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PROFESSOR: I want to spend a little bit of time today finishing up what we were saying last time,

about orthonormal expansions. Just, essentially, to get a better understanding of

what it means to go from finite dimension to infinite dimension.

For the most part, you can just ignore the question of being at an infinite

dimensional space, and everything is pretty much the same as it is in finite

dimensions. But there are a few things you have to be a little careful about. So, let's

suppose that we have a set of orthonormal vectors. Like the sinc vectors for

example, that we were using for the sinc functions that we were using, to talk about

the Fourier series.

And the thing that we said last time at the end of the hour, we quoted this theorem

which was almost obvious, I think, in terms of the other things that we did. Which

said that if you start out with some vector v, you can project it successively onto the

set of orthonormal functions in such a way that you get closer and closer to the

vector that you're looking for. And the theorem that we had was that the projection

on the whole space, which we call u, in fact is the same as the limit of this sum of

orthonormal functions as we take the limit adding more and more functions into this

sum.

So this was sort of the same kind of thing that we were doing when we were going --

it's the same sort of thing that we did when we were doing the projection theorem

for finite dimensions. You remember the thing that we did there was to first project

this function onto a single waveform. Then we found the part of the waveform that

was orthogonal to the first waveform. That gave us our second waveform. And the

thing that we're doing here, which is sort of different, is we're starting out with the

orthogonal sequence to start with.
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Anyway, the thing that we showed was that the vector we start with, minus this

approximation, which is in the space generated by all of these p sub n's, that this

difference has to be orthogonal to each p sub n. Because that was a way we

constructed it. So this difference is -- well, the limit goes to zero, but also the

difference is orthogonal to each phi sub x.

This is the thing which is new, which we didn't get from looking at the Fourier series.

We could have gotten it from looking at the Fourier series, but this is the thing which

is general for every orthonormal expansion in the world. Not just a Fourier series,

except all of them.

And then we say that an inner product space has accountably infinite dimension. If

accountably infinite set of orthonormal vectors exist, such that only the zero vectors

are orthogonal to each other.

This comes back to one of the issues that we faced when we were going through

the Fourier series. Namely, we showed all this nice stuff, which was really about

approximating a waveform by the Fourier series. The thing that we never showed,

and the thing which is messy and difficult, is that if you take a time-limited function

and expand it in a Fourier series, how do you know that when you get all done,

you're actually going to get the function back again? This is the part of it which we

never talked about. We talked about how you generate all of the Fourier

coefficients, and all of that was fine. And we showed that when you were all done,

this representation function that you had was in fact orthogonal the thing that was

left over. But you never showed that the thing that was left over went to 0. And the

thing this is saying is you don't have to worry about that too much. Because the

thing which is left over has to be orthogonal to everything you started with. And this

sum here has to go to some limit.

What is this limit in the case of the Fourier series? Suppose we start out with an

arbitrary L2 function. We now try to expand that arbitrary L2 function in a Fourier

series from minus t over 2 to plus t over 2. And we can do that. When we're all

done, this series here is in fact going to be the part of the function which lies
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between minus t over 2 and plus t over 2. And this difference here -- well v minus u,

the difference between the original vector and this representation vector is going to

be this part of the function which lies outside of minus t over 2 to plus t over 2.

So the next thing that we did then was to show that the truncated sinusoids and the

sinc weighted sinusoids both in fact span L2. In other words, any function in L2,

after you represent it in terms of that series, what you have left over has to be

orthogonal. In other words, if you take this entire set of truncated sinusoids, every

non-zero function is orthogonal to all of that. Every non-zero function in this L2

equivalent sense.

So in fact, the thing you get out of this is this part of looking at functions which we

always ignored.

There's another issue that we ignored, when we were looking at functions, which

comes out of this. Since v, by assumption is an L2 vector. In other words, it's an L2

function aside from this L2 equivalent stuff, and phi sub m is an L2 vector also, this

inner product has to be finite, by the Schwarz inequality. How did we get around this

when we were dealing with the Fourier series? Does anybody remember? Of

course you don't remember. I hardly remembered that.

The way we got around it was by saying that this orthonormal function which was in

a truncated sinusoid. It was truncated to minus t over 2 and plus t over 2, and the

waveform was just e to the i 2 pi f t. The magnitude of that function was always less

than or equal to 1. And because the magnitude was always less than or equal to 1,

you could just take the integral of v of t times phi sub n of t, and you could show

directly that that integral always existed. Because of the special property of the

sinusoids.

Here what we're saying is, you don't have to worry about that any more. You can

use arbitrary L2 functions as the components of an L2 orthonormal expansion. And

it still works. So every one of these things has to be finite also. So, in fact we're

buying something out of this. At the end of the notes on Lectures Eight to Ten, you

will notice something that I'm certainly not going to hold you responsible for.
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Something called the prolate spiroidal expansion. And it's just given there primarily

as one more example of an orthonormal expansion. It's a very interesting

orthonormal expansion because it has the property that if you start out asking how

much energy can I concentrate within a fixed time interval, and a fixed bandwidth

interval. Which is one of the things which make this whole subject a little bit fishy in a

whole and certainly very, very messy.

If I start out with a time limited function and go through the Fourier series, these

truncated sinusoids spill their energy out of the band enormously. In fact, one of the

problems at the end of Lectures Eight to Ten carries you through the process of just

how much energy you can have outside of band by using these truncated sinusoids.

Because truncated sinusoids, when you look at them in a Fourier series, have a lot

of energy outside of where it should be.

So that this particular set of prolate spiroidal functions gives you the answer to the

following question. I would like to find that function, which is limited to minus t over 2

plus t over 2, which has the largest amount of energy, largest fraction of its energy,

within the band minus w to plus w. What is that function? Well, that function

happens to be the zero order prolate spheroidal function. It's the nice property that

it has. And it's a nice function, which almost looks like a rectangular function. But it

just trails off to 0.

And I say, OK, if I want to construct an orthonormal expansion, and I want to find

another function which is orthogonal to that function and has the next biggest

amount fraction of its energy, inside of this -- strictly inside of this time limit, and as

much of the energy within the frequency limit as possible, what's that next function?

Well, you solve that problem. If you're very good at interval equations. And I

certainly couldn't solve it. But, anyway, it has been solved.

I mean, physicists for a long time have worried about that particular kind of

question. Because it comes up in physics all the time. If you time-limit something

and you take the Fourier integral, how can you also come as close to frequency

limiting as possible? So this particular prolate spheroidal set of orthogonal functions,
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in fact, exactly solves the problem of how do you generate a set of orthonormal

functions which in fact have as much energy as possible both frequency-limited and

time-limited?

And what you find when you do that is, when you take 2 w t of them, at that point

the energy in these orthonormal functions, the part of it that's inside the band, really

starts to cut off very, very sharply, when w and t are large. So that in fact you get 2

w t of these functions, which have almost all of their energy in this band. And

everything else has almost no energy in the band. So if you ever get interested in

the question of how many waveforms really are there, which are concentrated in

time and frequency, that's the answer to the problem. And don't bother to read it

now, but just remember that if you ever get interested in that problem, which I'm

sure you will at some point or other, that's where the solution lies. And I hope I gave

a reference to it there. I think I did.

Anyway, we have these functions which span L2. And there's at least one other

orthonormal expansion that we have. Which is both time- and frequency-limited.

And either at the end of today or at the beginning of Monday, we're going to find

another particularly important sequence of orthonormal functions. Which we actually

use when we're transmitting data.

So to give an example of what we were just talking about, the Fourier series

functions span the space of functions over minus t over 2 to t over 2. And when

normalized, these functions become 1 over the square root of t times what we

started with before. Namely, a sinusoid truncated. Before we were dealing with the

orthogonal functions without the 1 over square root of t in it. If you want to make

them orthonormal, you get this square root of 1 over t, because when you take the

energy in this function, you get t. If you don't believe me, set k equal to 0 and look at

that. And even I can integrate that. And when you integrate 1 from minus t over 2 to

t over 2, you get 1. So, then you have to multiply by the square root of 1 over t.

When you view the Fourier series functions in this way, it's nice because they're

orthonormal. It's not nice because the square root of 1 over t appears everyplace.
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But the nice thing about it is that then when you expand in the Fourier series, you

don't find this t anywhere. Namely, v is equal to the limit of these approximations

where the n'th approximation is just the sum from minus m to m of alpha sub k. phi

sub k and alpha sub k is just this inner product. So, again, you got something nicer

by looking at these things in terms of vectors You get nice statements about how

these things converge, and you also get a very compact way of writing out what the

expressions are.

You also get something a little bit fishy, which a lot of people in the communication

field, especially ones who do theoretical work, run into problems with. And the

problem is the following: when you start dealing all the time with vectors, and you

forget about the underlying functions and the underlying integrals, you start to think

that the subject is simpler than it really is. Because you forget about all the limiting

issues. And when you forget about all the limiting issues, it's fine almost all the time.

But every once in a while, you get trapped. And when you get trapped, you then

have to go back behind all of the vector stuff and you have to start looking at these

integrals again and it gets rather frustrating. So you ought to keep both of these

things in mind.

Let's go on, let's get back from mathematics into worrying about the question of how

do you send data over communication channels. And this is just a picture that we

saw starting on Day One of this course, which says the usual way of doing this is,

you start out with -- you start out with the source. You break the source down into

binary data, and then you take the binary data and you transmit it over a channel.

And this is the picture of what you get when you're trying to transmit binary data

over a channel. And here, we've broken down the encoder, as we called it, into two

pieces. One of which we call the discrete encoder and one of which we call

modulation.

Now, this is a little bit fishy also. Because there are a lot of people who now talk

about coded modulation, where it turns out to be nice to combine this discrete

encoder with the modulation function. And when you actually build modern-day full

encoder, namely the whole thing from binary digits to what goes out on the channel,
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you very often combine these two functions together.

What is it that allows people to do that? The fact that they first studied how to do it

when they separate the problems into two separate problems. And when you

separate the two problems, what we wind up with is binary digits coming in. You

massage those binary digits strictly digitally. And what comes out is a sequence of

symbols. And, usually, the sequence of symbols comes out at a slower rate, and the

binary digits come in. For example, if you take two binary digits and you convert

them into one symbol, from a symbol alphabet with force of size four, then for every

two in you get one out. If you take three binary digits coming in, then you need a

symbol alphabet of size eight here. If you move down in rate from four binary digits

to one symbol, then of course you need an alphabet of size 16. So the size of the

alphabet here is going up exponentially, as the great advantage that you get is

going down. We will talk about that more as we move on. You should sort of keep in

mind that there's a strange relationship between size of alphabet and the rate at

which you can transmit. As you try to transmit at higher and higher rates here, the

size of your alphabet goes up exponentially, with the rate gain that you get.

In fact, when you look at Shannon's famous formula of how fast you can

communicate on a channel, you find a logarithm of a signal to noise ratio. Of 1 plus

a signal to noise ratio. When you look at that signal to noise ratio and you look at

this alphabet size in here, you can almost see just from that why in fact that

logarithm in these capacity formulas. And we'll come back to talk about that again

more later also.

But, anyway, what we're going to do at this point is to separate this into the problem

of discrete encoding and modulation. And in modulation, you start out with some

arbitrary alphabet of symbols. You turn the symbols in that alphabet into waveforms.

You transmit the waveforms. You then get the symbol back, and then you put it into

a digital encoder, which gets the binary digits back.

Now, what order are we going to study these in? Well, we're going to study the

modulation first. And we're not going to study this at all, essentially, except for a few
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very, very simple-minded examples. 6.451, which is the course that follows after

this, which might or might not be taught in the Spring term, and incidentally those of

you who want it to be taught should send me an email saying you really need to

take this next term for some reason or other. Because otherwise it will be given in

Spring of the following year instead of Spring of this year.

There's another side to that issue, which is a wireless course is going to be given in

the Spring of this year. And if you want to take a wireless course and postpone

taking the coding course until the following year, then in fact it might be better to do

the postponing job. I would recommend that those of you who are interested in

wireless take the course now. Because if you're looking for research problems in a

communication area, wireless is probably the hottest area around, and the area

where the most interesting problems occur. So, you have to make that tradeoff. If

you want to take both of the courses, great. Send me an email and say you want to

take the coding course. But anyway, there'll be very little coding in this course, very

little discrete coding. And mostly we're going to look at simple ways of taking simple

symbol sequences, turning them into waveforms and then transmitting them on

channels.

AUDIENCE: So, basically, when you do the source coding, you have to [UNINTELLIGIBLE]

binary --

PROFESSOR: Binary to symbol to waveform. Yes.

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: OK, why don't I go from waveforms directly to waveforms instead of going from

waveforms to symbols to binary digits, and then I just have to go back up again. A

bunch of reasons. One of the reasons is that some of the stuff that you transmit is

already digital to start with. When you look at what goes over a network today, for

example, it's carrying digital data, it's carrying analog data. It's carrying images. It's

carrying everything you can imagine. If you want to design a modulation system

which goes directly from analog data to channel data, and you have a hundred
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different kinds of analog source data, and you have a hundred different kinds of

channels, then you're going to have to build one encoder for every combination of

source and channel.

In other words, you've got to built ten thousand devices. If your interest is in keeping

engineers employed, which I think is a very good interest, that's a very good

philosophy to take. But, unfortunately, most people who build communication

equipment say, we would really rather have just a hundred -- well, two hundred

different devices. One hundred devices which turn all these different sources into

binary digits, and another hundred devices which turn the binary digits into

something that can be transmitted over any channel you want to.

I mean, this is just a general example of what people call layering. You want to turn

systems into systems with a bunch of layers in them, where each layer is

standardized in some way. And only has to take care of a few particular functions.

And, in fact, that's what we're doing here also. Because we're dealing with one

layer, which is doing discrete encoding. Which in fact is sort of generating, for the

most part, binary digits out of the discrete encoder. Where, as you go through all of

this stuff and you come out with binary digits, some of which are wrong, you can do

the decoding and get the correct binary digits out. If you look at an awful lot of

coding theory, you'll find out it doesn't pay any attention at all to what's going on in

the channel. Lots of people who've studied coding all of their lives, and decoding all

of their lives, live in this mathematical theory of abstract algebra. And they have no

idea of what channels are. And they survive because of this layering principle. So if

you want to employ engineers, it's nice to have layering also. Because engineers

don't have to know as much then.

Of course, you people should know it all. So because, then you can do anything.

And you can be part of those very rare people who can put it all together. I was just

at the 70th birthday party of Irwin Jacobs this past week. And Irwin Jacobs is the

CEO of Qualcomm, which is the company that started to build CDMA wireless

systems. For a long time, the CDMA systems were thought of as probably better

than TDMA and FDMA, but much more expensive. And eventually, we're in the

9



situation where all the new systems being designed are all using CMDA. As a result

of this, Irwin Jacobs is a very wealthy person. We went to a symphony Friday night,

out in San Diego, which was given specifically for him. Partly because he'd just

given $110 million to the San Diego Symphony. So you can figure from that that

he's fairly wealthy.

Well the point of all of that is, he started out as a faculty member here. He was one

of the authors of Rosencraft and Jacobs, which is sort of the Bible of digital

communications systems from the `60s. And people still use it, it's still an excellent

book. And in doing that, he really learned the communication trade from soup to -- I

guess, soup to nuts is the way we put it now. And he could do the whole thing. And

because he could do the whole thing, because he understood coding, because he

understood modulation, because he understood channels, this is why he could

design systems that really work.

I was talking to the Chief Technology Officer out there, and the Chief Technology

Officer said his job was really very easy because Irwin did all of that himself. And he

still does it. So it really makes sense to know something about all of these pieces. If

you want to become a billionaire. And if you want to become a billionaire without

cheating. Now, many people become billionaires by cheating, and you've heard of

many of them but. Well, anyway. Enough of that. I mean, none of us really want to

be billionaires anyway, -- I mean, there's nothing you can do with more than a billion

dollars, right? It's all wasted.

Let's move on. We've gotten rid of digital coding, saying we're not going to deal with

that here. Let me take the PAM out of here because I don't want to even say what it

is yet. If we take this box I called modulation before, which was one of the two main

pieces of a channel encoder, we can break it down into two pieces. Namely, mainly

we're going to be layering things again. We start out with this symbol sequence,

which is what comes out of the encoder, which is usually just a short sequence of

binary digits. So the symbols can be thought of as two binary digits in a sequence,

or four binary digits, or six tuples of binary digits, or what have you. And all of those

are common.
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There's then a signal consolation that turns symbols into signals. Now, notation in

the field is totally non-uniform, because most people use symbols and sequences

and waveforms and binary n-tuples, all totally synonymously. And the distinction

we'll try to make here is that symbols are things like binary digits, that don't have

any numerical meaning to them. I mean, a 1 and a 0, the only thing important there

is that 1 and 0 are different from each other. All computer scientists call 1 and 0's

Alices and Bobs. Lots of other people call them plus-1's. and minus 1's. Doesn't

make any difference what you'd call them, it's just an alphabet with two values in it.

When we talk about signals, we're talking about numerical values. So in fact, you

could have a signal constellation with two elements in it, where what you're doing is

mapping 1 and 0 into plus 1 and minus 1. Now, that's a pretty silly kind of situation,

but it still has the value of saying, you're turning things where there's just an

alphabeticized 2 into something where you're saying, these are numerical values

and you're interested in the difference between the numerical values. And the

difference is measured in the ordinary way of measuring difference for numerical

values.

Or, these can be vectors also. But vectors in an inner product space where, again,

you have length. And you have distance. So you have numerical values here. You

don't have numerical values here. So we're going to talk about how you do this. And

then, for the most part, we're going to define modulation as what happens when you

go from the signal sequence to the waveform. You might realize that our notation is

lousy here. Because I'm calling modulation this whole thing. And I'm also calling

modulation just this thing. And I'm doing that because there doesn't seem to be any

other reasonable word for either one of these things. So, and I'm going to later split

this into two pieces also. But that will come later.

So, anyway, we're going from symbols to signals to waveforms. Which might look

remarkably similar to what we did with sources. But we just did it backwards with

sources. We went from waveforms to signals to symbols there. And here we're

doing the same thing.

11



The modulator often converts a signal sequence to a baseband waveform, and then

converts the baseband waveform to a passband waveform. And, just historically,

people used to think of modulation as the process of taking something at baseband

and converting it up to some passband. Now it's recognized that the interesting

problem is not, how do you go from baseband to passband. Which is just multiplying

by cosine wave, not much more to it than that. Well, it's a little more to it, but not

much.

And the interesting problem is, how do you convert signals into waveforms. Which is

why we went, one of the reasons we went through all of this stuff about L2

waveforms and orthonormal expansions and all of this stuff. So, for the time being,

we're going to look at modulation and demodulation, without worrying about what

bandwidth any of this occurs at. So we'll just look at it at baseband.

So the simplest example of all of this, so simple that it almost looks like it's silly, is to

map a sequence of binary digits into a sequence of signals from the constellation 1

and minus 1. So all you're doing there is mapping 0 into 1 and mapping 1 into minus

1. In other words, the 0 and 1 binary digits are mapped into 1 and minus 1. Why do

you do it this way, which is a little confusing, mapping 0 into 1 instead of mapping 1

into 1? Well, primarily, so you can look at multiplication of signals in the same way

as you look at modular to addition of binary digits. It just turns out to be a little more

convenient that way. And it doesn't make a whole lot of difference. The point is,

we're going from 0 1's to signals which are 1 and minus 1.

Then this sequence of signals is mapped into a waveform which is the sum of u of k

times the sinc function t over capital T minus k. In other words, you're thinking of

each one of these signals, now, think of it as being a sum of impulses, delayed

impulses. And then think of taking a little sinc, sinc t over t and putting it around

each one of those impulses. In other words, think of passing each of those

impulses, which is weighted by one of these values, u sub k, into a linear filter

whose response is sine of x over x.

Anybody
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see anything a little bit fishy about that? Have you ever built a filter whose response

was sine x over x? AUDIENCE: It's hard to.

PROFESSOR: It's hard to, why?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: Because it's not causal, yes. We're going to talk about that more later today.

Communication engineers hardly ever talk about causality. They hardly ever talk

about whether something is realized or not. And the reason I want to say this a

number of times is that one of the parts of any receiver is a timing recovery circuit.

And what the timing recovery circuit does is, it tries to figure out what the transmitter

timing is, in terms of what it's receiving. And when you're figuring out what the

transmitter timing is in terms of what you're receiving, the most convenient way of

doing that, if you're sending a pulse or something, you would like the receiver timing

to peak up at the same time that the transmitter timing is peaking up, in terms of the

pulse. In other words, you want to get rid of the propagation delay and just ignore

that. The receiver timing is going to be delayed from the transmitter timing exactly

by the propagation delay. Now, if we always do that, causality becomes totally

unimportant.

Now, one of the problems with a sinc function is, it starts at time minus infinity. And

even if you delay the receiver timing by an infinite amount of time you can never use

the communications system until it's time to tear it down and bring in a new one.

Which, unfortunately, is what happened to the third generation wireless systems. By

the time, people figured out how to build them, everybody was saying, ah, old-

fashioned stuff, we're going to go directly onto to fourth generation. And they might

go directly from fourth generation to fifth generation. Who knows.

Anyway, you can't implement these even with the receiver timing different than the

transmitter timing. But you can always approximate things with enough delay

between transmitter and receiver. So that you can approximate any filter you want

to, without worrying about causality at all. And it's hard enough designing good

filters without worrying about casuality that you don't want to bring that into your
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picture at the beginning. So communication engineers usually say that those timing

issues are not important. And a little bit of delay is not going to hurt anything. All of

Shannon's theory was as successful as it has been, and transformed the whole

communication industry, because he never talked about delay at all. He just ignored

the question of delay from beginning to end. And when you look at his capacity

formulas, they are assuming that you have as much delay as you need between

transmitter and receiver. And, assuming that that isn't important, and in terms of the

propagation delays, and the filtering delays in most modern communication

systems, those delays are not really important. The propagation delays you can't

avoid. So you might as well ignore them. Which is why you build timing recovery

circuits. And the filtering delays are usually unimportant. Relative to all of the other

delays that come into these system. So for the most part, we're just going to ignore

those questions.

If you have no noise, no delay, and no attenuation, the received waveform is going

to be the same as the transmitted waveform. And then what you would like to do is

to sample that and convert it back to binary. So, that's what the receiving side of this

trivial system is doing. Now, why can you ignore attenuation? Anybody have any

idea why we might want to ignore attenuation?

Well, it's like all of these other things. You don't ignore it, but the question you ask

is, can I separate the issue of attentuation from the other issues that I want to look

at now. In other words, can I layer this problem in such a way that we can deal with

our problems one by one. And the problem of attentuation is something that

communication engineers have had to deal with from day one. In dealing with it

from day one, they have dealt with all of the different ways of losing power that you

have. Which includes attenuation in the actual medium between transmitter and

receiver. It deals with the attenuation you get in the receiver by building filters and

by all the other things you do there. When you get all done with that, there's only

one thing that's important. Because you can deal digitally with very, very small

signals. And the only thing that's important is what happens to the noise. You get

noise in the communication medium. That comes into the receiver. And now, any

time you amplify what you receive, they're going to be amplifying the noise as well
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as amplifying the signal.

An easy way to deal with that is to assume that there isn't any attentuation in what

you're calling the signal, because you're going to amplify that to a reasonable value

to operate on it anyway. So in fact you're amplifying the noise. So the only thing

you're interested in is, what's the ratio between the signal power and the noise

power.

So, those issues, we can deal with completely separately from these issues of what

kind of waveforms do we want to choose. What should we choose in place of this

sinc function, which is impractical because it causes too much delay and it's also

hard to build the filters. So we'd like to deal with that question separately from the

question of attenuation.

There's a short section in the notes, which I'm not going to go into, because you can

read it just as easily as I can talk about it, about dB. And why people use dB to talk

about all of these questions of energy losses. And why, in fact, there's a whole set

of engineers whose function is to deal with link budgets. In other words, when you

build a communications system, you're losing power everywhere along the way.

You're losing it in the median. You're losing it by the way you build the antennas.

You're losing some here, you're losing some there. And what these people do is,

they look at all of these attenuations together. And they multiply together. So, in

fact, it's easier to take the logarithm of all of these terms. And when you take the

logarithm, that's where you get decibels from. Because these people, instead of

taking natural logs, which would seem like a much more reasonable thing, always

take the logarithm to the base 10 and then divide by 10.

And what the section in the notes says is that that's a practice which has grown up

because it's very easy to do mental arithmetic with that. The logarithm to the base

10 of the number 2 which is one of the biggest numbers that ever appears. 2's are

more important than thousands, OK? And the logarithm to the base 2 of 10 is 0.3.

And when you divide it by 10 you get 3 dB. So a factor of 2 is called 3 dB. This

means that a factor of 4, which is 2 squared, is 6 dB. Factor of 8 is 9 dB, and so
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forth. And this gives this table of all these numbers which all communication

engineers memorize.

The other reason for it is that if you're talking to a communication engineer, he will

recognize you as a member of his fraternity if you let the word dB slip several times.

Don't even have to know what it means. You just talk about dB. And you say, my

income is 3 dB lower than your income. And that makes him very happy.

So. Anyway. That's all we need for this simple example. We now want to go into

more complicated things. OK pulse amplitude and modulation. This is one of the

major ways of turning bits into signals, and then turning the signals into waveforms

again. Again, I'm doing this first not because it's the most important scheme to talk

about, but because we want to understand these things one by one. And when we

understand PAM, we'll then talk about QAM. And you'll understand that. And then

we can go on to look at other variations of these things.

So the signals in PAM are one dimensional. The constellation, the only thing it can

be, since it's one dimensional, one real dimension, is a set of real numbers. So

you're going to modulate these real numbers. And that, we're going to talk about

later. How do you find this function here? We're just going to take these real

numbers, which are coming into the transmitter one by one out of the digital

encoder. You're going to take these numbers. You're going to view them as being

multiplied by delayed impulses, and then pass through a filter. And the filter's

response is just, impulse response is just, p of t.

In other words, what we're doing is saying, we don't like the sinc function.

Therefore, simplest thing to do is replace the sinc function by something we do like.

So we're going to replace the sinc function by some filter characteristic, which we

like. And that's the way to modify this previous example into something that makes

better sense.

So we're doing two things here when we're talking about PAM. One, we're talking

about generalizing this binary signal set. And, two, we're talking about generalizing

the sinc function into some arbitrary impulse response.
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So a standard PAM signal set uses equispaced signals symmetric around 0. And if

you look at the picture, it makes it clear what this means. It's the same thing that we

were using all along when we were talking about quantization. If you're looking at

one dimensional quantization, that's a very natural way to choose the

representation points. Here, we're doing everything in the opposite way. So we're

starting out with these points. Well, we're starting out with eight symbols and turning

them into eight signals. And when you take eight symbols and turn them into eight

signals, perfectly natural thing to do is to make each of these signals equispaced

from each other, and center them on the origin. This is not something we have to

see later. I think you can see that if these symbols all are used with equal

probability, and you're trying to reduce the amount of energy that the signals use,

which will then go through into reducing the amount of energy in the waveforms that

we're transmitting, it's nice to have them centered around 0. Because if they have a

mean, that mean is just going to contribute directly to the expected mean square

value of the signal that you're using. So why not center it around 0.

Later on we'll see many reasons for not centering it around 0. But for now we're not

going to worry about any of those, and we're going to center it around 0.

And the other thing is, why do you want them to be equally spaced? Well, I'll talk

about that in just a second.

Anyway, the signal energy in these equally spaced signals, you can calculate it to be

d squared times m squared minus 1 divided by 12. I think we sort of did this when

we were worrying about quantization. There's a problem at the end of lectures 11

and 12 which guides you by the hand in how to calculate this. Or you can sit down

and just calculate it by hand, it's not hard to do. But, anyway, that's the mean

square value of these signals. If you assume that they're equiprobable.

Now, if you take m to be 2 to the b, now what's b? b is the number of binary digits

which come into this signal former when you produce one signal out. Namely, if you

bring in b binary digits, you need an alphabet of size 2 to the b. If you have an

alphabet of size 2 to b, then you're going to need m equals 2 to the b different
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signals. So, usually when you have a standard PAM system, that number there, 8

PAM, means 8 signals. 8 is usually going to be replaced by 4, or 16, or 32, or 64, or

what have you. And, usually, not anything else. Because you're usually going to

deal with something which is a power of 2. Because the logarithm of this to the base

2 is the number of bits which are coming into the signal former for each signal that

comes out.

This goes up very rapidly as m squared goes up. In other words, you try to transmit

data faster by bringing more and more bits in per signal that you transmit, it's a

losing proposition very, very quickly. It's this business of a logarithm which comes

into everything here.

We're going to talk about noise later. We're not going to talk about it now. But, we

have to recognize the existence of noise enough to realize that when you look at

this diagram here, when you look at generating a waveform around this, or a

waveform around this, however you receive these things, noise is going to corrupt

what you receive here by a little bit. Usually it's Gaussian, which means it tails off

very, very quickly. With larger amplitudes. And what that means is, when you send a

three, the most likely thing to happen is that you're going to detect a three again.

The next most likely thing is you'll detect either a four or a two. In other words,

what's important here is this distance here. And hardly anything else. If you send

these signals with equal probability, and the noise is additive, the noise does the

same thing no matter where you are along here. Which says that this standard PAM

set is almost the only thing you want to look at. So long as you assume that the

noise is going to be additive. And the noise is going to affect everything along this

line equally. It says that you just want to make the spacing between points big

enough that it will pretty much avoid the noise.

So, the point of all of that is that d is fixed, ahead of time. You can't play with that.

You can play with m. When you play with m, you're playing a losing game with

energy. So that's why standard PAM is the thing which is used with PAM. Not much

you can do about it.
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And say here that the noise is independent of the signal. We will talk about this later.

The noise being additive. The noise being independent of the signal are both saying

almost the same thing. Which will be obvious to you in a little while. But not until we

start talking about noise. We don't want to start talking about noise now. So, for

now, we deal with the noise just by saying that every signal must be separated by

some minimum amount.

Again, what we said about delay and attenuation. Let me say it again, because it's

important enough that you have to understand it. After you go through two or three

problem sets, you will not understand it again. Because you'll get so used to dealing

the receive signal as the same as the transmitted signal that you'll forget the

weirdness in that. I mean, people become accustomed to extraordinarily weird

things very, very easily. And especially when you're taking a course and trying to get

the problems done, you just take things which are totally ridiculous and accept them

if it lets you get through the problem set. So I want to tell you right up front that

there is some weirdness associated here. It is something you have to think about.

After you think about it once, you then accept this is a layering decision. You ignore

delay, since the timing recovery locks the receiver clock to the transmitter clock plus

the propagation delay. And in fact, it can lock the receive clock to any place that

wants to lock it to. So we're going to lock it in such a way that the receive signal

looks like the transmitted signal.

And the attenuation is really part of the link budget. We can separate that from all

the things we're going to do. I mean, if we don't separate that, you have to go into

antenna design. And all this other stuff. And who wants to do that? I mean, we have

enough to do in this course. It's pretty full anyway. So we're just going to scale the

signal and noise together. And that's a separate issue.

So now we want to look at the thing which is called PAM modulation. In other words,

in this one slide we separated the question of choosing the signal constellation,

which we've now solved by saying, we want to use signals that are equally spaced.

So that's an easy one. From the question of, how do you choose the filter. So the

PAM modulation is going to go by taking a sequence of signals, mapping it into a
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waveform, which is this expansion here. We're not assuming that these functions

are orthogonal to each other. Although later, we will find out that they should be. But

for now, p of t is just some arbitrary waveform. And we will try to figure out how to

choose this waveform in such a way as to replace the sinc waveform with something

which is better in terms of delay and almost as good in all other ways. We're not

going to worry about the fact that p of t has to be realizable. Because with our

arbitrary time reference at the receiver, it doesn't have to be realizable. It doesn't

have to be causal.

So, p of t could be sinc of t over t. Which would give us a nice baseband limited

function. But it could be anything else at all. As we said before, sinc t over t a dies

out impractically slowly. And it requires infinite delay at the transmitter. You can't

even send these signals with a sinc t over t signal. Because to send them, you have

to start out at the beginning of this little bit of wiggling.

Now, you say, OK I'm going to truncate that when it's very small. And I don't worry

about that. The point of what we're starting to look at now, though, is we're saying,

OK, you truncate it, you do all these practical things. But it turns out that this

problem of choosing this filter response has a very elegant and a very nice solution.

And when we put noise in, it fits in perfectly with the idea of also choosing this filter

in a particular way.

Now, we've talked about many problems here which were solved almost

immediately after Shannon came out with his way of looking at communication in

1948. Guess when this problem was solved? It was solved 20 years earlier than that

by a guy by the name of Nyquist, who was at Bell Labs back when Bell Labs meant

something. I mean, in `28 it was a great place. It was a great place until seven or

eight years ago. Nyquist is important in feedback theory. He's done some of the

most important things there. His Nyquist criterion in dealing with how do you choose

these filters to avoid intersymbol interference is fairly simple. But it's a very, very

nice result. So we're going to talk about it. And then we will use that to say, ok, we

don't have to worry about intersymbol interference any more, so all we have to

worry about is noise. So we're getting rid of these problems one by one.
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Our main problem is to choose this filter, so that we get some kind of reasonable

compromise between time delay and bandwidth. That's -- that's basically the

problem that we're facing. And Nyquist's solution to this was to say, forget about

that also. Let's look at what set of filters work, and what set of filters don't work. And

then you can take your choice among this set of folders that work.

So our problem is, how do you take the waveform u of t, which you receive, and find

these samples out of it? Now, we already know that if you use sinc functions, all you

have to do is sample this and you get these u sub k's back again. But if this thing is

some absolutely wild waveform, maybe that's not what you get. So we say, OK, how

do we retrieve these signals from the waveform that was transmitted and therefore

from the waveform that was received. We're separating this from the noise

question. Even if there's no noise at all, we still have a question and how do you find

those input values directly from the function.

What we're going to do is to assume that the receiver filters u of t, with a linear time

invariant filter, with impulse response q of t. Now, since we've said that p of t doesn't

have to be causal, we might as well say that q of t doesn't have to be causal either.

Because we've already thrown these details of delay to the winds.

So the filtered waveform, then is going to be r of t. Will be the integral of what was

transmitted, convolved with q of t. So this is what you receive. And then what we're

going to do is, we're going to sample this waveform. So Nyquist said, let's restrict

ourselves to looking at receivers which first filter by some filter we're going to decide

on, and then sample.

Why do you want to do that? Well, an interesting question. And Nyquist said, that's

what we're going to do. And since Nyquist was famous, that's what we're going to

do. One of the problems in the homework this week is to show that if you relax this a

little bit and you say, well, I don't want to do what Nyquist said, what I want to do is

to look at an arbitrary linear receiver which takes this received waveform, goes

through any old linear operations that I want to go through, and solves for what --

and from that, tries to pick out these coefficients. And the question is, can you do
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anything more than what Nyquist did. And the answer is, no.

If you look at it in another way, you will find that in fact, if you know what the signal

constellation is, you can look at non-linear receivers. Which in the absence of noise

will let you pick out these coefficients in a much broader context than what Nyquist

said. And why don't we do that? Well, because when noise comes in, that doesn't

work at all. That's a lousy solution.

So what we're going to do is say, OK, Mr. Nyquist, we'll play your silly game. We will

have this filter at the transmitter. We'll have this filter at the receiver. We'll have the

sampler and we'll look at what conditions we need in order to make the whole thing

work. And then we will fit it in with noise and everything. It will fit in, in a very nice

way. So we have a nice layered solution when we do that. And we will find -- I mean,

Nyquist had some of Shannon's genes in him, I think. Because what we find when

we're all finished with this is that by avoiding -- by being able to receive these

coefficients perfectly, which we'll refer to as avoiding intersymbol interference, it

doesn't hurt us at all as far as taking care of the noise. In other words, you can have

your cake and you can eat it too as far as intersymbol interference and noise is

concerned.

We wind up with a received waveform, which is the integral of the transmitted

waveform times some filter. And we don't know how to choose this filter. But let's

just -- this is a filter. This can be represented now in terms of u of t is equal to this

transmitted waveform in terms of this other filter that we don't understand. So we

now have two filters that we don't understand. And we have this integral here.

Well, we can take this sum. We can bring this sum outside of the integral and have

the sum of u sub k times, just some composite filter g of t where g of t is the

convolution of p of t and q of t.

Now, when you look at the notes, the notes are fairly careful in dealing with all these

questions of L2 and convergence and all of this stuff that we've been talking about.

Again, when you're trying to understand something for the first time, ignore all those

mathematical issues. Try to find out what's going on. When you get an intuitive
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sense of what's going on, go back and look at the mathematics then. But don't fuss

about the mathematics at this point.

OK, so r of t, then, is just going to be the sum over k of these sample values that are

coming in, times this composite filter, which is the convolution of the transmit filter

and the recieve filter. Now, this shouldn't be surprising. If you think of u of t as being

formed by taking a sequence of impulses, and then passing that sequence of

impulses through a filter p of t, and then passing the output through a filter q of t, all

you're doing is passing this sequence of impulses through the convolution of p of t

and q of t.

In other words, in terms of this received waveform, it couldn't care less what filtering

you do at the transmitter and what filtering you do at the receiver. It's all one big

filter as far as the receiver is concerned. When we study noise, what happens with

the transmitter and what happens with the receiver will become important again.

But, so far, none of this makes any difference. And this is all we need to worry

about.

Then, Nyquist said, a waveform g of t is ideal Nyquist. He didn't call it ideal Nyquist,

he was very modest person. But since then, people call it ideal Nyquist because he

was the guy that sorted it all out. It's ideal Nyquist with period t, and I usually leave

out the period t because that's usually understood, if g of k t is equal to delta of k. In

other words, if g of 0 is equal to 1 and g of k times t, for every non-zero integer k is

equal to 0. In other words, if g has the same property that the sine function has,

sine function is 1. It's 0. And it's 0 at every integer point beyond that. And Nyquist

said, well, gee, all we need to do is make this filter has a property. And when you

look at this, it's fairly obvious that that works, right? I mean, we want a sample RFT -

- say, at j times capital T. Or, if j times capital T, it's going to be the sum here of u

sub k times g of j t r of t. r of j t is equal to sum over k of u k times g of j t minus k t.

If the waveform is ideal Nyquist, then this quantity is 0 for all integer k except when k

is equal to j. So, this is just equal to u sub j. And conversely, if this waveform is not

ideal Nyquist, you have the problem that you can pick two values. u sub k and u sub
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j, in such a way that they interfere with each other. In other words, that they add up

at some sample point to the wrong value. One of them is going to come in and

clobber the other.

So, this is a necessary and sufficient condition for avoiding intersymbol interference.

So long as you're not smart enough to look at what those actual values are. In other

words, so long as you're only going to use a linear receiver, which is what that

amounts to.

While ignoring noise, r of t is determined by g of t, p of t and q of t otherwise

irrelevant. That's what we said. We said this. If t of t is ideal Nyquist and r of k t

equals u of k for all k and z. If f of t is not ideal Nyquist, and r f k t unequal to u k for

some k and some choice of the sequence. Now, so far there's no big deal here.

This is pretty easy to figure out. You don't need rocket science to say, once I pose

the problem this why, which is where part of Nyquist's genius came from. The hard

thing is always to post the right problem. It's not to solve it. Those of you who want

to do Ph.D theses, believe me, 80% of the problem is finding the problem. 20% of

the problem is doing it. If you do a really outstanding thesis, 99% is finding the

problem and 1% of it is doing it. And I believe that. I'm not exaggerating.

An ideal Nyquist g of t implies that no intersymbol interference occurs at the above

receiver. In other words, you have a receiver that actually works. We're going to see

that choosing g of t to be ideal Nyquist fits in nicely when looking at the real

problem, which is coping with both noise and intersymbol interference. And we've

also seen that if g of t is sync of t over capital T, that works. It has no intersymbol

interference because that's, one, at t equals 0, and it's 0 at every other sample

point.

We don't like that, because it has too much delay. We want to make g of t strictly

baseband limited to 1 over 2t. And this turns out to be the only solution. And we'll

see that in a little while. In other words, if you want to do something which has better

delay characteristics than the sinc function, your only way of doing it is spilling out

into slightly higher frequencies. So, what Nyquist really wanted to find out, although
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you won't find that out by reading his paper because it's all this nice mathematical

proof, is how much do you have to expand the bandwidth in order to get nice delay

things which do the same thing.

Well, we think about it a little bit. And we have an advantage that Nyquist didn't

have. Because we understand about aliasing. Nyquist didn't understand about

aliasing. Aliasing hadn't been done at that time. It was probably done as a result of

what Nyquist had done. And if we look at the reconstruction from the samples, g of k

t of g, we get this function s of t, which is the sum of all the samples times sinc of t

over t, minus k. That's for an arbitrary filter. This baseband reconstruction by

definition, when we were talking about alising, is just this function.

We've said that g of t is ideal Nyquist, if and only if s of t is equal to sinc of t over

capital t. Why is that? You look at this function here. You look at s of 0. And what do

you get? You get the sum of g of k t times sinc of t over t minus k. If we have an

ideal Nyquist filter, then all of these terms are 0 except when k is equal to 0. s of t, in

general, if you have a ideal Nyquist filter, you only have one term in here. So s of t is

just equal to sinc of t over t. Because all those other terms go away.

If we take the Fourier transform of s of t equals sinc t over capital T, the Fourier

transform is s s tilde of f is equal to t times the rectangle function of f times t. A sinc

function of a Fourier transform is a rectangle. And the aliasing theorem then says

that this Fourier transform of this low pass representation has to be equal to this

sum of different frequency terms. That's what aliasing says. It says that this

baseband representation is aliased into by all of these other frequency bands. And

each of them come in and add to what you get in frequency here. Remember that

diagram that we drew where we took this arbitrary frequency function and we picked

up what was in each band, then we stuck it into the center band and then we added

all these things up? That's what the aliasing thing says.

So it says that g of t is ideal Nyquist if and only if this sum is equal to that. And that's

the Nyquist criteria. That's what Nyquist did. But he did it long before anybody had

heard of aliasing.
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There's a slightly easier way to look at aliasing criterion, which now becomes the

Nyquist criterion. When what you're interested in is a waveform g of t, which is

almost band-limited but not quite. So what we're going to assume is that it's limited

to, at most, twice this -- this w here is 1 over 2t, which is called the Nyquist

bandwidth. Everything is called Nyquist here, so. This value here is the minimum

bandwidth you could be using. It's 1 over capital 2t. It's what you would get if you

were using the sinc function. If you were using the sinc function, what you would get

is something which is a rectangle here. Cut off, right at this point. And cut off right at

this point. Nyquist is saying, suppose it's limited to at most 2w. In other words,

suppose you have a slopover into other frequencies but, at most into the next

frequency band and no more than that. Then, if you look at this thing, which is

spilling out, and we take the same picture we were looking at before, we take this

quantity. Bring it back down here. We take this quantity, bring it up here. And what

do we get? This, added into here. This thing adds up right there.

In other words -- well, let's take this one here. This thing here gets translated over

to here. And added to this. This is assuming that g hat of f is real, and we're

ignoring the complex part of it. So this gets added to this. This is just enough to turn

this into something, which goes across here and down here. Down here. My finger

is not perfect. But, anyway, when you add this to this, you get this ideal rectangular

shape.

What this is saying, in terms of just this upper side band here, this is going to be the

same as this, from symmetry. So it's saying, if you take what's on the positive side

of w, and you rotate it around this way, you rotate it around up here, if it's just

enough to fill that in, then you've satisfied the Nyquist criteria. In other words, you

want band edge symmetry here. You want this to be symmetrical to this. In that

rotated 180 degree sense. So it says that anything which has this band edged

symmetry condition satisfies the property of no intersymbol interference.

So this makes the problem easy for us. It says, we would like to have a rectangular

function. That has too much delay, because in particular the inverse Fourier

transform of that, because we have a discontinuity, can drop off, at most, as 1 over
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t. Which is pretty slow. We've gotten rid of the discontinuity. We've also gotten rid of

the slope discontinuity, the way I drew the figure here. And, therefore, we can wind

up with a function which decays as 1 over t cubed. Which is a whole lot better than 1

over t.

And, excuse me for going a little over, but. The things people build in practice

usually have something called a raised cosine filter. Which is this messy expression

here, for the frequency response. But it really isn't that bad. In fact, it's just what this

is. This frequency response is t over most of the frequency interval, up to 1 over 2t.

It's t times a raised cosine over this part of the frequency band here. t times cosine

squared, and the cosine squared just raises things up to be average out at 1/2, and

it's 0 everywhere else.

So what you're doing here in that formula is simply making things t up to here.

Making it a raised cosine here. And making it 0 everywhere else. And, depending on

what do choose as alpha, that makes this sharper or less sharp. And people usually

choose it to be about, alpha to be about 15% or so. Which means these filters chop

off very, very rapidly.

Is that hard to build? Doesn't make any difference. I mean, these days, anything

which you can figure out how to compute, you can put it on a little chip and it costs

nothing if you make enough of them. So you want to raise the cosine filter which

cuts off at 15%, fine. Somebody spends a year designing it. And then you cookie-cut

it forever after. So it doesn't cost anything. And, well, g of t also has an inverse

transform which we won't worry about.
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