
MITOCW | ocw-6-450-f06-2003-12-10_300k

SPEAKER: The following content is provided under a Creative Commons license. Your support

well help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: The CDMA and the cellular standard, the IS95, which is a kind of an old standard by

now, but it's still widely used. There's still three major standards that are used for

cellular communication, cellular voice communication. This is one of them. This is

the one which is primarily being used as a jumping off point for all of the new

standards that people are trying to think of. I want to talk about it for that reason but

also because it really is a nice way of pulling together almost everything we talked

about in the course. All of it comes into this one particular way of sending cellular

voice.

Let's go through some of the details of it. Some things here might sound more

detailed than what you're interested in but I think it's good to have the numbers on it

because it gives you some idea of which things, which factors are really relevant

and which ones aren't so relevant. So it uses a frequency ban from 800 to 900

megahertz. Most of the new standards that people are thinking up are up in the

gigahertz range around two gigahertz or five or six gigahertz. I don't know the exact

bandwidths. All of these bandwidths depend critically on what the FCC wants to

allocate and also depend critically one which particular bands are good for

electromagnetic propagation and which ones tend to absorb all of the radiation.

Anyway, you use the band 800 to 850 for the reverse channel for the cell phone to

the base and you use the band 850 to 900 for the forward channel. Why do you

want to separate the reverse channels and the forward channels by as much as you

can? If you think for just a minute about the power levels at your sending antenna,

either at the base station or at the cell phone itself, and then you think about how

much power you're receiving, he see there's an enormous difference between these

two. Because things get attenuated enormously after they got transmitted. So what

you're trying to do is to filter out what you're sending, which is an enormously high
1



power and you have to filter it out by enough so that it doesn't clobber what you're

trying to receive. This means you need very good filters.

How do you build very good filters? It's a lot easier to build good filters if you're not

trying to make them cut off immediately. If you have 50 megahertz, and you actually

have a lot more than that, you have exactly 50 megahertz because this is all

separated into a bunch of different channels. People in wireless, most practical

communicators, when they talk about a channel, what they're talking about is a

particular bandwidth. All along what we've been talking about is a particular medium

going from transmitter to receiver. That's what they're talking about is these

channels, these channels or sub-bands are 1.25 megahertz wide each. We'll see

what the significance of that is in a while. So you have a transmit and receive pair

which are both 1.25 megahertz wide and which are separated by 50 megahertz. So

you have one channel then, at the bottom of the range, another channel a little bit

higher, another channel, a little bit higher, and so forth all the way up. So you have

lots of different channels and you put lots of different cell phones in each channel

for each base station. So that's roughly the overall architecture of it.

It's the same kind of system that we've been talking about all along. You start out

with voice wave forms, you have voice compression. You then have channel coding,

you then have modulation and then it goes out on the channel. Guess what

happens when it comes back? You have demodulation, channel decoding, and then

you turn it back into voice. Those are the three major steps which we viewed before

primarily as two steps. All of the channel stuff is much harder than all of the source

stuff. Let's talk about the source stuff first. The input voice gets segmented into

these 20 millisecond segments. Why 20 milliseconds? Well it sort of seems like it's

probably a number that somebody picked out of a hat. It's kind of striking that all of

the standards use the same interval. If you think about it awhile -- I'll talk about this

more on the next slide -- the reason for this interval is that in voice communication,

delay is enormously important. You don't want to have much delay and since you

don't want to have much delay, you have to do encoding over very short segments.

Well anyway, what this does is it takes each 20 millisecond segment of voice and it
2



maps it into 172 bits. What that means is if you multiply the 172 by the 50 segments

that you have per second, it comes out to be 8.6 kilobits per second. That might not

sound like much of an achievement. Think about the old fashioned way that people

used to encode voice back in a time when they were first doing digital

communication. What you would was you would think of the voice as having a

bandwidth that went from about 400 hertz up to about 3,200 hertz. You would then

view it as a base band wave form zero to 4,000 hertz. If you were going to try to

sample that wave form you'd have to sample it 8,000 times per second. If you want

good quality, you then have to use a large number bits. You need a large number of

bits for each sample. The standard thing was to use eight bits per sample. That

gave you 64,000 bits per second in the old fashioned way of doing it. People have

worked for many years. Many engineers at the old Bell labs spent their whole career

trying to find out how to compress voice into smaller and smaller numbers of bits.

You know, 8.6 kilobits per second is still sort of a good rate. It's still a good rate if

you insist that you have to do it in 20 millisecond segments. If you can take much

longer segments to encode voice, you can do much better. Voice really has a lot of

constraints over relatively long periods of time. Well actually, you know this because

if you take a person's voice and you map it into text and then you also add a few

things about pitch and things like that, you can really come by with a very small

number of bits. Here you're constraining yourself to something that sounds like the

actual voice and also has to be done in these 20 millisecond segments because of

delay. So it still is a reasonably good achievement. All of the standards have figures

about like this, in the same order of magnitude. I expect that all of the new

standards will do similar things. They will probably have slightly smaller numbers of

bits. They will probably do much more computation. They will achieve a little bit

more because this was already -- I think -- relatively close to how far you can go.

The next thing they do is they add 12 parity checks per segment. They use that for

error detection. I don't want to talk about that a lot because it probably isn't

necessary. All of the standards do something or other like this. The reason is, if you

take this 20 millisecond segment and you go through all of this enormous

3



processing that we're going to go through: namely turning it into an encoded wave

form, transmitting it, receiving it, detecting it, doing all the stuff we're going to do to

it. If you get the 20 millisecond segment confused, and usually if you make errors

you make a lot of errors. If at the receiver you wind up with the wrong thing, it is

really going to sound awful. They found that it's much better if you're not quite sure

of what that segment is, to just send silence for 20 milliseconds. The silence is

hardly detectable at all; it just sounds like good voice. I mean for most of us it really

sound wonderful to have a little more silence than we usually do. Well enough of

that.

Then there's another thing. This is eight zeros per segments that are added to this

172 bits as something which is called a terminator for the convolutional code. I

might say a little bit about that but not much. So what we've done is to add 12 bits

and eight bits to this 172 bits. That brings us up to 192 bits, which brings us up to

9,600 bits per second which is what we're now going to try to transmit. OK so that's

the voice compression part of the thing and a little bits of overhead done for various

special functions. The main reason I want to talk about these overhead factors is

that every communication system I know starts out with very nice principles studying

very carefully what are the essential things. By the time you got done with it, there

are all sorts of little overhead items that got thrown in to make the thing work and it's

frustrating to everybody. It's usually 10% or 20% of the capacity of the thing, but it's

always there. That's why I bring up these two terms because that's exactly the kind

of things they're doing. They're just patching to make things work. So you have

many details that lose all of the efficiency that you would like to have. Those are

what makes it hard to compare different systems. Each system, architecturally nice

though it might be to start with, always winds up with these little things because of

these silly little constraints that say, since you have to have small delay, you have to

segment voice into segments which are not much more than 20 milliseconds long.

Those things cause you to do these other things. That's where all of this comes in.

OK, all of the timing in this IS95 cell phone system, everything is keyed to this 9,600

bits per second and it's all keyed through this 20 millisecond interval. Everything is

done in terms of 20 millisecond intervals. It's all a completely block system. The
4



source generates 20 milliseconds worth of data. You encode that into a 192 bits.

That gets mapped into some code word, gets turned into some high frequency

wave form. At the output you look at 20 milliseconds and that gets turned back into

your best hope of the 172 bits that you started with and from there to some wave

form. Every 20 milliseconds is completely independent of every other 20

milliseconds. You don't even save any knowledge about what the channel is

between those periods of time. Everything is independent from one to the next.

The point is here, we talked a great deal about all of digital communication sort of

being generated from people's realization that they ought to separate voice coding

from channel coding. In other words, there's just binary interface between all

sources and all channels. This is a violation of that; all cell phones have this

violation. They don't have this pure separation because all of them face the fact that

to do this small delay -- anytime you want to get small delay -- you have to have

some mixing of what you do with the source and what you do with the channel. The

delay has to be some combination of what happens in both places. So, we do have

that violation and it's because of interactive voice. You probably never thought

about why it is that you need small delay on voice. If you try to talk to somebody

with a 50 millisecond delay, in between what you're saying and what the other

person is saying, you will find it turns you into a stutter in about five minutes,

everyone. The problem is we all have these social conventions that we use to tell us

when we can start to talk when we hear silence from the other person. If you have a

break in that routine, even at 50 milliseconds, it totally screws it up. Both people

start to talk at the same time and it's very hard to have a conversation. Back in the

early days of telephony, they found that about as much delay as they could tolerate

was about 20 milliseconds. When it got much longer than that, it gets very

objectionable. If you talk to somebody on the phone who is in Japan, you have a

little more delay than that. You find it's very hard to talk to them. I mean, you have

to practice a little bit, you have to think about it. If it's somebody for whom English is

a second language, or you have Japanese as a second language, it's very easy.

Then you both talk very slowly so you catch up on that delay. but. If you're both

talking English very rapidly, or both Japanese very rapidly, it becomes hell on

5



wheels. As far as the channel is concerned, we could also do very well by using

longer code words on the channel. Again, we're stuck by this 20 milliseconds.

Everything has to be blocked into 20 millisecond periods.

OK, so the first thing as far as coding is concerned, is what's called a convolutional

encoder. We unfortunately, have not talked about coding at all in this course; we're

not going to talk about it. I just want to enough about convolutional codes so you get

some idea of what they are. Here's the simplest example of a convolutional code

that I think you can think of. You have a stream of input bits which are coming in

one per second. Each time an input bit comes in, that input bit sits at this dock here.

I guess most people would prefer to put an extra memory element in but it just

complicates the diagram. You have this input bit, you have the previous input bit,

and you have the input bit before that. What comes out, a time J is a linear

combination of this bit, that previous bit, and the bit one bit before that. You call this

a convolutional code with a constraint length of two because it has memory of these

two bits. If you think about it a little bit, this is a device that has four states. OK,

because at time J, it needs to remember whether this bit was a one or a zero and

whether this bit was a one or a zero. So it's just a linear modulo two device that

happens to have four states. It produces two bits in each interval of time which are

functions of this bit and of the current state.

In this convolutional encoder which is used in IS95, the constraint length is eight

instead of two. In other words, you have 8 of these memory devices here and the

rate is one-third instead of one-half Here you have two bits coming out for each bit

going in. There you have three bits coming out for each bit going in. It's the same

principle. If you think about it a little bit, as you increase the constraint length, the

number of possible states that you have is going up very rapidly. So, if you have a

constraint length of eight, which means eight binary digits stored there, you have

two to the eighth different states, which is 256 states. If you added one more state

to this thing, you would double the complexity. Well, it turns out that because of the

way the decoder works, if you added one more bit to this block length, it would

multiply the complexity of the decoder by a factor of two. So, when you try to decide

how long these constraint lengths should be, you have to take into account that
6



every time you make it one bit longer, yes, the thing is going to work better. Also,

you make it twice as complex. Therefore, you have to wait another six months

before you produce it at the same cost.

OK, we're going to use a Viterbi algorithm for decoding. If you don't know what the

Viterbi algorithm is fine. If you think in terms of finite state devices, think of it this

way; you have a device here which has four states. Somehow the decoder has to

realize at each instant of time, if it's gonna decode, it could either decode the bits

here. A nicer way to think of it is, it decodes the state, at each instant of time. If it

decodes the state at each instant of time, it doesn't really have to have any

memory. As soon as it knows what the state is at one unit of time, then it has a very

simple decision to make to figure out what the incoming bit is and what the state is

at the next instant of time. And what a Viterbi decoder is, is something that does

maximum likelihood decisions on the state. There's a nice trellis diagram to talk

about how that's done, in the notes. You can read about it, it's interesting. Many of

you who have probably seen about it, it's sort of the easiest thing to explain, as far

as coding theory is concerned. It's the easiest thing to explain until you put all the

notation in. Then whoever does it, as soon as they put all of the notation in, it

becomes a bloody mess. Anyway, the idea is simple.

So at that point, we can sort of summarize what we've done as far as waste

compression and channel coding. So far, the IS95 standard is pretty much the same

as any other cellular standard. All of them, it turns out, use convolutional codes.

Whether that's a good idea or not is another question, but they all do. It certainly is

a very sensible thing to do. All of them use the same segmentation. All of them use

similar techniques for doing voice compression. All of them have all these little

overhead terms that come in. If you look at the numbers of what's going on, we

started out with a 172 bits per second, which was what comes out of the voice

compressor. You then have these two overhead items. Incidentally this eight bit

convolutional terminator, we can now get some idea of what that's for. You put in

your 172 bits here. You're thinking of this thing in terms of the state of each unit of

time. If you're going to figure out what's going on at the end, after you put in your

7



172 bits, you have to put in a couple of extra zeros to let this thing settle down. You

have to let this bit go all the way through this device so you got enough data out

about it that you can decode it. So that's what that terminator is for, for putting zeros

in at the end of the sequence so you can view it all as one block code.

Again, this is overhead, which is caused by the need for small delay. If you're going

to need small delay, that overhead term would be much, much smaller. So at that

point, we're up to 9.6 kilobits per second and we're up 192 bits per segment. Then

we go into this convolutional encoder and the convolutional encoder multiplies

things by a factor of three. In fact, the rate one-third is a little bit different for most of

the other standards because one of the things that we're going to be doing here,

since we're mapping this input into one and a quarter mega bits, that's a

considerably broader band than these other standards used. The other standards

are quite narrow band and therefore they don't want to have a large number of bits

per second. Here we're going to wind up talking about 28.8 kilobits per second at

this point which is 576 bits per second, which is three times what we started out

with. We've expanded the number of bits by a factor of three. If you question

whether this makes sense to get a slightly smaller error probability through coding

but increasing your rate by a factor of three, that's a perfectly sensible question to

ask. It just turns out that you do get a saving from that and that's what all of coding

theory is about, how much savings you actually get. In fact, the savings are pretty

considerable. So, at this point, we're up here at 28.8 kilobits per second with 578,

576 bits per segment. We then go through an interleaver. Don't ask yet what the

interleaver is for. All the interleaver does is takes these 576 bits and it's scrambles

them all around. The receiver knows how they've been scramble so the receiver

can unscramble them again. Why you'd need that is something we will talk about

later, a good deal later.

The next thing we're going to do, you thought you were through with coding but no.

In this system, they're actually two stages of coding that you go through. You can

view one of them as modulation instead of coding. Therefore, you can claim you're

only doing one stage of coding and one stage of fairly complex modulation. You

remember when we talked about orthogonal codewords. We said we could view
8



orthogonal codewords almost as easily, either as a coding technique or as a

modulation technique. Mainly, you'd gather together lots of bits and then you'd form

codewords, which we're signals, which had a large number of dimensions in them.

We're going to do the same thing here. We are going to take this interleaver output;

we're going to segment it into six, six bit blocks. Then each six bit block is going to

choose one of a set of 64 orthogonal codewords. I mean, with six bits, you have two

to the sixth, which is 64 different combinations. So, if you're going to use orthogonal

codewords, you need 64 of them. When we were talking about orthogonal

codewords before, we didn't quite know how to generate them.

We then said last time, that may be using PN sequences is a nice way of doing it.

That's not quite exact. Here using Hadamard matrices is a nice exact way of doing

it. That happens to be the way it's done and it's simple. I mean, you have a

Hadamard matrix for each integer b. If you start out with b equals one, which is one

bit that you want to encode. You have a matrix which consists of 2 orthogonal

codewords one of which is 0, 0 and the other is 0, 1. There aren't too many choices

for that and they're all equivalent. Then when you want to go to b equals two, the

thing you'd do is make a matrix and the rows of the matrix are going to be the

codewords. The columns correspond to the bits in the codeword. The first codeword

here is 0, 0 second codeword is 0, 1. The first codeword here is 0, 0, 0, 0 the next

one is 0, 1, 0, 1. For orthogonal codes, the block lengths of the code and the

number of codewords is going to be the same. So the thing you'd do is you take this

matrix, you put it there, you put it there, and you put it there. Then you compliment

the matrix and you put it there. OK why does that work? Well if we just look at this

part of it, this was an orthogonal code, this was an orthogonal code. In other words,

each of them differ from each of the others in half the positions, which is why you

think of it as being orthogonal. This is the confusion that runs through all of

communication theory. We might as well get rid of that confusion right now. When

you talk about binary sequences and you say they're orthogonal, what you mean is,

if you turn that sequence into a 2PAM signal, those corresponding signals are

orthogonal. In other words, an orthogonal binary sequence, an orthogonal set of

binary sequences is a set of binary sequences where each of the sequences differ

9



from each of the other sequences in half of the positions.

Here with these Hadamard matrices, the way that's done is that one of the

sequences is always all zero and the other sequences are all half ones and half

zeros. It turns out that when you add any two sequences, add this sequence to this

sequence for example, you got something else, which is half ones . In fact,

something else which is in there, is what's called a group code. When you add any

two codewords you got another code. Anyway, when you look at this, which is

mapped into here and here -- I think the argument is difficult here because it's too

simple minded, so you don't see it in it's generality -- each time you go from one b

to the next b, the thing you do is the same thing. You start out with this matrix, put it

there, you put it there, you put it there, and you put the complement of it there.

What that does is when you look at the first half of the matrix, all of these differ in

half the positions because they differ in half the positions here, and they differ in half

the positions here. So, they differ in half the positions over all. When you look at

everything down here, they differ in half the positions for the same reason because

complementing this doesn't change any of those distance properties. When you

look at the difference between these and these, it's the same kind of thing if you

think about it for a couple of minutes.

So, this is an orthogonal code. Why do we want to use this orthogonal code rather

than just an orthogonal code which uses the first degree of freedom and sends an

enormous amount of energy? Or the second degree of freedom sends an

enormous amount of energy and so forth? That's the same thing we were talking

about last time with regard to channel measurement. You don't want to send

enormous amounts of energy in any one degree of freedom. You want to spread it

out over all the degrees of freedom. That's what all these codes are doing; all these

codes are using 2PAM on each degree of freedom to generate a codeword. So the

codewords all have sort of uniform power in them.

OK, so at this point, we have gone into this orthogonal code generator with 28.8

kilobits per second. We have come out of it with 28.8 kilobits per second times 64

over six. Namely for each six bit segment in, we've gotten 64 bits out. So the total

10



number of bits that we have has gone up by a factor of 64 divided by six. So we're

suddenly up to 307.2 kilobits per second. What we're trying to do is get ourselves --

by hook or by crook -- get ourselves up from these very small bit rates that we need

to represent voice, up to these large bit rates, 1.25 megabits per second, which

we're going to spread this wave form to. All the reasons we want to spread the wave

form, I'll talk about them later. For now let's just think about it as saying, somehow

or other we want to spread the wave form out and turn a small number of bits into a

large number of bits. So we've done a pretty significant part of that right here.

If we think of turning these binary rows of the Hadamard matrix and modulate them

by 2PAM we wind up with wave forms. The wave forms are orthogonal. If you

wanted to think of taking these wave forms and then transmitting them up to

passband, we would wind up with the bandwidth of 307,000 hertz. That's not

enough yet, we want to go up to 1.25 megahertz. Anyway, these wave forms are

called Walsh functions. So the wave forms that you got from Hadamard matrices

are called Walsh functions. You have to find something to honor everybody that's

done a significant amount in this field and Walsh was one of these people. Walsh

functions are quite famous and all they are are just these orthogonal wave forms.

So, we now have an orthogonal code of length 64. The receiver, I'm going to talk

about the receiver more later. In essence, what it's going to do is take the 64

orthogonal wave forms, only one of them will get transmitted in each of these small

units of time. When the period of time corresponding to six bits into the encoder, we

have to decode which of these 64 wave forms was sent. We're going to do that by

using a rake receiver. That's what's used in IS95.

This rake receiver is different from the one we talked about. The one we talked

about, we were making a decision between two hypotheses. Here we're making a

decision between 64 possible hypotheses. If you can remember the structure of that

rake receiver, it sort of split into two separate sections. One section was used for

the decision on one of the wave forms, the other one, on the other wave form.

When we do this with 64 wave forms, it spreads into 64 different sections, which is

why it's called the rake receiver. If you draw a picture of it looks like a rake. You

start out here with the handle and then you have it spread out into 64 different tines
11



and all of these tines have all of this signal processing going on. At the output you

come back and you change what your model of the channel is depending on the

actual decision that you've made.

So what we're using is a rake receiver but a rake receiver which has 64 decision

devices instead of two. Suppose we go into an orthogonal code using seven bits

instead of six bits. Now, at this point, you're talking about real money. OK, because

at this point, you're talking about taking this rake receiver and turning it from 64

arms into 128 arms. Now, you can do that because these things are essentially free

now and computation is essentially free. At the time when this was designed, there

was a very hard constraint in terms of complexity about how many bits they can

encode together into orthogonal wave forms. I'll show you why in a little bit. It

wouldn't have done them much better to have a larger set of orthogonal wave forms

anyway.

It also uses incoherent soft decisions as a way of doing its detection. We talked

about incoherent detection. This rake receiver uses that instead of the coherent

detection that we talked about in class. If you just put together in your mind, the

lecture we spent talking about rake receivers and the one we spent talking about

incoherent detection and you put them together, you have what this receiver is

doing. I'll talk about just a little more as we go. OK, if we now imagine these are

orthogonal codewords and suppose that each orthogonal codeword has an energy

e sub s. Suppose for the time being that the channel is represented perfectly by a

single-tap model and we know what the energy in that single-tap model is. We don't

know what the phase so we're using incoherent detection. What's the error

probability? Well the error probability for an incoherent receiver for making a

decision between two possibilities was one-half times e to the minus energy divided

by 2 N 0. Here we have 64 different possibilities. So we're going to transmit one of

these wave forms and we now use the union band to say there's this probability of

error to each of the other 63 possible wave forms. we could make an error to any

one of them. That's equally likely to make an error to any one of them because

they're each orthogonal to the one that we're dealing with. So this is a reasonably

12



good bound on the error probability.

OK, now you go back from this to look at the reason why, one of the main reasons

why you want to do this. E sub s is the amount of energy you use to transmit six bits

instead of one bit. Therefore, when you look at the energy per bit that you're using,

it's e sub s divided by six. So, your probability of error, -- if in fact you were making

hard decisions at the output of this incoherent detector -- would be in the order of

63 over 2 times e to the minus 3eb over N0. This is a considerably larger exponent

and therefore, a considerably lower error probability than we were getting when we

were talking about transmitting single bits. In other words, the same thing is going

on here as was going on when we were talking about getting up the channel

capacity using a large number of orthogonal wave forms. It's the same idea. When

you encode lots of bits together, you make a joint decision on all of them, you make

a gain. That's exactly what's happening here. You made a gain because you've

taken the amount of energy that you have available for each one of your bits and

you've combined it all so that you get this bigger exponent in here. If you're lucky,

the exponent is big enough that it overwhelms this term and your decision comes

out with very small error probability. Well, as it turns out, we're not interested in

making these hard decisions. What we're really interested in doing is just sending a

likelihood ratio back to this Viterbi decoder which it can use in making final

decisions. To see how well that's going to work, this is exactly the thing you want to

look at. This is what's telling you, if E b is large enough your decisions, if you had to

make them, would be very good. Therefore, if instead of making decisions, you

pass likelihood ratios on, those likelihood ratios are going to have a lot of

information in them. Essentially, those likelihood ratios tell you what those

codewords are.

OK, now, the effect of fading is to change this E sub b because when we were

talking about this incoherent detection, we were looking at the energy per bit after

going through the channel. So, this is the error probability for a particular received

energy per bit. Sometimes when the channel is badly faded, this number is very

small. This bound is a lot bigger than one but you don't care about it because the

bound is no good then. When the channel is good, this number is large and this
13



probability there is very small and your likelihood ratios give you a lot of information.

If you had multitap diversity instead of the single-tap here, if you have a lot of taps.

If you have a lot of taps you can visualize this as getting independent readings on

the channel. Therefore, you can view it as getting independent information about

the bits that were sent and this is what diversity is. I mean, the trouble with these

Rayleigh fading channels is when they're faded there's nothing you can do. If you

have multiple taps instead of one tap, then in fact, you have diversity between all of

them. If any of them are good, then you decode. Yes?

AUDIENCE: You were saying earlier that PAM is not ideal [INAUDIBLE]. [INAUDIBLE] Why is the

standard using 2PAM instead of pulse position modulation?

PROFESSOR: Well because it's using these long codewords. Because back when we were

analyzing it, we were analyzing it using two codewords. Those two codewords were

orthogonal to each other. We could have made them plus one minus one and plus

one minus one for the other one if we had in fact known what the channel was

ahead of time, OK. That brings up a good point because you have to get to started

somehow. I mean you have to know somehow, what's going on at the channel at

the point where you start. I'm not going to talk about that.

If you have this multitap diversity than E sub b is going to be better than it would be.

Otherwise, this says, if you can make the bandwidth bigger, as you make the

bandwidth bigger, the bits are coming in faster. As the bits are coming in faster, this

bit time is the separation between the taps and this digital model. So that as you

make the bandwidth bigger, you automatically get more diversity. You get more taps

in this discrete model. Looking at it another way, you have a certain frequency

coherence in the channel. If you're sending a broad bandwidth, you get lots of

different frequencies. If you get lots of different frequencies, there's a good chance

that one of them is good. OK, so we are going to get some gain in diversity there.

Typically we're going to get a relatively large amount of energy if the thing works.

Well, now we come to a question that we've been carefully avoiding all term. It's sort

of the question of, if you make codewords orthogonal or if you make codewords

14



have nice structure at the input to a channel and the channel has some strange

behavior, what's going to be the output of the channel? What we're doing here is

making our codewords orthogonal at the input of the channel, we can't guarantee

that they're still orthogonal at the output. What we do know is that PN sequences

are almost orthogonal anyway. If you put PN sequence through anything, they still

look like PN sequences. In other words, if you think of a PN sequence as an IID

binary sequence, and you have a very long IID binary sequence, and you corrupt it

in any way you want to, it still looks like an IID binary sequence. So, the point is, if

you can make these orthogonal codewords look more like PN sequences, you can

make them behave better at the output of the channel as well as the input to the

channel. So you'll get something that looks orthogonal whether the channel

essentially looks like a one tap channel or a multiple tap channel.

OK, we also have bandwidth to burn because we're only up to 307 kilohertz. What

they decided to do was to take a PN sequence and run it at four times the speed of

this bit sequence. So we have bits coming in at 307,000 bits per second. We're

going to have a PN sequence which is changing four times for each bit time. So

suddenly we're increasing the speed of this whole system by a factor of four. For

every one bit, we multiply it by a sequence of four bits. So instead of getting a

change every one over 307,000 seconds, you now get a change every one over

1.2288 millionths of a second. So, suddenly you're up to a sequence which is right

at the bandwidth you want. I mean we want it to get up to 1.25 megahertz.

Suddenly, we're up so close to that it's going to be a real challenge to build a filter,

which will really make the output look like it's limited to this 1.25 megahertz. So we

need very tight filters here. If you multiply this PN sequence , you're using the same

PN sequence on all of the orthogonal codewords. If you think just a little bit about it,

if these orthogonal codewords -- I'm I mean think of them still as binary sequences -

- if each of them differ from each other when in half the places, when you multiply

both of them by this PN sequence, they're still gonna differ in half the places. You

still got the same affect out. They're still perfectly orthogonal before going through a

channel but now you have a good chance that they're pretty close to orthogonal

after going through the channel.

15



So, suddenly, we've got it up to the bandwidth we want to be at. There's another

reason for the PN sequence. I mean, so far we've been thinking in terms of, how do

you build a cell phone and a base station so they will work together? Actually, you

want to build a base station and thousands of cell phones so they'll work together.

So you want some way of making different cell phones look different from each

other. What they use this PN sequence for is to make different cell phones look

different. Each cell phone is going to start out on this PN sequence at a different

point. The PN sequence is going to be generated by a 42 bit feedback shift register.

If you don't know what a feedback shift register is, don't worry about it. Most of you

probably do. A 42 bit feedback shift register, with the right kind of settings in it, is

going to generate a periodic sequence with a period of two to the forty second

minus one, which is about four times 10 to the twelfth. It doesn't repeat very often. I

mean, this really looks like an IID sequence and binary digits. It really goes through

every non zero 42 bit combination in this period here. It has very nice properties to

it. But the property we want for this system is that in fact, when you give a cell

phone a particular setting in that shift register, it starts it off generating a PN

sequence which looks totally different from that generated by any other cell phone.

That's the only thing that makes these different cell phones different. It's enough to

make each one of them look orthogonal to each of the others.

OK, their basements sequences and thus passband wave forms are now going to

be essentially orthogonal to those of other cell phones. In other words, at this point,

we're sort of going into fantasy world. I mean, we started out generating 64 wave

forms which were strictly orthogonal to each other. Then we said we want these

wave forms to still be orthogonal after we go through this unknown channel. We

said, well we can do this by making them look like PN sequences. But the other

thing that PN sequences do, is it all of the possible wave forms for one cellphone will

look orthogonal to the wave forms for all of the other cell phones. So that in fact,

what's happening is, if you look at a base station, and the base station is trying to

receive information from each cell phone, what it receives from one cell phone is

going to be essentially independent of what it receives from the next cell phone.

16



Now if we think of the base station as trying to receive what's coming from one cell

phone, what's the interference from the other cell phone going to look like? We're

going to take thousands and thousands of sequences, which are now turned into

wave forms, which look like IID wave forms, IID binary wave forms, and now we're

adding together a large number of them. They fill up the whole spectrum uniformly.

So they have a spectral density -- I mean it's a random process -- and it has a

spectral density which is flat over this bandwidth of 1.25 megahertz. And you've

added a lot of them together, so it looks like white noise. So the effect of these other

cell phones is just like a small addition of white noise as far as trying to detect what's

going on at one cell phone. Now, in fact you could be very clever here because, as

soon as a base station decodes one cell phone, it can say, I know what that wave

form was, subtracts it off from the received wave form, and uses that to help in

decoding other wave forms. These standards do not do anything as sophisticated

as that. Lots of papers talk about doing it. Information theorists love this idea. I think

it's one of these ideas that sooner or later, ah going to become practical. As soon as

it becomes practical, everyone will use it. What does it take to become practical?

For someone to use it, because we all know it'll work. It's just a matter of actually

doing it. But anyway, it's not done now. All of these interferes are just going to look

like white noise as far as this one cellphone detection is concerned.

Now, if we compare this IS95 system with all of the narrow band systems that

people use, at this point you can find the main difference between these different

systems. When you use a narrow band system, things are a ranged so that only

one cell phone is talking to one base station on one of these narrow bands of

frequency. Namely the channels are very narrow but because they're narrow if you

have two cell phones which are using that same bandwidth, they're just going to

interfere with each other totally. You won't get through. So each cell phone which is

using one base station has to be using a different narrow bandwidth. Cell phones

using different adjoining base stations are also going to have to use different bands.

In fact, that's a terribly complicated problem just because these base stations are

put in sort of, random locations and trying to program things in such a way that you

don't have two cell phones which are using adjacent base stations using the same

17



frequency. It's a real nightmare. So, you're going to have cell phones using the

same base station, which are a little bit separated, but still because of all sorts of

channeling effects and strange electromagnetic effects, base stations still receive

data from these far away cell phones. They're also trying to receive data from the

cell phone that's using that frequency. So you got a lot of interference in these

narrow band systems; you got a lot of interference from cell phones using different

base stations. In the IS95 system, you get more interference from cell phones that

are using this particular base station because they're all using the same bandwidth.

They all just look like white noise to each other. So they do interfere with each other,

they raise the noise level. When you look at the interference with cell phones using

other base stations, it's not catastrophic like it is with these narrow band systems.

So what you effectively wind up with is that in the IS95 system, you have more

interference within a base station but less interference between base stations. In the

narrow band systems you have no interference within a base station but

considerable interference between base stations. Which is better? Nobody really

knows. Well except for the fact that almost all new systems are planning to use

CDMA. It seems that most people have sort of agreed that you get less noise,

overall, if you're using if you're using a CDMA system.

So that let's us sort of summarize where we are with all of this. We started out with

28.8 kilobits per second. We then going into this Walsh function, orthogonal wave

form and coder, which comes out with 307.2 kilobits per second. We then multiplied

by this long PN sequence, 42 bits long with four bits coming in here for each bit

coming in here. Now we're implementing this and anybody with any sense who was

trying to implement PN sequences with multipliers would just say, I don't want to

turn things into to PAM sequences yet. I want to keep them binary and add them

mod 2 because that's easier. So all of this is still mod 2 binary digits. This is mod 2

binary digits. This is mod 2 binary digits. The only thing we haven't talked about yet

is now they throw in two other PN sequences. One on the real part of what's going

on here and one on the quadrature part. The thing they're doing is taking this one

sequence, splitting it into two parts; adding a PN sequence here, adding a PN

sequence here, then doing the 2PAM, then filtering and sending this stuff out on the

18



cosign channel and the stuff out on the sign channel.

I've never had a very good sense of why you need these two PN sequences here. I

can like sort of explain it to you in the following way. If you didn't have PN

sequences here, what you'd be doing here is simply sending this same sequence

twice. So you be sending it on the cosign channel, you'd be sending it on the sign

channel, which would sort of be equivalent to sending it at 45 degrees. Once you

realize that, you say well, I might as well leave this whole thing out and just use the

cosign channel and nothing else. If I'm just using the cosign channel and nothing

else it won't make much difference because the cosign just refers to the phase at

this transmitter. I'm talking about many cell phones whose transmitters are all at

different places relative to a base station. Therefore, they're all going to be using

different phases so they're all going to fill up the signal space. The thing that, that

doesn't take into account is the fact that if we do that we're not using all the degrees

of freedom available to us. We're still just using the number of degrees of freedom

that we got here, which are real degrees of freedom. When we do this and this, we

got twice as many degrees of freedom. The PN sequences that we're looking at,

which are the things that are orthogonal to each other. We have twice as many bits

in a give interval of time when we have these two PN sequences as we do when we

only use this one PN sequence. So in fact, if we view PN as IID binary digits, you get

twice as many binary digits this way as you got before. Therefore, everything works

better. You come much closer to being orthogonal with higher probabilities. If you

didn't understand that's fine. It's not explained in the notes either. It's not explained

in the IS95 standard. I think the explanation is right but it needs some fleshing out.

OK, here's another interesting feature about this rake receiver. It doesn't use this

digital model of the channel that we've talked about. It in fact, uses the analogue

base band model. In other words, the base band model of the channel is the

channel is represented by an analog filter. The analogue filter has impulses or

almost impulses at different delays. Now what you'd like to do in this rake receiver

here is instead of having taps at these sample times for the given bandwidth, they're

going to adjust the taps so the taps are right on top of these things that look like

impulses in all of these path returns. So the question is, what's the difference

19



between these two strategies?

I mean, we sort of show that the digital model was completely equivalent to the

analog model. Then I cheated you; I didn't realize I cheated you until about nine

o'clock this morning. I cheated you in the following way: I told you that if you model

the channel in terms of the discrete set of taps according to the sampling therom,

this was completely equivalent to trying to model it -- as far as a band limited input

was concerned -- in terms of an analog filter. That's absolutely right if you use an

infinite number of taps for the channel. If you now say that the impulse response of

the channel is about one tap long and then you say, how many tabs do I need to

represent it? It's an interesting question because if the impulse response is one tap

long and you filter to look like a sign x over x, the impulse response can look like

this. So you have one tap here, one tap here, which is zero, one tap here, one tap

here, which is zero. If you've gotten your spacing off by half a cycle, what do you

have then? You have a tap here. You have a tap here. You have a tap here. You

have these taps which are going down as one over time. So in fact, modeling this

kind of thing with one tap would be terrible. Now when you use the analog filter and

you actually put these taps of the rake receiver at the places where you have actual

physical responses you do much better. You particularly do better if the impulse

response duration of the channel is the same order of magnitude as 1 over the

bandwidth of the source that you're using. At that point this becomes an important

issue. That's exactly the situation we have here because of the impulse response of

these channels. The sample time on this discrete model it's about eight-tenths of a

microsecond. If you think of how far light can travel in eight-tenths of a microsecond,

it's about the same as the multipath spreads you would find outdoors when you're in

a relatively rural area. If you're in a city area, multipath spreads are going to be

even smaller. So if you want to a rake receiver to work well you should really have a

rake receiver which is trying to zero in on the actual physical response times. This is

what this system does. They did it right and I did it wrong.

OK, final thing. I told you I wanted to talk about why we did scrambling. This rake

decoder, in other words, this decision device, which every six bits tries to make a

decision on these 64 different orthogonal wave forms. You can just make hard
20



decisions which gives you six bits out each time. You can produce six bits out also

with some likelihood about how likely they are to be right. So what you'd like is some

information which is essentially the logarithm of the probability of being correct over

the probability of error. You can estimate that in your rake receiver. You can

estimate it by knowing whether you're making a close call or whether there's one

orthogonal wave form which is far more likely than all of the others. So if you're

making a close call, then you produce an output that says, I think it's this output but

I'm not very sure. This is what goes into this viterbi decoder. The viterbi decoder,

since it's operating on these states -- in other words, it's operating on what it

visualizes is being the state of the viterbi decoder -- it can actually deal with these

log likelihood ratios as well as anything else. That's one of the reasons you want to

use a viterbi decoder because most coding devices that people have invented don't

work very well with analog signals. This does work well with analog signals.

The problem is, anytime you make a mistake on the 64 orthogonal wave forms, you

have a six bit batch of digits, a six bit block, and you're going to be wrong, typically

in three of them. well, you're going to be wrong in a random number of them. Half

the time you're going to be wrong. What this means is if you put this data into a

decoder, what you're going to find is that every time there's an error in the in the

rake receiver, you're going to have a burst of errors, some random bunch of errors

over six bits. This is typically going to be in the order of three bits an error all at

once. If you look at the structure of that decoder, anytime you got a large number of

errors in all at once, it's going to screw the thing up terribly. I'll give you one

example of that.

You can take a much simpler coding example. Suppose you transmit either all

zeros, seven zeros or seven ones. At the receiver there's a certain probability that

you make an error on each one of these bits. You first make a decision on each bit

and then after that you make a decision on the whole code word. If the bit errors are

independent of each other, then you make an error in the overall detection of these

code words only when you make four errors out of seven. Or five errors out of

seven which is negligible. So you calculate, what's the probability of making four

21



errors out of seven here? Well it's the number of combinations of seven things

taken three at a time which is 35 times p fourth, p to the fourth power which is the

probability of making four errors. If those bits are perfectly correlated mainly, if

whenever you make one bit error you make all seven bit errors, then the probability

of error is p If p is relatively small, p is always a lot bigger than 35 times p to the

fourth. In other words, the lesson here is that highly dependent errors cause trouble

for any kind of decoder. Now you see why you had the scrambler in here, why you

have the interleaver. You Have the interleaver to take these highly correlated errors

which are coming out of the rake receiver where you make blocks of six errors all

tend to appear together. You're scrambling them out so they're widely separated so

that the viterbi decoder is able to deal with them. That's the last piece of the whole

thing. I could talk a little bit about how the viterbi decoder works but I think you're

probably exhausted by now. I think I will stop at this point. Than you all for your

attention all term and good luck on the final.

22


