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PROFESSOR: We started to talk about the discrete time Fourier transform last time. This is

probably something you've been exposed to before, and as in many cases, we're

looking at it in a very different way than what you probably looked at it before. The

discrete time Fourier transform is simply the time frequency dual of the Fourier

series. Nothing more than that. For any L2 function -- now we're talking about a

function of frequency, but a function is a function. So this is a complex valued

function of frequency. If it's limited, if it's truncated to the band from minus w to plus

w, then, in fact, it's inverse Fourier transform is given by this limit in the mean of the

sum of the coefficients times v sub k of f. This is exactly the same as the Fourier

transform replacing times with frequencies, replacing w for t over 2, and in the

complex frequency you're replacing a to the plus 2 pi i here with e to the minus 2 pi i

in the Fourier series.

So those are the only differences, it's just notational differences, and aside from

that, it works exactly the same way. The coefficients are given by this. We showed,

when we were talking about the Fourier series, that these coefficients exist as

complex numbers, they're always finite. You can calculate them if you want to. This

quantity here can be rather fishy. This is this limit in the mean which says that you

have to calculate this by looking at the sum here over a finite sum, over a finite sum

this is well-defined and behaves very nicely. As you go to the limit funny things can

happen, but the thing that we showed is in terms of energy, nothing funny can

happen.

I'm going to give you an example of this kind of funny business as we talk about the

sampling theorem in just a couple of minutes. So the u hat of f has to be L1 since it

is limited in this way. It has a continuous inverse transform, which is this. OK, so you

can go from -- blah blah blah blah blah. The discrete Fourier transform is simply a
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transform between a function and a sequence of terms. Now this bit here is

something we haven't talked about before. Because now we've talked about Fourier

transforms also, and if you have an L2 function, u hat of f, that L2 function has a

Fourier transform and an inverse Fourier transform in this case, which is u of t,

which is given by this expression here, the usual expression for the Fourier

transform.

Now, the thing that's peculiar about this Fourier transform is that since u hat of f is

limited, is truncated, this transform here exists everywhere. We don't need a limit in

the mean here. You can calculate this for every t this exists. This is a point-wise

convergent thing. This is the thing that you're used to when you think of functions,

because the function is defined everywhere in this case. And since we're going to

go into the sampling theorem, it had damned well better be defined everywhere

because otherwise the sampling theorem wouldn't make any sense at all.

So, the inverse Fourier transform of the discrete time Fourier transform, as we said,

is this, it's a limit in the mean. Namely, you take more and more terms here. You get

closer and closer to this in terms of energy. It doesn't say anything about what

happens for particular values of f. This is a sampling expansion with t equals 1 over

2w. OK, let's go back here. We're talking about some function of frequency which

has a Fourier series, it also has a Fourier transform. What we're interested in now is

what is the relationship between these coefficients here and a discrete time Fourier

transform and this function here. What I want to show you is that, in fact, these two

things are very closely related. You can now go back to the Fourier series itself and

relate the Fourier series coefficients to the Fourier transform and you'll get the

same kind of sampling representation that we're getting right now.

So, if we -- there's something missing in what I'm trying to say here. Oh, I see what

I'm trying to do, sorry. What I'm trying to do is to take the inverse Fourier transform

of u hat of f, which is given by this expression here. Temporarily I'm going to forget

about the fact that this is a limit in the mean, throw mathematics to the winds, and

simply take this inverse transform. Take the inverse transform of this also. So, when

I take the inverse transform of the sum, what I'm going to get is the sum over k of u
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sub k, and then in place of this frequency function -- these are orthogonal functions

here, the things I listed on the previous page -- I got u of t is the sum of u sub k

times these time functions now.

These time functions are just the Fourier transforms of these frequency functions

here. This is a set of orthogonal wave forms here, which are truncated sinusoids. I

want to take the Fourier transform of these and the Fourier transforms of these -- I

should have put them both on the same slide so you could see what they are -- but

in fact, in your homework you're going to take the inverse Fourier transform of that

and show that it is, in fact, this. That's just a nice exercise in taking rectangular

functions and sinc functions and applying shifts in both time and frequency. When

you do this, this turns out to have the inverse transform of this. So this is u of t is just

this, where this comes from here, and then this turns out to be the inverse transform

of this function here, which, in fact, is just this. Sorry for all of that.

So now if we want to try to understand what this means, suppose that you take a

function u of t, which is, in fact, the inverse transform of this u hat of f, which is

truncated to a finite band limit. If we then take v of t equal to u of t everywhere

except on the sample points, and on every sample point we simply add 1 to v -- in

other words, v of kt is equal to u of kT plus 1. So we take this nice smooth function

that we have here, and at every sample point we simply add 1. So now the question

is, is this new function I have still baseband limited or isn't it? You see you can't

answer that question because we weren't careful enough to say what we meant by

a baseband limited function. Usually when you talk about a baseband limited

function, you're talking about a function whose Fourier transform is zero, except in

the range minus w to plus w.

Well, this new function v of t here has the property that its Fourier transform is zero

outside of minus w to plus w. And therefore if you define baseband limited as

functions whose Fourier transform is zero outside of limits, then the sampling

theorem doesn't hold. So what do we do about this? Well, the easiest thing to do

about it is to change what we mean by baseband limited to what you would have

meant if we hadn't going through all of this mathematics. In other words, the Fourier
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transform cuts both ways -- u of t has a Fourier transform, u hat of f, u hat of f has

an inverse transform, u of t.

What we mean now by baseband limited is that u of t is the inverse transform of a

frequency function, which is limited to minus w over plus w. In other words, we will

regard u of t here as being baseband limited, we will not regard v of t as being

baseband limited. Because we have these two functions, u of t and v of t, which

both have the same Fourier transforms, but which are not equal to each other. We

want to, at this point, say that the only one which is really baseband limited is the

function which is the inverse transform of u of t. If you read the sampling theorem as

it's written in the notes, that's exactly what it says. It defines this function u of t to

which the sampling theorem applies in that way.

Well anyway, this is the sampling theorem at this point. It says you can take u of t,

you can express it in this way. If I go back to the previous slide, what we did here by

comparing u of t with this expression for u sub k. u sub k are the coefficients in the

discrete time Fourier transform. u of t is this inverse transform. These quantities

here are almost the same. This quantity here is just evaluating this at particular

frequencies. Namely, if for frequency f I substitute in, if we're time t, I substitute in k

over 2w, then this formula just becomes that formula. In other words, 2w times u

sub k is equal to u evaluated at k over 2w. You already saw that when you looked at

the Fourier series. When you looked at the Fourier series, you saw these

coefficients, which, in fact, look like the Fourier transform terms. And which, in fact,

were the same as the Fourier transform except for a scale factor at some particular

frequency.

Here we have these coefficients, which are, in fact, scaled versions of the inverse

transform of particular times. So the conclusion from that is that, in fact, what the

discrete time Fourier transform is is it's simply the Fourier transform of the sampling

theorem expansion. The two of them are duals in a very different way than the

Fourier series and the dtft are duals. The dtft and the Fourier series are duals in the

sense that if you take the expressions for the Fourier series and change frequency

for time and time for frequency, you get to the dtft. Here what we're doing is taking
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the dtft and simply taking the inverse Fourier transform of it, so that the sampling

theorem is, in fact, the Fourier transform of the dtft. It's not the dual, it's the Fourier

transform itself.

Well, the discrete time Fourier transform generalizes to arbitrary frequency intervals

just as well as to a baseband interval. Namely, you can do exactly the same thing as

what we've just done if you're looking not at the frequency at the range of

frequencies from minus w to plus w, but you shift that up to any old place you want

to and look at delta minus w to delta plus w. And the fact the discrete time Fourier

transform, if you don't put the rectangular function in it is going to be periodic

anyway. It's exactly the same thing that we had with a Fourier series. With a Fourier

series, we could find the Fourier series for a function limited between minus t over 2

to plus t over 2. Now by duality, we can find the dtft for a function limited between

minus w plus delta and plus w plus delta. That's what we're doing here. So the dtft

in generalized form is now this, and v sub k is now the integral from delta minus w to

delta plus w of the same old thing as before. This is equal to this, which is the same

old thing as before, except we now have this shifted frequency in the rectangular

function. So if we take the inverse Fourier transform of this, again, using the same

duality we had before, we get v of t is equal to the sum times the sinc function.

And the only difference now that we're expanding this given frequency band not

centered around zero but centered around something else, the only difference in

the sampling theorem is now we have this rotating term gyrating around up at this

frequency, k over 2w. That's the only way in which this is different from the sampling

theorem that we had before. I wish I could put more things on one slide but you

wouldn't see them if I could. So here's a Fourier transform of the sum 1 over t, u of

kt time the sinc function. Here it's the same thing. That's one reason for comparing

these things sometimes. 1 over t in here. OK, times, so it's the same thing with this

rotating term which is the only difference.

Now, how many of you can see that the Fourier transform of this quantity is equal to

this sinc function? I can't do that. It's one of the things you're going to do in your

homework. I get confused every time I do it, and I got confused enough to leave out
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the 1 over t this time when I did it. You just have to be patient with that and do it a

few times and you'll find that it's not -- well, it becomes automatic after awhile. It's

one place where you need plug and chug.

So now that we've generalized the dtft to look at any old frequency band instead of

just the frequency band around zero, we can do the same thing that we did with

time functions. Namely, with a time function -- Yes?

AUDIENCE: [INAUDIBLE].

PROFESSOR: You don't think it should be a 1 over t? Well, you very well might be right because I

didn't think it should have been either when I wrote it down. But I don't see --

AUDIENCE: [INAUDIBLE].

PROFESSOR: It was the--.

AUDIENCE: [INAUDIBLE].

PROFESSOR: Oh, that's the difference, yes, of course. It's not the coefficient that I have here, it's

the actual -- yeah. Yes. So it should be the same as the-- Oh, I see the problem. I

shouldn't have had the 1 over t here, should I? No. I know one of them couldn't be

right. It is right in the notes, so you can sort it out there.

So, the thing we did when we were dealing with a Fourier series is we took an

arbitrary function of time, we segmented it into time intervals and then we expanded

each one of those time intervals into a Fourier series. By doing that we could take

an arbitrary L2 function and represent it as an orthogonal expansion over this

double sum of time shifts and frequency terms. We call that the truncated sinusoidal

expansion, the t spaced truncated sinusoids and we made an expansion out of that

that would allow us to express any old L2 function in terms of that.

Here we're going to do the same thing. We can take an arbitrary frequency function,

separate into bands of frequencies. You often want to do this in digital

communication when you're looking at transmitting information in different bands,

which you do all the time in radio. Somebody has a certain part of the spectrum,
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they transmit a signal there, somebody else has another part of the spectrum, they

transmit a signal there. You can look at those different signals which are in different

frequency bands, they're all orthogonal to each other, they don't interfere with each

other at all. We're doing the same thing here. We're just saying an arbitrary function

can be split into different frequency bands, each one of those frequency bands can

be represented both by a dtft, which is the thing we just did on the last slide, and by

sampling theorem expression, which is what we get when we take the inverse

Fourier transform of the dtft. So when we do that what we get is a perfectly arbitrary

frequency function which exists from minus infinity to plus infinity. We can represent

it as the sum of all these separate frequency functions. I just threw a limit in the

mean here because I'm not being careful about what happens where we separate

from one frequency function to the next. Namely, at frequency w do I use one term

or do I use the other term or do I use the sum.

But we don't want to worry about that. We don't want to even think about it. So we

put a limit in the mean here. So the v sub hat m of f then is going to be the part of u

of f which is in this particular frequency range. That's completely the analogy of

taking a time function, looking at that time function over a particular range of time,

and here what we're doing is taking a frequency function, segementing it into

different frequency intervals so that the end frequency interval is then just this with a

rectangular function to truncate it. If I take the inverse Fourier transform of this what

I'm going to get is u of t, take the inverse transform of all of these terms, so I'll get

the sum of vm of t. Now, vm of t is the inverse Fourier transform of vm of f. You take

that quantity, take the inverse transform of it, and sure enough you get this kind of

expression here. It's a sampling theorem in v sub m of f with this rotating frequency

term here, which is just the thing that we had before.

So, all we're doing here is starting out with some arbitrary frequency function, we're

segementing it in frequencies. Each frequency band then has a dtft associated with

it. When we take the inverse Fourier transform of that dtft, what we get is a

sampling expansion for that particular frequency band. So what this is doing here,

finally when we get all done with this, is I'm just combining the sampling theorem
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expansion in each frequency range, which is what u of t is. So I've taken u of t, I split

it up into different frequency ranges, I've expressed what's in each frequency range

in terms of a sampling theorem. The sampling theorem terms are these with these

rotating terms in them corresponding to the mth frequency range. This is completely

analogous then to the truncated sinc function expansion we had before.

This becomes a little more sensible if we substitute a sampling time, t, for 1 over 2w.

Namely, all of these expressions here are talking about what happens when you

sample these individual frequency bands at intervals 1 over 2w. So we'll just call that

capital T to make the formula look a little simpler. Then we get u of t is this limit in

the mean of this whole expression there. So it's a double sum, it's a sum over time,

over the samples, so there's one term for each time, kT, and there's one term for

each frequency interval. Frequencies are indexed by m, time is indexed by k. So the

thing we have here is an expansion now in terms of coefficients -- these are just

called coefficients again. This expansion which looks suspiciously like the t space

truncated sinusoids that we had before. The only difference is that, the terms were

truncated in time; here, the terms are truncated in frequency. So the different terms

making up this expansion, these orthogonal terms here, in one case what we have

is a sinc function which is translated in time and then translated in frequency. In

another case we have the rectangular function, which is translated in time and then

translated in frequency. So in that sense, these two expansions are almost the

same, and you can think of doing expansions perhaps in other things also and we'll

talk more about that later.

So, this then is just this thing we're going to call a t spaced sinc weighted sinusoid

expansion. So the only thing we have is this one sinc function which is this hat sort

of function. The terms in here are those functions shifted in time by some number of

sampling intervals, t, and then shifted in frequency by some number of frequency

bands, 2w. See, the original frequency bands that we had went from minus w to

plus w. The next one goes from w to 3w, the next one goes from 3w to 5w. So the

frequency bands we're talking about here are of width 2w. The time intervals we're

talking about are of width t. Why do people confuse you that way? Well, because all

of this happened a long time before people realized how closely the duality
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relationship between time and frequency was.

So people wanted to talk about frequencies, baseband frequencies. You talk about

a baseband limited to w and you're talking about positive frequencies, because

engineers used to deal with cosines and sine, and there weren't any such thing as

negative frequencies. Then they decided everything was easier when they dealt

with complex sinusoids, negative frequencies reared their ugly head, but people

didn't want to change their notation for what a frequency band was, which is

probably good. So we're simply stuck with this incompatibility of dealing with

frequencies one way and dealing with time the other way. We can look at that as

increments of time t, and increments of frequency, 1 over t, but, in fact, 1 over t is

2w, so the increments in time we're using in both of these expansions, are t, the

increments in frequency we're using are 2w.

Now, there's a relatively long section in the notes talking about degrees of freedom,

which is a pretty important topic. It's a little bit fishy mathematically, but it really

makes good engineering sense. It's an idea which is important both in terms of

taking source wave forms and representing them in orthogonal expansions, and in

taking frequency functions and representing them -- well, it is also important in

terms of taking things that we transmit where you have bits coming into an encoder.

We're going to turn those bits into signals, we're going to turn those signals into

wave forms. Those wave forms will usually be thought of as things that we transmit

in time, and we also transmit them in frequency, because we often use some kind of

multiplexing between different frequency bands. We want to have a common way of

thinking about all of these things, and this is the way that we're going to do it.

Namely, if we're thinking in terms of a particular sampling time, t, and we want to

look at a very, very large frequency band, and therefore, look at many multiplex

frequency bands, we can say how many coefficients can we send on this channel?

When we look at it in these terms of different frequency bands, the number of

coefficients we can send is over a period of time, t zero. We can send t zero over t

different coefficients in time. We now look at frequency. We have some very broad

frequency band, w zero. The number of different bands that we have is w zero over
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2w.

As a result of all of this when you add everything up, you get 2t zero w zero degrees

of freedom over this overall bandwidth of w zero. Now remember, an overall

bandwidth of w zero in terms of these complex frequencies goes from minus w to

plus w. Minus w zero to plus w zero. The time interval goes from minus t zero over 2

to plus t zero over 2. So this factor 2 here, which we always talk about in terms of

number of degrees of freedom, is really a consequence of the fact that we measure

time intervals and frequency intervals in a slightly different way. But anyway,

whether we look at it in terms of one expansion or the other expansion the answer

we get is the same. If you take some large time interval, some large frequency

interval, tuck as many numbers as you can in that interval, this is what you come up

with.

Now, why did I say that this is just slightly fishy? Well, it's slightly fishy because if you

take a function and you truncate it in time -- if we take this function and truncate it to

minus t zero over 2 and plus t zero over 2, even though that might be ten years,

how can we limit the frequency? Well, we can't. Because when we take the Fourier

transform of a time limited function, it exists for all frequencies. The same thing

happens if we try to limit it in frequency, it squirts out forever in time. So you can't

get around that. The thing that saves us is that if t zero and w zero are both large

enough, these functions all dribble away quickly enough that it doesn't make any

difference. You know it has to.

If you think in terms of the sampling theorem, and you try to think about it carefully

in mathematics, what does it say? If you want to transmit a function by putting these

little sine x over x hats around each of the coefficients in the function, when do you

have to start transmitting those wave forms? You have to start transmitting them at

minus infinity. I mean we turn on our transmitter and we somehow have to have

been transmitting for an infinite amount of time before we send the first symbol. Well

that's ridiculous, of course. So that we always approximate these sinusoids by

sinusoids which are truncated, and we always have some engineering faith that

what we're throwing away is not important. The only place that it's important is when
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you start talking about things which are really zero everywhere and then it becomes

important. But the idea of degrees of freedom is a very sensible idea until you try to

express it precisely.

Let's get on to something called aliasing. We're going to spend most of the rest of

today talking about aliasing. I want to try to explain why it is that we want to spend

time on this, because there are really two things going on here. One of the things

that are going on is that if you want to look at a wave form and do some processing

on it, the usual way to do it with the digital technology we have today, is to take that

wave form and sample it very, very rapidly in time. Then process the hell out of all

those samples. We do that hardly caring whether it's band limited, hardly caring

about the information in it, hardly caring about anything, we just want to sample it so

fast that we essentially approximate the function very well. Now when we do that

something's going to get lost, because when we take those samples we're ignoring

what happens between the samples. In some approximate sense, wave forms are

always smooth because they always get filtered by something before anybody looks

at them. And because they're smooth, if you'd sample it fast enough, your fast

enough samples are going to look like the wave form. If you just connect them with

straight lines you're going to get a very good approximation of what the wave form

is.

But then you stop and ask, and when you stop and ask you're in trouble because

you say well, how fast do I have to sample, and if I sample that fast, how much error

am I going to make? That's the question for which aliasing gives you the answer. So

we want to explore it for that reason. The other reason that we want to explore it is

when we start talking about modulation, we'll start talking about something called

Nyquist criterion, and that's best looked at in terms of aliasing again, and we'll see

why that is when we get there. So for both of those reasons, and also for the reason

of trying to understand these expansions in terms of source wave forms, we want to

understand what this relationship is between the samples of a function that isn't

quite band limited and the function itself.

So the thing we're going to do to try to understand that is instead of studying just the
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samples, which is what you usually do, if you're just looking at the samples and

you're trying to say how much error do I incur by doing that, and we're looking at

mean square error, somehow or other we have to get back to wave forms and

compare the resulting wave form with the wave form we started with. So the thing

that we're going to do is to take our function u of t, we're going to sample it at some

very rapid speed, and then we're going to take those samples and recreate a wave

form by the sampling theorem. So we're going to call the approximation to u of t

some approximation s of t -- s of t is, in fact, baseband limited at this point to a

frequency w where t is equal to 1 over 2w, and we simply have this sampling

theorem applied to u of kt, as if u of kt came from a band limited wave form.

So this is, in a sense, an interpolation formula. It's a little better than taking these

samples and joining them by straight lines, because we're, in fact, joining them by

these smoother sinc functions. The question is how close is s of t to u of t and how

do we look at that question? Well, we now have a nice way of looking at it because

after going through this t spaced sinc weighted sinusoidal expansion, we have an

exact expression for u of t, which is the limit in the mean of these frequency terms in

u of t. Namely, to get this expression, remember the thing we did was to take

arbitrary u of t, split it up into little frequency bands, each of width w, then apply the

sampling theorem to each of those frequency terms, which we can do exactly. So

this, in fact, is an exact expansion -- don't worry about the limit in the mean right

now, we're going to get rid of that in a while.

So we have s of t, which is this. We have u of t, which is this. Now, we look at this

and we say OK, s of kt, namely, the case sample of s of t, is simply u of kt. That's

what happens here. You put in any old time which is some integer j times capital T

and you look at this expression here, and the sinc function is only non-zero when j

capital T over t, when if you take the sinc function of an integer it's zero unless the

integer is zero. The sinc function goes through zero at every integer point except for

zero itself where it's equal to 1. That's the thing which makes the sync function nice.

It dribbles away -- 2, 3 and so forth minus 1. So it's zero at all those sample times,

so that the case sample of s of ts of kt is just equal to u of kt. Namely, what we're

doing in this approximation, which is what one usually does if one samples
12



something, is we're assuming that the approximation is correct at the sample points,

and we're arranging it so it's correct at the sample points.

So, s of kt then is equal to u of kt from this. u of kt from this -- OK, now take t and

substitute k times capital T in here. And if we substitute k times capital T in here --

let's not, let's substitute j times capital T to avoid a conflict with notation here. Then

this T here becomes jT and what we have is sinc of j minus k. So we have a sum

here over all k of sync of j minus k. Sinc of j minus k is zero for all integers k, except

for j, therefore, this quantity is zero every time k is not equal to j. Therefore, we just

have the sum over m. So, s of kt is equal to u of kt, which is equal to the sum over

all frequency bands, m, of v sub m of kt.

Now what is this saying? The thing this is saying is if you take this function u of t,

which has a bunch of different frequency bands in it, each of those frequency bands

has a sampling theorem associated with it. Each one of those frequency bands is

represented by its samples at periods of time, k. But as soon as we look at u of kt, if

we only have the samples u of kt, there's no way to tell which frequency band it's

coming from. So all of these different frequency bands all get alias together. If I just

look at u of kt, what it is is the sum over all these frequency bands of the samples of

the individual frequency functions. So that if you tell me what u of kt is, I can't tell

you what these samples are. All I know is what the sum of them is. So, in fact, if you

start out with a function which instead of being baseband limited to w, in fact, is

sitting between w and 3w, and there's nothing in this baseband, and I look at these

samples and then I recreate things this way, what am I doing? I'm just taking that

function at w to 3w and translating down in frequency to minus w to w. You can't tell.

There's no way to tell just from the samples which frequency band we're looking at.

So all these things get mixed together.

So, s of t then, since s of t is this times these sinc functions, and this is the sum of all

the vm's, s of t is just this double sum now where all of these are now down at this

baseband frequency interval. There's no way to tell them apart. We have this

double sum here so I'm adding up all of these different coefficients and they're all

mixed together all down in this one frequency band.
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So, u of t is represented this way, double sum, vm of kt, vm of kt, sinc of t over t

minus k, sinc of t over t minus k. This rotating term up here, an s of t, what I've done

effectively is to get rid of all these rotating terms. It simplifies it enormously, but I

changed the function. In fact, this function is low path limited to w and this function

has all of the glory of an arbitrary set of frequencies in it. By just looking at these

samples, I've lost all of this stuff and it's just back down to a baseband limited

function at this point. So, if I look at the difference between u of t and s of t, what I'm

going to get -- and this is expressed a little differently than the way it is in the notes

but it's the same thing -- just the sum over k and m, and it has these sinc functions

in it, which both of these terms have. Then u of t has these rotating terms and s of t

doesn't, so s of t just has one in place of the rotating term. So the difference

between u of t and s of t is just this big monster sum here, which is looking at all the

different frequency bands at all the different sampling times.

If I now try to look at the energy difference between u of t and s of t, because that's

what I'm interested in -- how much error have I accumulated, how much mean

square error have I gotten? By taking u of t and sampling it and then viewing it as a

low pass function. This energy difference, well, we have a set of coefficients here,

we have a set of functions here. These functions are all orthogonal to each other.

Why are they orthogonal? Well, because sinc functions are orthogonal, which I think

we've shown on our homework, and space time functions are orthogonal. So, all of

these functions are orthogonal to -- excuse me -- spaced frequency functions are

orthogonal to each other, and the sinc weighted functions are orthogonal to each

other. So all I'm doing here is expanding all of this in terms of these orthogonal

functions. I have to do this separately for these terms -- I know what happens. This

works when it's cold and it doesn't work when it's hot. Interesting. So I'm separating

this into this term and this term.

Now, look at what this is when m is equal to zero. When m is equal to zero, e to the

2 pi i, zero t over t minus 1 is zero. So, all of the m terms here are collapsed into

zero, so there isn't any error down at baseband in a sense. All of the error occurs

due to these frequency terms larger than minus w to w. Well, that's the way it should
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be. Because we know that if u of t didn't have any terms outside of minus w to plus

w, the sampling theorem would be absolutely rock solid with no error. So the errors

are due to two kinds of terms. One, they're due to these terms, which is this thing.

Two, they're due to these terms, which is this. The only difference between this is

that this is a square of a sum and this is a sum of squares. Sum of squares are

nicer, we can deal with them more nicely, and we understand what that is better. A

sum and then taking the square of it after we take the sum is a good deal dirtier.

The trouble is that this difference doesn't have to be L2. In other words, the mean

square error we got from doing this can be infinite. One of the problems in the

current problem set is a nice simple example of this.

So, s of t need not have finite energy. That's a real kicker, because all of this theory

is very nice until this point. I mean the sampling theorem works perfectly because

when you're dealing with baseband limited functions -- for up baseband limited

function, the sinc functions give you a perfect approximation. Namely, the sampling

theorem works with no error at all. As soon as you get a function which spills out

into higher frequencies, you can, in fact, have these samples coming up with infinite

energy in them, and at that point this difference here can have infinite energy. In

fact, you would do much, much better if you simply represented u of t by zero. You'd

do infinitely better in terms of mean square error just by throwing it away and saying

I'm not going even bother to approximate it. I'll just call it zero and nothing else. If

you did that, you would only have the error in u of t and you wouldn't have all this

generated stuff from all these terms that you're throwing away.

When we start looking at random processes, and really the only thing that we're

interested in here is random processes because noise is a random process, signals

are random. So when we start looking at random processes, the thing that we're

going to find is that this square of a sum in terms of expected value is going to be

approximately the same as this sum of squares. So that this term and this term are

going to be roughly equal for most of the stochastic processes that we deal with, so

this problem doesn't occur of s of t having infinite energy. What that means is that

these two terms are of roughly equal magnitude. Now, we can understand

something more about these two terms. The term here is what you get, namely,
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something more about these two terms. The term here is what you get, namely,

these are the parts of u of t which are outside of the frequency range from minus w

to w.

A reasonable alternative to simply sampling this function would be to filter the

function first. If you filter the function first what's going to happen? These terms will

go away. These terms will stay. You still have the aliasing -- you can't get rid of that.

But you can get rid of these terms. Excuse me. I take that back. I seem to have a

binary problem today, whatever. I seem to be mixing up proof and falsehood. If you

filter a function you're clearly going to get rid of all of the aliasing, because after you

filtered the function you will have a band limited function sitting there. So the only

error you're going to get is the error in what you've thrown away. What you've

thrown away is, in fact, this quantity here. Slow down, say it right. What you have

thrown away is all of the extra frequency terms. So the error is all of those

frequency terms that you've thrown away. These are the frequency terms that

you've thrown away. This is the error that you wind up with after you filter. These

terms here are the aliasing terms. These are the things which, in fact, could be

infinite if you're unlucky enough. These you can get rid of by filtering.

So now the question is should you filter first or should you just sample and say to

hell with it? Well, if you think about why you want to sample and use digital signal

processing, what you're trying to do is to avoid building very complex analog filters.

So if you try to build a very, very sharp filter which is getting rid of all of those out of

band terms, you're sort of throwing away a lot of the reason for trying to sample to

start with. So the usual conclusion is no, we're not going to filter first, or we're only

going to have a very crude filtering operation first, and we'll just sample a little faster

if we have to, because sampling faster is easier. So we usually just sample faster

and avoid these terms.

Now we want to look at aliasing viewed in frequency terms, and we've almost been

doing this. We've been sort of talking around it a little bit. We're viewing an arbitrary

function, u of t, in terms of a sum of these frequency limited functions. We're just

arbitrarily taking a function, splitting it up into these frequency bands. In terms of

frequency what we're doing is just segementing the Fourier transform u of f. As far
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as the samples are concerned, uf of kt is just equal to the sum of the samples in

each of these frequency bands -- that's what we've been saying. That's really what

aliasing is at a fundamental level. So when you sample you can't tell which

frequency band each of these samples come from, and they usually come a little bit

from each one.

So, s of t now, I'd like to split up s of t in the same way that I split up u of t. I'd like to

split up s of t, even though I can't do this from looking at s of t, I can do it

mathematically. I want to split up s of t into the contributions to s of t from all of

these different bands. So I want to view the mth frequency band as the sum of vm

of kt times sinc of t over t minus k. Namely, look at what s of t was to start with,

somewhere back here a long time ago. What we found was that s of t is equal to

this quantity here, which is the sum over time terms, the sampling terms, and a sum

over frequency term. What I'm doing now is I'm just defining s sub m of t to be this

sum in here for one particular value of m. I'm just splitting this double sum into a

number of separate terms. So this is the contribution to s of t from the mth

frequency band. So, s of t is the sum of all of these different frequency contributions

in this quantity. vm of t, which came from u of t, same quantity here except for the

complex exponential here. vm of t is the same quantity with the rotating term at the

end of it. Namely, this is the actual signal at this mth frequency band. So the

contribution to it and the sampling approximation is this, the actual term is this.

So we look at these two and we say gee, this looks like -- if we look at this in the

frequency domain this looks like just a frequency shift. So the thing we can then say

is that v sub m of f, namely the Fourier transform of this, differs from the Fourier

transform of this just by a frequency shift. If we take the frequency shift formula and

frequency and look at it in time it just becomes that rotating term there. Namely,

frequency shifts look like complex exponential multipliers. We already know that d

sub m of f is the mth frequency band and u of t. So in fact, it's u of f truncated to the

mth frequency band. That's what this said . So, u hat of f rect ft minus m is just

equal to this term here. So this says that s hat of f, which is the sum of all these

terms, is just the sum over m, sum over all the frequency terms of u hat of f plus m
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over t times a rectangular function of ft.

All this is saying is that s of f in frequency, it's all down at baseband now. Each of

these frequency terms in u of t, up at some band and frequency, when we sample it,

we're effectively bringing it down to base then. When we sample it and multiply by

the sinc functions we're bringing it down to baseband. So this is saying when you

look at this approximation, the space band approximation, what we wind up with is

this frequency function evaluated at all of these different -- well, just evaluated at

different times. So, s hat of f is, in fact, frequency limited to minus w to plus w, and it

has all of these different terms contributing to it. It's just looking at aliasing and

frequency instead of looking at aliasing and time. In both cases it's the same thing.

In one case, all of the samples get mixed together. In the other case, all of the

frequency bands get mixed together. I hope this will be clearer in terms of this.

Let's take some arbitrary function here -- a most amazing thing, these things all get.

It seems as if latex -- a thing for drawing pictures is fine on my screen but not fine

when I print things. But anyway, this is fine as it is. It's slightly different from the one

in the notes, which is also goofed up in the same way. Let's suppose we start out

with a frequency function which looks like this. Actually, it should have something

else there but that's OK. This is minus 1 over 2t, this is plus 1 over 2t. In other

words, minus w to w. Here we have another frequency band from w to 3w, another

frequency band from 3w to 5w. What that formula said is that each frequency band

gets picked up and stuck down in the baseband area.

So, in fact, what's happening is that this part of the frequency function is going to be

picked up, stuck down there. So this goes over there. This quantity here is in the

band from 3w to 5w. It gets picked up and put in here also. It's gotten picked up and

put down there. So I have this part, this part, and this part just stays where it is --

this is the part that's actually band limited. So that s hat of f now is going to be the

sum of this and this and this, and one disappeared term which was supposed to be

here, and that's going to come in there. When you add up all of these -- this goes

over to there. When you add up all of these you get the total frequency function s

hat of f.
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All of you understand the mechanics of this? I mean graphically you can just find s

hat of f from taking all of these things and folding them all into this baseband

approximation. So that you can look at the error that you get in terms of sampling a

function which is not quite band limited in these terms, also. The aliasing then looks

like the translation from something which is in this band stuck into the main band

between minus w and w. Translation of this thing stuck into the main band.

Translation of this stuck into the main band. They're all added together in such a

way that you can't tell which one came from where. So once you look at this, you

can't go back to here, which is why people call it aliasing. These things are all just

mixed together and there's no way to get back.

The theorem that corresponds to all of this, and the theorem is pretty much proven

in the appendix if you want to read it. If you're not interested in those mathematical

details you're certainly welcome not to read it. I'm not going to have any problems

on it. I'm not going to have any quiz problems on it, we might have a problem on it.

It turns out that just L1 and L2 is not enough when you're dealing with aliasing.

Aliasing, since you're both sampling and looking at things at arbitrarily large

frequencies, the mathematics just gets messy. So the condition that you need is that

the frequency function you're dealing with in order for all of these aliasing results to

hold true, is that the limit as f goes to infinity of u hat of f times some function, f to

the 1 plus epsilon has to go to zero. In other words, this is saying that u hat of f has

to go to zero with increasing frequency fast enough. It has to go to zero a little faster

than 1 over f. If it went to zero, it was 1 over f, that would be guaranteed by a thing,

L2. That's not enough here. You need the stronger condition.

So if it goes to zero fast enough as f gets very, very large -- you know any function

you're going to deal with you can always model it so that it does this. Because you

simply can't transmit wave forms that have arbitrarily high frequencies in them. I

mean no matter what kind of antenna you use to transmit them, if it's an optical

antenna you can get to much higher frequencies, but no matter what kind of

antenna you use you're going to be limited somehow in frequency, and it's going to

drop off much faster with increasing frequency than this. So this isn't any sort of
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practical limitation on aliasing, it's just that it's there and it limits the models you can

create somewhat.

If you have this condition then it says that the Fourier transform of u of t has to be

an L1 function. The inverse transform, u of t, has to be continuous and bounded. In

other words, when we go from u hat of f to u of t we get a bonafide function there.

It's not something which is a limit in the mean. Because as soon as we're dealing

with samples of something you really need a function to talk about. You can't have

something which is -- well, you can't have something which has these little extra

things on it. You can't live with that. So the theorem says that this frequency function

has to be L1. It says the inverse transform has to be continuous and bounded.

We've already seen that L1 functions have continuous and bounded Fourier

transforms. For any t greater than zero, the sampling approximation, namely, s of t,

which is this, is going to be bounded and continuous. And s hat of f satisfies this

relationship here. So this is the frequency version of the aliasing formula. Here you

still have the limit in the mean here. As soon as you go back to frequencies you

can't say anything precise anymore. In time, everything is precise. These functions

are bonafide functions. In terms of frequencies they're not quite.

I want to just start talking about these L2 functions. As you realize, we've not only

been talking about L2 functions, we've been talking about L1 functions also, and

now these crazy functions which go off to zero fast enough. The thing we're

basically interested in, aside from sampling, is the L2 functions because they're the

ones where you can go from function to Fourier transform and back again. They're

the ones which work or these orthogonal expansions, and they're the main things

we're going to be interested in.

When we try to go further talking about these functions, it turns out that it's much

easier to think about them in terms of vector spaces. Some of you probably have

thought about wave forms before as vectors, some of you probably haven't. I'm

sure all of you are familiar with vectors at least in terms of a notational convenience

as a way of representing n tuples of numbers. You can always take an n tuple of

numbers and instead of writing out u1, u2, u3, up to u sub n, you can say vector u,
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and you can manipulate those vectors, you can add vectors, you can multiply them

by scalers, you can do all of the neat things that people do, even without knowing

anything about vector spaces. It's not much of an extension on that to take

accountably infinite sequence of numbers and represent it as a vector, especially if

you've never done it before. If you've done it before and if you've thought about it

before, you will realize there are some problems there.

But at least conceptually there's no problem. You can think about a sequence of

numbers as being a vector, you can add those sequences, you can multiply them by

scalers, you can do all sorts of neat things with them. Since we've shown how to

represent wave forms as sequences of coefficients in orthogonal expansions, it then

isn't much of an extension to think about wave forms as being vectors. But the nice

thing about doing this is that you're not really stuck to a particular orthogonal

expansion when you do this. You can think of wave forms as being vectors in just as

nice a sense as you can think about these n tuples as being vectors, and that's what

we're trying to get at.

These orthogonal expansions we're going to be looking at are really viewed most

easily in terms of vector space. All of the questions about convergence of

orthogonal expansions and things like that, limits and all of that, all of these are very

natural in vector spaces. They're so natural that people often forget about the fact

that they're taking limits even. So it just looks nice there. But as soon as we do this,

what we're going to be doing constantly from now on is trying to say what we know

when we're looking at two-dimensional vectors, we have all sorts of pretty pictures

about how they behave. We are going to be trying to use those pretty pictures in

two-dimensional space to understand what happens with wave forms, and in order

to do that we have to know a little bit more about vectors than just vectors are things

you can add and multiply scalers by.

So I will bore you for two minutes by quickly going through the axioms of a vector

space. My reason for going through this is when you define a vector space

axiomatically, then you can, in fact, prove that wave forms satisfy all those axioms.

Once you prove that wave forms satisfy all those axioms, then everything you know
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about two-dimensional and three-dimensional vectors and all of that stuff all applies.

Namely, everything which is general for vector spaces applies to these vectors.

So the axioms are the following. You start out with a set of elements which you call

vectors. In terms of n tuples, the set of elements is just the set of different n tuples.

You also start out -- well, for here we don't have to worry about scalers. So we have

the set of n tuples now, or perhaps it might be a set of sequences or a set of wave

forms. The things we insist on before we will call this set a vector space are that we

have an operation which we call addition. Fortunately for n tuples, addition is what

you would think it would be. It's element-wise addition. For sequences, it's element-

wise addition again. For wave forms, it's function addition. You have communitivity -

- you can add things in either order. I mean look, if nobody pointed this out to you,

you'd do it anyway, right? So that it looks like nothing. But in fact, you can invent

things, mathematical objects, which you can deal with which are not communitive.

So this is saying to be a vector space it has to have this communitivity operation.

Associativity -- again, it's hard to see why you would say something like this, but all

we're defining is this addition operation, namely, there's a definition of addition, and

we know by axiom that the sum has to be in this vector space. As soon as we

assume this associativity axiom, it says OK, this is a vector in the space, this and

this are both vectors in the space. Therefore, this sum has to be in the space.

Therefore this plus the sum has to be in the space. What associativity says is that

that's the same element as this. Once you see this you leave out the parentheses

because you can add as many things as you want to. Same thing -- well, here there

has to be a unique vector, zero -- v plus zero is equal to v for all v, and there's only

one vector that has that property. We're going to see some problems there in a little

bit when we start studying these L2 functions, but we'll do that next time.

Finally, for every v there's a unique negative vector so that the sum is equal to zero.

All the operations that you're used to. We'll go through the other things next time.
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