all sorts of theorems about that. But the trouble is when you get

all done you haven't gained very much, except you have a much more complex

problem to solve. But you don't have a much smaller mean square distortion.

So you can still use Lloyd-Max. Lloyd-Max still has as many problems as it had

before in finding local minima. With a little bit of thought about it you can see it's

going to have a lot more problems. Because visualize starting Lloyd-Max out where

your points are on a square grid and where your regions now are a little square. So

in other words, like this. Try to think of how the algorithm is going to go from that to

the hexagons that you would rather have. You can see pretty easily that it's very

unlikely that the algorithm was ever going to find its way to hexagons, which by

looking at it a little further away we can see it's clearly a good thing to do. In other

words, Lloyd-Max algorithm doesn't have any vision. It can't see beyond its own

nose. It just takes these points and looks for regions determined by neighboring

points, but it doesn't have the sense to look for what kind of structure you want. So

anyway, Lloyd-Max becomes worse and worse in those situations and the problem

gets uglier and uglier.

Then, as we said last time, we stop and think and we said well gee, we weren't

solving the right problem anyway. As often happens when a problem gets very

popular, people start out properly by saying well I don't know how to solve the real

problem so I'll try to solve a toy problem. Then somehow the toy problem gets a life

of its own because people write many papers about it and students think since there

are many papers about it, it must be an important problem. Then since there are

these open problems, students can solve those open problems and get PhD theses,

and then they got a in a university, and the easiest thing for them to do is to get 10

students working on the same class of problems and you see what happens. I'm not

criticizing the students who do that or the faculty members who do it, they're all

trapped in this kind of crazy system.

Anyway, the right problem that we should have started with is when we look at the

problem of quantization followed by discrete source coding, we should have said

6



that what we're interested in is not the number of quantization levels, but rather the

entropy of the set of quantization levels. That's the important thing because that's

the thing that determines how many bits we're going to need to encode these

symbols that come out of the quantizer. So the problem we'd like to solve is to find

the minimum mean square error quantizer for a given representation point entropy.

In other words, whatever set of points you have, you want to minimize the entropy

of that set of points. What that's going to do is to give you a larger set of points, but

some points with a very small probability. Therefore, those points with a very small

probability are not going to happen very often. Therefore, they don't affect the

entropy very much, and therefore, you get a lot of gain in terms of mean square

error by using these very improbable points.

That's a very nasty problem to solve. And again, we said well let's try to solve a

simpler version of it. A simpler version of it is first to go back to the one dimensional

case and then say OK, what happens if we just use a uniform quantizer, because

that's what most people use in practice anyway. If we use a uniform quantizer and

we talk about a high rate uniform quantizer, in other words, we make the

quantization points close together, what's going to happen in that case? Well, the

probability of each quantization region in that case is going to be close to the size of

the representation interval, in other words, of the quantization interval, times the

probability density within that interval. Namely, if we have a probability density and

that probability density is smooth, then if you take very, very small intervals you're

going to have a probability density that doesn't change much within that interval.

Therefore, the probability of the interval is just going to be the size of that

quantization interval -- in a uniform quantizer you'll make all of the intervals the

same -- times the density within that integral. Then we say OK, let's look at what the

entropy is of that set of points, of the set of points where the probabilities are

chosen to be some small delta times the probability density there. I'm going through

a slightly simpler kind of argument today than I did last time, and I'll explain why I'm

doing something simpler today and why I did something more complicated then.

So this entropy is this quantity. If we now substitute delta times the density for pj

7



here, we get the sum over j of this delta pj, which is the probability density times the

logarithm of delta pj. Well now look, the logarithm of delta pj is just logarithm of delta

plus logarithm of pj. So we're taking the sum over all the probability space of

logarithm of delta. That comes out. So we get a minus log delta, and what's left is

minus the sum of delta pj log pj. Does that look like something? That looks exactly

like the approximation to an integral that you always talk about. Namely, if you look

at a Reimann integral, the fundamental way to define a Reimann integral is in terms

of splitting up that integral into lots of little increments, taking the value of the

function in each one of those increments, multiplying it by the size of the increments

and adding them all up.

In fact, we're going to do that a little later today when I try to explain to you what the

difference is between Reimann integration and Lebesgue integration. should Don't

be frightened if you've never taken any mathematics courses, because if people

had taught you Lebesgue integration when you were freshmen at MIT or seniors in

high school or whenever you learned about integration, it would have been just as

simple as teaching about Reimann integration. One is no simpler and no more

complicated than the other, so we're really going back to study something you

should have learned about five years ago, maybe.

So anyway, when we represent this as an integral, we get this thing called the

differential entropy, which is the integral of p of u minus p of u times log of p of u. So

the entropy of the discrete representation is minus log delta plus this differential

entropy. The mean square error in this uniform quantizer, the conditional means

according to this approximation are right in the middle of the intervals. So we have a

uniform probability interval of width delta, a point right in the middle of it, and even I

can integrate that to find the mean square error in it, which is delta squared over 12,

which I think you've done at least once in the homework by now.

So I said I was going to tell you why I went through doing it this simpler way this time

and put in a lot more notation last time. If you really try to trace through what the

approximations are here, the way we did it last time is much, much better, because

then you can trace through what's happening in those approximations, and you can

8



see, as delta goes to zero, what's happened.

Yes?

AUDIENCE: This may be an obvious question, why did you substitute delta with pj [INAUDIBLE

PHRASE]?

PROFESSOR: Oh, why did I--? OK, this is the probability of the representation of the j's

representation point. This is the probability density around that representation point.

The assumption I'm making here is that f of u was constant over that interval. And if

the density is constant over the interval, if I have a density which is constant over an

interval of width delta, than the probability of landing in that interval is the width

times the height.

AUDIENCE: I think there's a typo in your [UNINTELLIGIBLE PHRASE].

PROFESSOR: A typo?

AUDIENCE: [UNINTELLIGIBLE PHRASE].

PROFESSOR: Yes, yes, yes. I'm sorry, yes. I'm blind today. I knew what I meant so well that I

didn't -- thank you. s of uj. s of uj. Yes. Then I take out the delta and what I'm left

with is the delta f of uj times the log of f of uj. Thank you. When I look at that it's

delta times the probability density times the log of the probability density. If I convert

that now into an interval when delta is very small, I get this thing called the

differential entropy. Does that make a little more sense? So your question was

obvious, it was just that I was a total dummy.

So let's summarize what all of that says. In the scalar case we're saying -- I have

said but I have not shown -- that a uniform scalar quantizer approaches an optimal

scaler quantizer. I haven't explained it all in class why that's true. There's an

argument in the notes that points it out. You can read that there. It's just another

optimization, but it's true if you're looking at a higher and higher rate, a scaler

quantizer where delta gets smaller and smaller, then in general what you need is to

take a different size delta for each quantization region and then look at what

9



happens when you try to optimize over that and you find out that you want to make

all of the deltas the same.

The required number of encoded bits per symbol depends only on h of u and on

delta. This is the most important part of all of this. It says that as you change this

differential entropy, if you try to draw a curve between H of v and MSE, and there's

a curve like that drawn in the notes, if you change the differential entropy, it just shift

this curve left and right. For a given value of h of u, this is a universal curve. In other

words, as you change delta, this quantity changes and this quantity changes. That's

the only variable which is left in here at this point. When you make delta half as big,

if you want to get a higher rate quantizer, what happens? Your mean square error

goes down by a factor of four. Delta squared goes down to 1/4 of its previous value.

What happens here, at log of delta? Delta has changed by a factor of 1/2. H of v

goes up by one bit. So you take one more bit in your quantizer and you get a mean

square error, which is four times as small. Any time you think of what kind of

accuracy you need on a computer or something, I think this is obvious to all of you,

if you put it in terms of something you're already familiar with. If you use 16 bit

quantization with fixed bit numbers and then you change it to 24 bit accuracy, what's

going to happen? Well, everything is going to get better by a factor of 256, and

since we're talking about mean square error, it's going to be four times that. So

that's just saying the same thing that you know.

For vector quantization, uniform quantization again approaches optimal for a

memoryless source. If you have a source with memory, vector quantization gains a

great deal for you. But if you don't have any memory, vector quantization doesn't

gain much at all. The only thing that vector quantization gains you is this thing we

call a shaping gain now. We talk about that again when we start talking about

modulation. If you change from a square set of points to a hexagonal set of points

and you keep the areas the same, the mean square error goes down by a smidgen

-- something like 1.04 or something. It's not a big deal but there's some gain, so the

gain is not impressive. The big gains come when you look at the memory and when

you take that into account.

10



So now we want to get on to the last part of our trilogy when we're talking about

source coding. Remember, when we were talking about source coding, we broke it

up into three pieces. The first piece we called it sampling, which took a wave form,

turned it into a sequence of numbers. That's what happens here. We then quantize

the sequence of numbers, either one number at a time or with a vector quantizer n

numbers at a time. We just finished talking about that. The first five lectures in the

course were all talking about discrete encoding, and whenever you're going from

wave forms to bits, you gotta go through all three of these.

Now, sampling is only one way to go from wave form to sequence, and filtering is

only one way to get back. We're going to talk about sampling. We're probably going

to teach you more about sampling than you ever wanted to know. But it turns out

that it's worth knowing. After you understand it you never forget it. There's a lot of

stuff to go through to start with, but finally, I hope, it all makes sense. But anyway,

the thing we're going to be talking about today is really the question of how do you

go from wave forms to sequences, it's that simple. How do you in general take wave

forms, turn them into sequences? How do you go back from sequences to wave

forms? We're going to spend quite a bit of time on this. We're going to spend three

lectures talking about it, and probably with today thrown in it'll be closer to three and

a half lectures. It's not only because we want to talk about the problem with source

coding, because as soon as we start talking about channels, we're going to have

the same truck problem looked at in the opposite direction. We're going to start out

with binary data. We're then going to go through a modulator, we're going to find

symbols. From the symbols, from the numerical symbols, we're talking about a

sequence of things and we have to go from the sequence to wave forms. So, both

of those problems are really the same. We're talking about it first in terms of source

coding, but whatever we learn about wave forms to sequences will be general and

will be usable for both.

So I want to review why it is that we want to spend so much time on this analog

source to bit stream problem. I just told you one of the reasons which is not here,

which is that it's a good way to get into the question of what do we do with channels.

11



But the other reasons, and we've talked about them all, and they're all important

and you ought to remember them, because often we get so used to doing things in

a certain way that we don't know why we're doing them and then somebody

suggests something else and we say oh, that's a terrible idea because we've always

done it this way.

One of the reasons why we want to go to bits is that a standard binary interface

separates the problem of source and channel coding. This was, in a sense, one of

Shannon's great discoveries, and he also showed that you could do it without really

any loss. Another reason is you want to multiplex data on high speed channels. This

is perfectly familiar to you. I think to everyone today we think of sending data over

the web and we're all used to using the web all together. I send my stuff, you send

your stuff, I get my stuff off, you get your stuff off, and this stuff was all going over

common channels. It's going over optical fibers into MIT, and then it splits up at MIT

and goes into many places and then it goes many places again. But this idea of

multiplexing data is perfectly straightforward. If we didn't do any of this, if all of my

stuff was really wave forms and all of your stuff was images and if all of somebody

else's stuff was data and every piece of the internet had to worry about all those

different things, when you start worrying about all those different things you create

an awful lot of other things also. We just wouldn't have any internet today.

So this multiplexing is a big deal, too. You can clean up digital data at each link in a

network. In other words, if I'm sending analog data from here to San Francisco and

I'm sending it over multiple different links, on every link a little bit of noise gets

added to it. That noise keeps adding up because there's no way to clean it up,

because nobody knows what I sent. If I'm sending digital data, at the receiver on

each link, nobody knows what I sent, no, but they know that what I sent was one out

of a finite collection of things. There's something called repeating going on there at

every channel, which takes what is received as an analog signal and, in fact,

knowing what the encoding process was, goes back to cleaning it up to a digital

signal again. If you believe all of that and if you think it's simple, it's not. We're going

to talk about it later. At this point, it's only plausible, and we're going to justify it as

we move on.
12



We can separate problems of wave form sampling from quantization from discrete

source coding. In other words, we not only have the layering between sources and

channels, but we also have this layering for sources, which goes between wave

form to sequence separation, then sequence and quantization into a finite set of

symbols. Then a finite set of symbols getting coded. So, three separate things we've

learned about, we can separate them all very nicey.

So we said that in this wave form, the sequence business, sampling is only one way

to go. I'm going to show that to you right away at the beginning by talking about

Fourier series. How many of you have studied Fourier series and say spending

more than a couple of hours of your life thinking about Fourier series? OK, good,

quite a few of you, that's nice. Because we have to assume that you know a little bit

about this, but probably not a whole lot. There's a formula for a Fourier series,

which is probably not the formula for a Fourier series that you're used to. It says the

Fourier series of a time-limited function matched the function to a sequence of

coefficients. Here's the formula. Here's the function. You can represent the function

as a sum of coefficients times these complex exponentials. You do that over this

interval minus capital T over 2 less than or equal to t, less than or equal to capital T

over 2. The complex coefficients satisfy this equation here. That's just what you've

seen before.

The way this is different from what you've probably seen before is that most people

think that you use Fourier series for periodic functions. In other words, if we leave

out this part here, leave out this, then this quantity here is a periodic function,

because each of the what have you are all squiggling around with a period which is

a sub-multiple of capital T. So that, in fact, this is a periodic function with period t. If I

think of it as a periodic function I don't have to worry about this, this still works for

any periodic function. The problem is this isn't the way the Fourier series is usually

used. Occasionally, you want to talk about periodic functions, but most often what

you want to do is you want to take a function which exists only over some finite

interval and you want some way of mapping that function into a set of coefficients. I

take a function only over the interval minus t over 2 to capital T over 2, and I can

13



map that into a sequence of coefficients, I have, in fact, done what I said we're

interested in doing right now, which is turning a wave form into a sequence. The

only problem with it is it's a fine duration wave form, which I'm turning into a

sequence.

Now how do you do speech coding? There's an almost universal way of doing

speech coding now of turning speech, analog wave forms, into actual data, into

binary data. The way that it always starts, I mean everybody has their own way of

doing it, but almost everyone takes the speech wave form and segments it into 20

millisecond intervals. Each 20 millisecond interval is then encoded into a sequence

of coefficients. You can think of that as taking each 20 millisecond interval, creating

a Fourier series for it, and the Fourier series coefficients then represent the function

in that interval. You go on to the next interval, you get another sequence of Fourier

coefficients and so forth. Now, most of these very sophisticated voice coders don't

really use the Fourier series coefficients because there's a great deal of structure in

voice, and the Fourier series is designed to deal with any old thing at all. But the

Fourier series is a good first order approximation to what's going on when you're

dealing with voice coding. when you're dealing with voice coding you are certainly

looking at frequencies, you're looking at formats, which are ranges of frequencies. If

you want to think about those problems, you better start to think in these ways here.

So anyway, this is not just mathematics, this is one of the things that we need to

understand how you do actual wave forms to sequences.

We're not going to talk too much about where these formulas come from too much.

It is interesting that this also works for complex functions as well as real functions.

There's a nice sort of symmetry there, because the coefficients are all going to be

complex anyway, because of these things here which are complex. Incidentally, we

always use i in this course for the square root of minus 1. Electrical engineers have

traditionally used the letter j for the square root of minus 1 for the rather poor

reason that they like to refer to current as i. In the first two years of an earlier

electrical engineering education back 50 years or so ago, you spent so much time

talking about voltages and currents that using the letter i for anything other than

14



current was just an abomination. Well, everybody else in the world uses i for the

square root of minus 1. So in this course we're going to do the same thing. I would

urge you to get used to it because then you can talk to people other than electrical

engineers, and you'll probably have to spend a lot of time in your life talking to other

people. You shouldn't expect them to get used to your conventions, you should try

to do a little to get used to their conventions. So there's that peculiarity.

We're also using this complex notation throughout. You could do this in terms of

sines and cosines, which is probably the way you first learned it. I'm sure for any of

you who spent more than a very, very small amount of time dealing with Fourier

series, you did enough with it to realize that just computationally going from sines

and cosines to complex exponentials just makes life so much easier and makes

your formula so much shorter that you want to do it. So anyway, we want to make

this work for complex signals as well as anything else.

I do want to verify the formula for these Fourier coefficients. Incidentally, the other

thing that I'll be doing which is a little bit weird here is that most people when they

talk about the Fourier integral and the Fourier series they use capital letters to talk

about frequencies and they use little letters to talk about signals. For us, we really

want to use capital letters to talk about random variables, and we do that pretty

consistently. Believe me, when we start talking about random processes, you will

get so confused going back and forth between sample values and random of

variables, that having a notation way to keep them straight will be very valuable to

you. When you start reading the literature you get even more confused because

most people in the literature don't tell you what it is that they're talking about and

they go back and forth between sample values and random variables, oftentimes

using the same symbol in the same sentence for two different things. So I think

that's a more important thing to keep straight, so we'll always use tildes to talk about

frequency type things. You can see that these coefficients here are, in fact,

frequency-like things because they're talking about how much of this wave form is at

a certain discrete frequency, and we'll come back to talk about that later.

But anyway, if you want to verify the formula for this, what we're going to do is to

15



start out by looking at -- this is where having smaller data would be a big help. u of t

is equal to this sum here. So I'm going to replace u of t in this formula by this sum.

I'm going to make the index m because I already have a k over here. When we

have a k over here and you're talking about this, you don't want to get your indexes

mixed. So if I'm trying to see what this looks like, I want to represent as the integral

from minus t over 2 to plus t over 2 of this representated as a sum with e to the

minus 2 pi i kt over t taken into account over here. So what happens here? Here we

have an integral of a sum. Later on we're going to be a little bit careful about

interchanging integrals and sums, but for now let's not worry about that at all. I

suggest to all of you, never worry about interchanging integrals and sums until after

you understand what's going on. Because if you start asking about that -- I mean

that's a detail. You look at what's going on in a major way first, and then you go

back to check that sort of thing out.

So when we look at this integral here, when we take the sum outside, we have the

sum over m of an integral over one cycle of these quantities here, of this times e to

the 2 pi i times m minus kt over t. Now, you look at this integral here of a complex

exponential as it's rotating around. In the period of time t, this always rotates around

some integer number of times. If m is equal to k, it doesn't rotate at all, it just sticks

where it is, at 1. If m is unequal to k, it goes around some integer number of times.

If I'm thinking of this as being real and this as being imaginary, I'm just running

around this circle here. So what happens when I run around the circle once? The

integral is zero because I'm up here as much as I'm down here, I'm over here as

much as I'm over here. So this integral is always zero, which says that all of these

terms except when m is equal to k disappear. So that means I wind up with just this

one term u hat of k times the integral from minus t over 2 to t over 2dt. That's

another integral I can evaluate, and it's equal to capital T times u sub k. So, u sub k

is this quantity here divided by t, which is what we said over here. In fact, that

argument, you can make it precise and it works.

So what this is saying is that, in fact, if you look at these Fourier series formulas, this

thing is pretty simple in terms of this. The question which is more difficult is what

functions can you represent in this way and what functions can't you represent in
16



this way. The easy answer is if you can think of it you can represent it in this way.

But if you stop and think about it for six months, then that might not be true

anymore. So if you become very good at this, you can find examples where it

doesn't work, and we'll talk about that as we go on.

Let's define this rectangular function because we're going to be using it all the time.

You probably used it when dealing with the Fourier integral all the time because you

all know that a rectangular function is a Fourier transform of a sync function where a

sync function is a sine x over x type function. If you don't remember that, fine. But

anyway, this function is 1 in the interval minus 1/2 to plus 1/2 and it's 0 everywhere

else, which is why it's called a rectangular function. It looks like this. We do it from

minus 1/2 to plus 1/2 so it has area 1. In terms of that, we can express the formula

for a time-limited function as this sum here, uk times these complex exponentials

times this rectangular function. How many of you can see it ought to be rectangle of

t over capital T instead of rectangle of t times t? Good. I can't. I always have to take

two minutes doing that every time I do it, and if you can see it in your mind you're

extremely fortunate. When we work with these things for a while, you will become

more adept at doing things like that. But anyway, this works.

I want to look at an example now. And there's several reasons I want to look at this.

One is to just look at what a Fourier series does. Suppose we expand the function,

the rectangular function of t over 2. Now the rectangular function of t over 2 is going

to be 1 from minus 1/4 to plus 1/4, instead of minus 1/2 to plus 1/2, because of the

2 in here. We want to expand it in a Fourier series over the interval minus 1/2 to

plus 1/2. One of the things this is telling you is that when you're expanding

something in a Fourier series, you have to be quite explicit about what the interval is

that you're expanding it over. Because I could also find a Fourier series here using

the interval minus 1/4 to plus 1/4, which would be a whole lot easier. But we're

gluttons for punishment. So we're expanding in a Fourier series over the bigger

interval from here to there. We go through these formulas calculating u sub k. We

can easily do it for the first one, which is just u sub zero. It's just the average value

in this interval minus 1/2 to 1/2, which is 1/2. The next term turns out to be 2 over pi

17



times the cosine of 2 pi t. We can evaluate all of them just going through more and

more junk like that. But look at what's happened. We started out with a rectangular

function. When we evaluate more and more terms of this Fourier series, the Fourier

series terms are all very smooth. So what we're doing is trying to represent

something with sharp corners by a series of smooth functions. Which means if we're

going to be able to represent it, we're only going to be able to represent it by adding

on more and more terms, which hopefully are going to be coming closer and closer

to approximating this the way it should be approximated.

Now if you look at these terms here, these Fourier series, you will notice that every

one of them, except this original one which is at 1/2 -- so this is the first term here in

the Fourier series. The second term is to add on that cosine term. The first term is

sitting here at 1/2. Every other one of them is zero at minus 1/4 and zero at plus

1/4. So when we add up all of those terms, what we wind up with is not what we

started out with, but something which is 0 from minus 1/2 to minus 1/4. It's 1/2 at the

value minus 1/2. It's 1 all along here. It's 1/2 over here, and 0 down here. Every

time you study Fourier series you find out about these bizarre things. Every time

you have a discontinuity in the function, the Fourier series comes out to split the

difference on you. So you like to define your functions at discontinuities as either

being here at minus 1/4 or here at minus 1/4. Then when you come back from the

Fourier series, it forces you to be there.

Well, what does this say? It says that u of t, which we started out defining to have a

certain value at minus 1/4 and plus 1/4, is equal to its Fourier series everywhere

except here and here. I have to ask you to take that on faith. But you can see that

it's not equal to it at those discontinuities. And it shouldn't be surprising that it's not

equal to its discontinuities. I could have defined it as being zero at minus 1/4 or 1 at

minus 1/4, and just that one point shouldn't change our integrals too much. Because

of that as engineers, I mean at some level we have to say we don't care. It's only a

modeling issue. Functions don't have perfectly straight discontinuities in them. If

they do you don't care how you define it, it's a discontinuity.

This Fourier series is sort of coming back and slapping us with that. And it's saying

18



OK, the function u of t is not the same as its Fourier series because the two are

different at these two points. You say OK, I don't care that they're not different at

those two points. They're the same everywhere else. A mathematician comes back

and says a function is a function is a function, and a function is defined at every

value of t, and if u of t is equal to v of t, it means that at every value of t, u of t is

equal to v of t. And you say ah. Well, turns out that by studying Lebesgue theory, all

of those problems get resolved. Lebesgue was a very powerful mathematician. But

you know at some level deep in his heart, he was an engineer. He was trying to get

rid of all this nonsense that people talked about, and he resolved this question

about how to talk about these functions in a nice way. I mean really, good engineers

are mathematicians at heart, too. I mean at some level we all become the same.

What Lebesgue tried to say is that two functions are said to be equivalent in the L2

sense -- I'll talk about this L2 notation later -- if their difference has zero energy. In

other words, Lebesgue said what's really important is not what functions are at each

point, but really things about their energy. So what you would like to have is if u of t

and v of t, if the difference between them, you take the magnitude of that and you

square it, if that difference is equal to zero, you have to recognize that there's no

possible way that you could ever distinguish those two functions, except just by fiat,

by saying this is equal to this and not equal to that. That's the only way you could

straighten that out in your minds. So we say the two functions are L2 equivalent if

their difference has zero energy. Well, we have a couple of problems there. How do

we define that? At this point, we're sort of already deep in the mathematical soup

because, in fact, we're trying to make these small distinctions and make them make

sense. We're also going to see, as we go on to two functions that have the same

Fourier series, are L2 equivalent, because if two functions have the same Fourier

series, put one of them there and one of them there, and we're going to see that

when we expand it in a Fourier series they're both the same, and we're going to see

that, in fact, what that means is that their energy difference has to be zero. Which

says that if you don't talk about functions, but if you talk about their Fourier series,

all of these confusions go away about things having to be equal point-wise.

So let's go on and try to say a little more about this. One of the problems that we
19



come up with is that not all time-limited functions, in fact, have Fourier series, even

in a sense of L2 equivalents. You can think of functions which are so awful that they

don't have a Fourier series, although it's hard to find them. We really want to make

general statements about classes of functions. Why do we want to do that? Well, I

can give you two reasons for it. The two reasons are both, I think, both good

reasons. The first reason is that as we deal particularly with channels, we have to

look at things both in a time domain and in a frequency domain. We look at things in

the domain and the frequency domain, we have a function in a time domain, we

have a Fourier transform in the frequency domain, and it turns out that nice

properties in a time domain are not always carried over to the frequency domain

and vice versa. Give me one example of that.

Suppose you think of a constant. The constant function, which is equal to 1

everywhere on the real line. Nice function, right? It models various things very well.

It doesn't model physical reality, really, because I mean you don't care what this

function was before the fourth ice age. You don't care what it is after we all blow

ourselves up, I hope in not too many years. I mean I hope in more than just a few

years. Therefore, when we model something as a constant, what do we mean? We

mean that over the interval of time that we're interested in, this function is equal to a

constant. And it means we don't want to specify what the time interval is that we're

interested in, which is a common thing, because you don't want to set time limits on

something.

Now, you take those functions which go on and on forever. Well, the Fourier series,

you don't have any problem with them because we're going to truncate the function

anyway before we take a Fourier series. But if we look at the Fourier integral, and

we'll see this as soon as we get into the Fourier integral, the awful thing is that what

has happened in the thousand years before the fourth ice age back, is just as

important in the Fourier transform as what happens in the thousand years right

now. In other words, everything is important. Things back in the dim past clobber

you in a frequency domain. Things in the distant future clobber you in the frequency

domain. Therefore, since we have to face the fact that we're dealing with

20



approximations, since we have to face the fact that we want to ignore things -- back

there we want to ignore things there. When we look at constants in the frequency

domain, we don't mean that something is constant over all frequency. We mean it's

constant over the range of frequencies that we're interested in and we don't want to

specify what that range is. You have the same problems going from there back to

time.

So, as soon as we face the fact that we're really interested in approximations, and

the approximations that we deal with normally in time are not the same as the

approximations we deal with in frequency, at that point, we start to realize that we

have to be able to make general statements about what functions do what kinds of

things. We have to make general statements about what has a Fourier transform,

what doesn't, what has a Fourier series, what doesn't have a Fourier series.

Now, one of the things we're aiming at is to define a class of functions called L2

functions. These are basically functions which have finite energy. The nice thing

about those functions is that every one of them has a Fourier transform, and the

Fourier transform is also an L2 function. All the other things that you deal with --

continuity, things like that -- doesn't carry over at all. L2 is the only property that I

know of that really carries over from time functions to Fourier transform. So we

really want to be able to talk about that.

So we want to talk about these finite energy functions. We want to be able to talk

about representing finite energy functions. I say here, all physical wave forms have

finite energy, but their models do not necessarily have finite energy. In other words,

we look at a constant -- a constant does not have finite energy. How about an

impulse? Does an impulse have finite energy?

AUDIENCE: [INAUDIBLE].

PROFESSOR: What? Yes? How many people think the answer is yes? The hands are going up

very slow. Well, the answer is no. Let me explain why. It's something you should

know. But it's something that you get blinded by studying too much signals and

systems before you study any communication, because you're talking about all sorts

21



of transforms, all sorts of things that you deal with as functions, which you're dealing

with electronically, instead of those functions that you're interested in transmitting. If

you think of a narrow pulse of height 1 over epsilon, and of width epsilon, it has unit

area. So I make epsilon very, very small. This starts to look like a unit impulse,

right? In fact, you usually define a unit impulse somehow or other as thinking of

some limiting process for this kind of rectangular function. What's the energy of that

function? What?

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: Energy is 1 over epsilon, yes. What happens as epsilon goes to infinity? Bing. If you

put an impulse into an electrical circuit it'll blow it up. You usually don't care about

that because you don't see impulses in the physical world. You see things which are

so narrow and so tall that in terms of the filters that you put them through, which

have smaller bandwidth, those narrow pulses behave very nicely, and as you make

those narrow impulses more and more high and more and more narrow, they

behave the same way after they go through a filter. But before that they're ugly and

they have infinite energy.

In fact, you could determine that from two of the statements I made earlier, and I'm

sure I can't blame any of you for not doing that. I said that all finite energy functions

have Fourier transforms which are finite energy, and you all know that the Fourier

transform of a unit impulse is a constant, and the Fourier transform of a constant is

a unit impulse. Therefore, if the constant has infinite energy, the unit impulse has to

have infinity energy also. So anyway, we have all these functions we like to deal with

all the time which do not have finite energy. We don't want to deal with those in this

course, not because they aren't very useful in signal processing, but because they

aren't useful as wave forms which we will transmit, and they aren't very useful as

source wave forms. Source wave forms do not behave that way. Source wave forms

that we want to encode all have finite energy, and we'll see why as we go on.

So now I want to try to tell you what the big theorem is about Fourier series. I will do

this in terms of a bunch of things that you don't understand yet. The theorem says

22



we're looking at a function u of t, which is time-limited -- nothing strange there, that's

what we've been looking at all along so far. It's a function that goes from minus t

over 2 to t over 2, and we'll let it go into the complex numbers because we said it's

just as easy to deal with complex functions as real functions. We're going to assume

that it has finite energy. Then it says for each index k, the Lebesgue integral, u sub

k equals this. In other words, this is the formula for finding the Fourier series

coefficient. What we're saying here is we have to redefine that to be a Lebesgue

integrall instead of a Reimann integral. But anyway, when you define it that way it

always exists and it is always finite, necessarily. It can't be infinite, it can't not exist.

It just is there.

The other thing is -- now this formula is harder to swallow as a whole. Let's try to

look at it. What's inside of here is the difference between u of t and a finite

approximation to the Fourier series. Now if you're taking a Fourier series, whether

you're taking it on a computer or calculating it or what you're doing with it, you're

never going to take the infinite sum. You're always going to be dealing with some

finite approximation. This says that the different between u of t and these finite

approximations, if you take that difference and you find the energy in that

difference, says the energy in that difference gets small. In other words, it says that

as you take more and more terms in your Fourier series, you get a function which

comes closer and closer to u of t in terms of energy difference.

So that's the kind of statement that we want in this course, because we're aiming

towards saying that this in the limit looks like that in terms of having zero energy

difference between it. Namely, this is going to allow this function to converge to one

of these strange functions that has bizarre values on discontinuities of u of t,

because that doesn't make any difference in terms of energy. It says also the

energy equation is satisfied. The energy equation -- I didn't say it was the energy

equation -- I hope I said what it was. Blah blah blah. I have to write it down. The

energy equation says that the integral of u of t magnitude squared dt from minus t

over 2, the t over 2 is equal to the sum over k of u hat of k magnitude squared. And

there's a 1 over t in here. There's either a 1 over t or a t -- I'm pretty sure it's a 1

over t, but I wouldn't swear to it. I can't believe I didn't have that written down. At
23



any rate it's in the notes. So you will find it there. I can't keep these constants

straight. I think I did it wherever I stopped -- here. That's where I did it. That's the

energy equation. Yeah, I got it right, amazing. The integral of u of t squared dt is

equal to t times the sum of all the Fourier coefficients. I forgot to say this. This is

something I wanted to say. This energy equation is important because in terms of

source coding, if you take a function u of t, if you find this Fourier series, u of k,

that's a sequence of coefficients. If we take that sequence of coefficients and we

quantize them to some other set of values, v sub k, and then we recreate the

function corresponding to this set up Fourier coefficients, we get sum v of t. So we

start out with u of t, we go all the way through all of this chain, going through a

channel and everything else, come back with some function v of t. This applied to u

of t minus v of t says that the energy difference between u of t, and our re-created

version v of t, is exactly the same as t times the sum of the differences between u

sub k and v sub k squared. Now, that is the reason why most people talk about

mean square error most of the time, because if you can control the mean square

error on your coefficients, you're also controlling the mean square error on the

functions. This formula does not work for magnitude or cubes or fourth powers or

anything else. It only works for these square powers. That's why everybody uses

mean square error rather than other things. It also makes sense for energy,

because we believe in, in some sense, energy ought to be important and energy is

important.

So, the final part of the theorem says that finally, if you start out with a sequence of

complex numbers and the sequence of numbers has finite energy in this sense,

then there's an L2 function, u of t, which satisfies all of this stuff. In other words, you

can go from function to Fourier series, you can go from Fourier series to function.

You can go either way. So long as you have finite energy this all works.

I want to spend just a couple of minutes talking about the difference between

Reimann and Lebesgue integration to show you that, in fact, it isn't really any big

deal. When you're talking about Reimann integration -- I've just showed the integral

for a function between zero and 1. How do you conceptually find the integral of a

24



function -- a Reimann integral, which is what you're used. You split up the interval

on the horizontal axis into a bunch of equal intervals of size 1 over n each. So you

split it into n intervals, each one a size 1 over n. You approximate the value of the

function in each interval somehow, as the smallest value, the largest value, the

mean value, whatever you want to do. That doesn't make any difference because

as the intervals become smaller and smaller and smaller and you have a function

which is sort of smooth in some sense, then this Reimann sum here is going to get

close to this interval. In other words, the Reimann sum is going to approach a limit,

and that limit is defined as the Reimann integral. So that's the thing you're used to.

The Lebesgue integral is similar, oh and in a sense, it's no more complicated. What

you do is instead of quantizing the horizontal axis into regions of size 1 over n and

letting 1 over n get small, you quantize the vertical axis into intervals of size epsilon

and you're going to let epsilon get small later. Then the thing that you do is you ask

how much of the function is in each of these intervals here? So the amount of the

function that lies between 2 epsilon and 3 epsilon is an interval t2 minus t1 -- there's

that interval where the function is in this range. There's also this interval over here

between t3 and t4. So you say the measure of the function in this interval here is t2

minus t1 plus t4 minus t3. You say the measure of the function in this region here,

vertical region here, is t1, namely, this, plus 1 minus t4, namely, this region over

here. So for any function you can do the same thing. That's the Lebesgue integral.

Lebesgue integral says you do this and you let these epsilons get very small and

you just add them up.

Let me say just -- last slide. Turns out that whenever the Reimann integral exists,

namely, that limit exists, the Lebesgue interval also exists and has the same value.

All of the familiar rules for calculating Reimann integrals also apply for Lebesgue

integrals. For some very weird functions, the Lebesgue integral exists, but the

Reimann integral doesn't exist. For some extraordinarily weird functions, there

aren't even any examples in the notes. I couldn't find an example which I thought

was palatable, not even the Lebesgue integral exists. So the Lebesgue integral is

much more general than the Reimann integral. But the nice thing is you can almost

forget about it because everything you know to do still works, it's just that some of
25



the things that didn't work before now work. Because those things that didn't work

before now work, your theorems can be much more general than they were before.

We'll talk more about that next time.

This material we're talking about right now is in the appendix to the lectures that just

got passed out.

26


