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PROFESSOR: OK, we talked about this a little bit last time. We were talking about the detection of

vectors in white Gaussian noise. When we talk about vectors we'll often refer to

white Gaussian noise as noise where each component of the vector is independent

of each other when they're all the same variance. Usually we take the variance to

be n0 over 2, capital N0 over 2. And we'll say more about that as we go on, but

that's just-- I guess one thing I ought to say about it now-- people keep wondering

why we call this N0 over 2 instead of something else. As I said before, there's really

no reason for it except custom.

The one important thing that you can always remember and which is always true is

that any time you're talking about a sequence of real noise variables they all have

variants N0 over 2, and the same coordinate system that you're using to measure

the signals. OK, the only thing that ever appears in any of these formulas is a ratio

of signal power or signal energy to noise signal power. And if we're up it passband,

we're dealing with the power, which is two times larger than that at baseband. And

because of that-- and this is what really gets confusing-- is that when you talk about

N0 over 2 at passband, you are talking about something which is twice as big as the

N0 over 2, the same N0 over 2 you were talking about at baseband. And the reason

is since the signal is twice as big there, the noise is also said to be twice as big. I

can't do anything about that. It's just the way that everybody does things.

The other thing that everybody does-- since everyone gets confused about that-- is

after they get all done dealing with anything in a paper they're writing or something,

they always look at the signal to noise ratio that they have and they remove all the

factors of two that they know shouldn't be there. So that you shouldn't trust anything

in the literature too much as far as factors of two are concerned. And I try to be

careful in the notes about that, but you shouldn't trust the notes too far along those
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lines, either. So well eventually I'll get the notes straightened out on all of that but I

think they're pretty close now.

But anyway, we were looking at this question of how do you detect antipodal vectors

in white Gaussian noise? And the picture that we can draw is this. Namely we have

two signals. One is the vector, a, one is the vector, minus a. It's in some finite

dimensional system, but we're viewing it as far as drawing a picture as a two

dimensional system. So a has some arbitrary component in the first direction. Some

arbitrary component in the second direction. Minus a is, of course, the reverse of

that. This point right in here is the zero point, which is halfway in between them. And

the output that we observe is either plus or minus a, plus this independent zero

mean noise, Z, which has the kind of circular symmetry indicated here with these

little circles. Each of the Z sub i have the same variance, they're independent of

each other. And when you write down the likelihood of the probability density of this

output, given that the hypothesis was zero. Namely that plus a was the signal which

was chosen.

OK, remember in all of these things there's this process now going on that we

usually don't talk about anymore. But there's an input coming into the

communication channel which we're now calling capital H. It's the hypothesis--

which is the thing you're trying to detect when you're all done-- that input which is

one up to capital N, or sometimes zero up to capital N minus 1. Is then mapped into

a signal from a single set of capital N different signals. So they're impossible signals

in this signal alphabet. You map the hypothesis into one of those. From those, you

generally form a waveform. This waveform might be modulated up to high

frequency, back to low frequency again. Detected or whatever. You got some

vector, v, at that point. Which is a sequence of samples that you're going to be

taking as far as most cases are concerned. We'll talk more about that later today.

But anyway, v is a vector which is plus or minus a at this point, plus this Gaussian

noise.

We can write down the probability density of that vector, v, which is if hypothesis

zero occurs. Namely if a zero enters the communication channel, plus a is the signal
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which is chosen. Then what happens is that the output is a plus Z. Which means

that the probability density of the noise is v minus a. So we have this probability

density here. When we look at the log likelihood ratio, we're taking the logarithm of

this probability density divided by the probability density of the alternative

hypothesis. Namely v given one. Which is the same as this formula except there's

the plus a there instead of a minus a. So you get this thing here.

Now, why I wanted to talk about this today is we're going to talk about the complex

case also and something very, very peculiar and funny happens there. OK so the

log likelihood ratio is the scaled difference of the energy of the distance between v

and a. Which is this term here. This is just a squared distance between the vector,

v, and the vector, a. It's v minus a is that distance there, squared. And the other

term here is the term that comes from the probability density of v given one. Which

turns out to be that distance there squared. So you have the difference between

these two things. This is just the inner product of v minus a with v minus a. And if

you multiply that all out it's the inner product v with itself, plus the inner product of a

with itself, minus the inner product of v and a, minus the inner product of a with v.

The only things that don't cancel out between these two things is the inner product

of v with a, the inner product of a with v, the inner product of v with a, the inner

product of a with v. So those things last because there's a minus sign here and a

plus sign here. There's a minus sign here and a plus sign here. So the plus and

minus signs cancel out, so you just get four of these terms here, which is four times

the inner product over n0. What happens to that geometrically? What is the inner

product of v and a? Well it's the projection of v on the vector a. Which happens to

be the line between minus a and plus a. Mainly the fact that it's the line between

minus a and plus a is the thing which is valuable whether you're dealing with

antipodal communication or any other kind of communication. You're always looking

at this line between two points.

So what this thing says is you form the inner product, which says drop a

perpendicular from Z down to here, and in terms of where that perpendicular lands

here, you make your decision. Namely you compare that with the threshold. OK? So
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we have two different ways of doing this. One of them is compare this distance with

this distance. Or actually here you compare the square distance here with the

square distance there. Which says, if you're using maximum likelihood then the

threshold that you're dealing with here is zero and you simply make your decision

on whether the log likelihood ratio is positive or minus. Which means in terms of the

projection theorem here, what you're doing is taking a perpendicular bisector of the

line between minus a and plus a, and putting a plane there and that's the plane that

separates what goes into one and what goes into zero. This goes into zero. This

goes into one.

OK, so is it clear to all of you that this is really saying the same thing as this? This

inner product just comes from here. You can either look at this as minimum distance

decoding. You just find the point which is closest to what you receive. You find the

hypothesized signal, which is closest to the actual observation that you make. You

make your decision in terms of that. Or you do this projection and make your

decision in terms of that. And if you use a triangle thing which says that this squared

distance plus this squared distance is equal to that squared distance. We all

remember that from third grade or something. I don't know when. But that simply

says the same thing that this says. This just says it more generally. In terms of an

arbitrary finite conventional vector, rather than just the case of where you're looking

at two dimensions.

OK that's-- we will probably come back to look at that in a little bit, but now I want to

look at complex antipodal vectors in white Gaussian noise. So the set up there is

that the input is some vector. I usually use u's to mean complex numbers. So the

vector there is u1 up to u sub j where u sub j is a complex number. So we're dealing

with complex vectors at this point. So we have two points, minus a -- minus u and

plus u. Where instead of being a real vector they're complex vectors. And if you

can't visualize things geometrically, in terms of complex vectors, join the crew. I

can't either. The only thing I can never do is talk about real vectors, try to get some

idea of what's going on from that, and use mathematics for the complex vectors.

Because the reason we use complex vectors is that, analytically they're just as
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simple as real vectors. The reason we use real vectors is because we can draw

pictures of them. I defy anybody to draw a picture in four dimensions. Some books

will do it, but I can't understand them. And anyway. OK, so under hypothesis zero

what gets sent as u? And under hypothesis one, what gets sent as minus u? So

we're still talking about binary communication and if you're talking about antipodal

vectors, you can't do much other than talk about binary communication. Because if

you're sending a, the only vector antipodal to a is minus a. And then you're stuck

and you're done. So we're still talking about binary vectors. Remember the reason

why we're doing this-- because one of the things we did last time, one of the things

that's in the notes and stressed again and again is that once you understand the

antipodal case, you can translate those two points anywhere you want to and the

maximum likelihood decision and the MAP decision are still the same thing.

You take those two points and you just translate them in space until the mean

between them sits on the zero point. And then you're back to the antipodal case

again. OK, so the reason why we're doing this is really so we can look at the more

general case. But we don't have to have that mean sitting around all the time. OK, Z

then is going to be a vector of j complex IID Gaussian random variables. IID real

and imaginary parts. Namely the real part of each Gaussian, complex Gaussian

random variable has variance n0 over 2 and the imaginary part also has variance

n0 over 2. These complex vectors, if you look at the probability density for them and

you draw it in two dimensions, one for the real part one for the imaginary part, you

get this circular symmetry that we've always associated. Those are supposed to be

circles and not ellipses. And those are sometimes called proper complex Gaussian

random variables. Because almost everywhere where you see complex Gaussian

random variables, the real and imaginary parts are independent of each other and

both have the same variance. Again, when you look at formulas in papers, formulas

everywhere else, they are almost always assuming this kind of circular symmetry.

Or what's often called proper complex random variables. Sort of accepting the fact

that anything else is very, very improper. It's improper because formulas don't work

in that case.

OK, so we have a vector of these complex IID Gaussian random variables. Under H
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equals zero, the observation, v, is given by v equals u plus Z. And under hypothesis

one, the observation is given by minus u plus Z. So I have exactly the same cases

as we had before. OK in other words almost all formulas stay the same when you

go from real to complex. But I don't trust the complex case and you shouldn't either

until you at least go through it once. So what I'm going to do now is translate this

complex case to the real case. In other words, for each complex variable I'm going

to make two real variables. One the real part and one the imaginary part. We know

that the real part and the imaginary part are independent of each other. And if these

Gaussian random variables are independent of each other, then the real and

imaginary parts of each of them are independent of the real and imaginary parts of

each of the other side. OK?

So we can go from j Gaussian random variables, independant Gaussian random

variables, which are complex. To 2j Gaussian random variables, which at this point

are going to be real. OK so it's just a translation from j complex variables to 2j real

variables. Again we can't draw pictures of things in this j dimension, we can start to

draw pictures in 2j dimensions. If you talk about a probability density for a complex

random variable, what are you talking about? How do you write the probability

density for just a plane Gaussian complex random variable? What is it? Anybody

know what it is? Is it one dimensional or is it two dimensional? What does probability

density mean? It means probability per unit area. What does area mean when

you're talking about complex numbers? Well you sort of mean what you've drawn

there, yes. And you're looking at areas in this complex plane here. So that in fact

when you write the probability density for a complex random variable, what you

have already done whether you want to do it or not is you've converted the problem

to real and imaginary part. That's what the probability densities are.

Excuse me for a belaboring this but, if I don't belabor it I mean there's a catch here

that comes along in a little bit. And you won't understand to catch if you don't

understand why these things are almost the same as real variables up until the

catch comes. OK, so we're going to deal with these 2j dimensional real vectors. The

components will be real part of u j, imaginary part of u j for what goes into the
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channel. And we'll let capital Y capital Z prime be the two j dimensional real versions

of V and Z.

OK so that we'll call Y the real part, an imaginary part of Z. And you notice that

what's going on here is the same thing that's going on when you modulate QAM.

You take a complex signal, you multiply it by either the 2pi j carrier frequency times

t, and then we started to look at orthonormal expansions, you remember that what

we looked at-- as far as the real signals that were actually being transmitted on the

channel-- was the real part of that u of t times z to the blah, blah, blah, and the

imaginary part of u of t times blah, blah, blah. So you've got two orthonormal

functions in place of one complex orthonormal function. And that's the same thing

that's going on here. It's just not with immodulation put in, it's just dealing with the

real parts and imaginary parts directly.

OK, so if we do that we get a bunch of equations. They're sort of familiar looking

equations by now I hope. This is just the probability density of this real 2j

dimensional random variable. Which is all this junk that we're used to seeing. We

can collapse that into e to the minus the norm squared of y minus a. This is the

norm squared in this 2j dimensional real space. It's not the norm squared in this

complex space. What gets confusing is that those two norms are exactly the same.

As we'll see in just a few minutes. But anyway, what we're dealing with now is this

norm in real space.

OK, note that's y-- oh let me translate this one for you. If we think of this v that we

received j complex random variables as being: real part of v1, imaginary part of v1;

real part of v2, imaginary part of v2; and so forth, then y2j minus 1 minus a2j minus

one. I can't ever get these formulas right. That should be a2j minus 1. There. This

squared, plus this squared-- OK, in other words the real part squared of the

difference plus the imaginary part squared of the difference-- is really just the same

is vj minus uj squared.

OK, in other words you take the complex number v sub j, you subtract off the real

number u sub j. And the way to do that, you visualize this one complex variable in
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the complex plane, and what you're doing is you're taking the square of the real part

of the distance, you're adding it to the square of the imaginary part of the distance.

OK, all of this is stuff you learned in high school. Just viewed in a slightly different

way. OK, now when you take the probability density with respect to these complex

vectors-- which is what I want to get at-- probability density of these complex

variables really means the same thing as that with the real variables. But then you

wind up with the magnitude of vj minus uj squared. And this term is really exactly the

same as these two terms there. So when you take this probability density, you wind

up with these terms the same and with these terms the same. OK, in other words

the complex norm squared is the same as the real norm squared, when you go

from complex to real and imaginary parts of, well-- as I said, this is the same as

that.

OK so when we look at the log likelihood ratio, then, let's do the log likelihood ratio

in terms of the real parts first. We get the difference between this norm squared of y

minus a, and the norm squared of y plus a. This is the part that comes from the

hypothesis zero, this is the part that comes from the hypothesis one. OK, so we get

these two terms here. When we take the inner products here, we get the same thing

that we got before. Four times the inner product of yna. Now, the whole reason for

going through all of this is this next formula. When you do this, you wind up with this

very bizarre four times the real part of the inner product of v and u, divided by N0.

And you get it in exactly the same way that we got it before. Namely you take this

norm here, which is an inner product squared of v minus u. Let me write it out. I'll

write it out here. Norm squared of y minus a, is the norm squared of y plus the norm

squared of a, plus the inner product of minus ya, plus the inner product of minus ay.

What's the sum of these two inner products? This inner product, by definition in

terms of integrals, is the integral of minus y times a-- complex conjugate. This is

minus a times y-- complex conjugate.

So in one case the complex conjugate is here. In the other case it's on the other

term. In other words this and this are complex conjugates of each other. What

happens when you add two complex conjugates? You get the real part of the two of

8



them. Okay so when you add these two things you just get that real part there. OK,

and then when you do the other term, the same thing happens. The same

cancellation that we had before occurs. And these two inner products add up so you

wind up with the real part of vu over N0

When we look at the picture here, what does it mean? Well I suggest you first look

at the one dimensional case here. Namely on this one dimensional case think of V

as being a one dimensional complex random variable. Then we can draw a picture.

The picture make sense. And what we're dealing with is the real and imaginary

parts, and these distances here, when you talk about the norm of V minus a--

namely what corresponds to this line here, the length of this line-- what do you really

mean by it? If you took the inner product, if you took the norm of v, with i times a--

namely that the square root of minus 1 times a-- would you get the same thing or

wouldn't you?

If I take a complex number, and I take the inner product of that complex number--

namely the product-- of that, when I take the inner product of ya, is this the same as

the inner product of y and i times a? Not at all. The two things are totally different.

Namely, inner products are complex things. Norms are real things. And these

norms, when you're dealing with complex numbers, have real parts in them. In other

words, this distance that we're talking about here is not just the norm squared-- well

it is the norm squared-- because the norm has this complex feature built into it.

Because people kept making that mistake all the time. So they fudged the

mathematics to make it come out right. But after doing that, you have to fudge the

mathematics to come back to something that makes sense here. So you have the

real part of this inner product, here.

So in fact, what you're doing when you're taking the inner product of two vectors

and you're trying to relate it to this plane here, this separation plane, is you have to

look at that separation plane. You have to look at that projection in terms of real

numbers. Namely, you have to look at the projection. First as being a complex

projection of v onto a, which gives you a complex number. And then after you do

that you have to you visualize yourself in a two dimensional real space. And you
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have to project once more from the two dimensional thing to the one dimensional

thing.

And here where we're just looking at one dimension to start with, we have to draw it

as a two dimensional space. And suddenly we are dealing with this real part there

while we're not dealing with that here. Which is why when people say minimum

distance detection when they're dealing with complex numbers it sounds very, very

simple. But in fact, it's not so simple. If you view this in the complex plane, is this a

linear operation or isn't it? When you're looking at things as complex vectors. Is this

thing a sub space of the complex vector space? No, it's not. It's not a sub space.

Because, to be a sub space you have to be able to multiply by arbitrary scalors--

which includes complex numbers-- and stay in the same space. And here the

complex numbers are important.

OK? You should go back and think about that. You will be confused about it for the

first ten times you think about it. For those of you who stick with it and carry through

on it, you'll be happy because you'll never be confused about it again. OK, anyway

thats real numbers there. And the most straightforward way to deal with complex

noise is to first turn it into real noise. If you do that you never get confused. And

otherwise you only have half the analytical work. You only have half the writing to

do. But you never know whether you've done the right thing until you go back and

check. OK the probability of error for maximum likelihood detection, in other words

where the threshold for the log likelihood ratio is zero, is simply the same thing that

it was before. Namely it's the q function. This tale of the Gaussian normal function.

Of the norm of a divided by the square root of N0 over 2. In other words it's the

length of a divided by the by the length of a one standard deviation of the noise.

When you put that in terms of, well, if you write this as the square root of the norm

squared then you get this formula here. Because e sub b is just the energy of these

antipodal signals. When you look at this in terms of the complex random variables,

you get the same thing. OK? You get u instead of a because, in fact, in the complex

plane and the real plane, distances turn out to be the same. But again, in all cases

it's square root of 2eb over n0 Now, that is true for any vector at all where these
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norms are appropriate. When we start dealing with functions what happens? When

we start dealing with functions, what we're going to do is we're going to take this

vector, we're going to turn it into a wave form. We're going to transmit the wave

form. The wave form is going to come back to us. We're going to demodulate it, get

back to a number again. And that's the next thing that I want to talk about. Because

what I want to convince you of is the property of white Gaussian noise which is so

important. Is that it doesn't make any difference how you modulate. All modulation

systems are the same. All modulation schemes are the same. All frequencies are

the same. There is no way you can avoid white Gaussian noise. There is no way

you can get screwed by it. No matter what you do, the same thing happens.

You can always take all these problems where you're dealing with wave forms. You

can convert them to finite dimensional vector problems. And when you convert it

into a finite dimensional vector problem all of the orthonormal functions that you're

using all pass away. Because none of them are relevant anymore. OK? That's the

bottom line of all of that. OK.

We haven't really talked about M-ARY hypothesis testing. So I want to talk about it a

little bit now. I talked about it just a shade, but not much. When we want to detect

between m different hypothesis-- namely in the vector case we're going to now be

detecting not between antipodal signals but m signals which are placed any place at

all. We already said what the MAP, optimal MAP test was. You see an observation,

you're trying to guess what the input was, or what the hypothesis was. And in

general, the MAP test says try to find that j, namely that hypothesis, for which the a

priori probability of hypothesis j, times the likelihood-- namely the probability that

you see v given h of v, given j is maximum. OK, this is just standard formula for

finding a posteriori probabilities. Where you factor out the marginal on, when you

cancel out the marginal on v.

In other words, what this rule says is to do MAP testing, what you do is you find the

a posteriori probabilities of each of the hypotheses and you choose the a posteriori

probability which is largest. Perfect common sense. The way we're going to do that,

the way which is particularly convenient, is you do it the same way that we've been
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doing all along for binary hypotheses. The way to do a MAP test, at least one way to

do a MAP test, is you compare every pair of hypothesis and you choose the most

likely of each pair. And when you've got it all done, you have a winner. OK?

Mainly you can always compare any objects if they're comparable. And after you

compare each pair, you take the one which beats every other one and that's the

winner. OK? So what you do is you do a pairwise test between each hypothesis.

Namely, the likelihood ratio of m relative to m prime. Is the likelihood of the output

conditional on m, divided by the likelihood of the output conditional on m prime. You

compare it with the a priori probabilities, and the point here is that nothing really has

been added. You have the same problem you had before, OK? Nothing new. It's

just gotten n square times as complicated. The computation is free now, so you

have exactly the same problem that you had before. If you have to write it out on

paper, yeah it's much more complicated. But conceptually, it's not.

You have to remember that the signals are not antipodal here. But what we're

dealing with mostly at this point is this Gaussian noise case. And here, what you

observe, is signal plus noise. And Z is zero-mean jointly Gauss and s is discrete with

n possible values. OK, so let's see what that means. Here's a picture of it. If you

have three singles which are each two dimensional vectors, suppose one of them is

s0, suppose one of them is s1, suppose one of them s2. OK? And now you want to

pairwise, see which one is most likely. And let's think of doing this first for the

maximum likelihood case. What do you do? You set up a perpendicular bisector

between s0 and s1. That's this line here. And if you weren't to worry about s2,

everything on this side would go into H equals zero. And everything on this side

would go into H equals one.

Namely, whatever's closest to this point gets mapped into it. Whatever's closest to

this point gets mapped into it. If you're doing MAP testing, what happens? In the test

between this and this you had the same orientation for this line, but it just gets

shifted a little bit this way or a little bit this way. OK?

Then you compare this with this and you get this line here. Same argument as
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before. It's just comparing two things are not antipodal they've just been shifted off

from the origin a little bit. But for the maximum likelihood you still take the

perpendicular bisector between them. And then you compare these two and you got

a perpendicular bisector between those. And these perpendicular bisectors, in two

dimensions, always come together at one point. And I don't know why. And if you

looked at it often enough, you probably know why. And you could probably prove it

in about ten minutes. But in fact these things always come together somehow. If you

do the MAP test, they always come together also. You can shift each of them in

arbitrary ways and somehow they always come together in this point.

OK, the separators between decision regions here are the set of points where the

real part of the inner product, vu, is constant. OK? Again, for dealing with complex

vectors, you got to both do the projection and then do the projection again onto the

real part of this projection. So it's sort of a two way projection. Because probability

densities in j dimensional complex space are really 2j dimensional quantities. And

when you're comparing them, you really have to compare things in terms of that 2j

dimensional probability density. OK so that's why that comes out. These are best

visualized in separate, real, and imaginary coordinates. And for maximum likelihood

detection, the regions are Voronoi regions. OK? We talked about Voronoi regions in

terms of doing quantization.

And we found out if you wanted to minimize the mean square error, what you did

was you set up regions, which are perpendicular bisectors between all the points.

And here you get the same perpendicular bisectors between the points. And

everybody-- because of that-- thinks that quantization has a great deal to do with

error probability when you have large sets of signals. And it probably has something

to do with it, but I don't know what other than the fact that you've got Voronoi

regions in each case. Which is what you get.

OK, so that's where we are with both complex vectors and real vectors. I want to

now just restrict attention to real wave forms so I don't have to keep going back and

forth between the real and imaginary case. If you're thinking in terms of QAM, we're

now thinking in terms of what goes on at passband. Why do we want to think of
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what goes on at passband? Because that's where the noise hits us. And in a

fundamental sense, all of the stuff about QAM really isn't fundamental.

I mean, it's all done-- all this stuff down at passband-- is all done because people

thought it was easier to implement things there. It's the only reason for all of that

mess with dealing with all of these complex signals. If we really want to deal with the

problem in a fundamental way, what we want to do is to choose a signal set up at

passband. Do detection up at passband. And then after we find out what the optimal

detection is up at passband, see if we can actually implement that down at

baseband. So the fundamental problem is looking at single sets up at passband and

analyze what they all mean.

OK, so we're going to generalize both PAM and QAM. And now we're going to look

at the general problem where what we're dealing with is a single set. Which is m

signals. Each of them we're going to visualize as a vector in j dimensional space. m

different signals, j dimensional space. Don't confuse the dimension of space with the

number of signals. OK? You can have an arbitrarily large dimensional space and

just binary signals. Or you can have an arbitrarily large set of signals and you can

be dealing with it. In PAM, for example, it's just all done in one dimension. So j there

is equal to 1. QAM j is equal to 2. We now want to look at more general things.

Partly because we want to look at orthoginal wave forms.

We want to look at orthoginal wave forms for two reasons. One is that we would like

to show that by using orthoginal wave forms, you can reach what we've called the

capacity of a white Gaussian noise channel. And two, when we get to studying

wireless it's very, very useful to base signal sets on orthonormal sets of functions.

And we'll see why each of those things happen as we move on.

OK so we're going to denote the single set as the set of vectors, a1 up to a sub m.

And in that signal set, we will denote the vector, a sub m, as a j dimensional vector,

a sub m1, a sub m2, up to a sub m capital j. So j is at the dimension. m is just a

component of these vectors. I'm going to create a set of capital J orthonormal wave

forms. They can be anything at all. I don't care what they are. I'm going to use those

14



orthonormal wave forms in order to modulate the signal-- which is now a vector-- up

to some waveform. This is really the standard way we've been turning signals into

waveforms all along. It's just that now we're looking at the general case instead of

all of these specific cases that we've been looking at. All of the special cases all fit

into this same category.

So we have these capital M different waveforms. And we're going to transmit one of

them and then at the receiver we're going to try to decide which one was sent. OK,

well one of the reasons why I'm going through all of this generality is that there's an

issue we haven't talked about yet. All of the stuff we've done on detection so far we

have had one hypothesis. Could be M-ary could be binary. We have sent

something. We have received something. We have made a detection. OK? In other

words, for all of the antipodal stuff we've done, we built a communication system.

We set it all up. We transmitted one bit. We've received the one bit. We've made a

decision on it. Then we've torn down the communication system and we've gone

home.

You really want to transmit a whole sequence of symbols or signals or waveforms.

So we want to deal with that now. So we need some way to transmit a succession of

M-ary signals. And we'll call this succession of signals-- mainly the signals are the

things that get chosen from the signal set-- we'll call them x of k, k of z. Which is

what we've been calling them all along. We've been transmitting a sequence of

things when we're dealing with PAM. And aa in am. Why do I call them xk instead of

ak? Well I can't call them ak because when I talk about ak I'm talking about the k'th

signal in the signal set. And here what I'm talking about now is transmitting a

sequence of choices. Each one of these choices, the first choice is a choice from

this set here. The second thing that I send is a choice from this set. The third thing

that I send is a choice from this set. So x1, x2, x3, and x4 and so forth are different

choices among these M-ary signals. If m is 2 to the 6-- OK in other words, every

time I transmit a signal I'm transmitting six bits.

OK. In a communication system we transmit six bits. Then we transmit another six

bits. Then we transmit another six bits, and so on forever. OK, so I need to talk
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about these things as ways of a succession of signals. The thing that I'm trying to

get at is, how do you know when you send one of these signals that you don't have

to worry about the other signals? How do you know that they don't interfere with

each other? Well, we sort of solved the problem of them interfering with each other

in dealing with Nyquist, but we haven't dealt with that problem at all since we started

to talk about random processes. So we don't know whether we've really solved it or

not. So at this point we have to solve that problem, and that's what we're aiming at.

So, the one way to be able to transmit a whole sequence of signals is to have these

choices of vectors here and to develop a set of orthonormal waveforms, v1 up to v

sub j, which all have the property that if you time shift them each by capital T,

they're stilll-- if you time shift them by capital T, they have to be orthonormal to each

other. The question you're facing is whether these things that you're transmitting

are orthoganol to all of these things that you're transmitting. Now, in the Nyquist

problem, we dealt with the problem of how do you take one waveform here and

make it orthonormal to all of its time shifts. And we solved that problem. In the quiz

you solved the problem-- although you probably didn't recognize it-- of dealing with

orthonormal functions both in time and in frequency. And that's the kind of thing we

would like to use here. If I take a set of orthonormal pulses and then I modulate

those orthonormal pulses up to a higher frequency-- which is out of the range of this

first frequency-- then I can send one sequence of orthonormal functions down here,

another set of orthonormal functions up here in a different frequency range. Another

one up here in a different frequency range and so forth.

So then all of these orthonormal functions are going to be orthonormal to each

other. Yeah?

AUDIENCE: Are you saying that each x of k is its own frequency? Because each x of k is

infinitely long.

PROFESSOR: Each x of k is going to-- each x of k is just a vector of j components. I'm going to

modulate that vector, x of k, into a waveform, x of t, which might be finite duration or

it might be infinite duration. I mean, it's going to go to zero very, very fast, anyway.
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And whether it is absolutely time limited or not is something I don't really care about

at this point.

But the point is I can create functions where, in fact, I have a whole sequence of

functions here and they're orthonormal to all of the shifts. One way of doing this, for

example, is to make capital J a bunch of little time shifts on functions. I can pick a

function p of t, which is orthonormal to all of its shifts, in terms of t1. I can send J of

those pulses to take care of x of k. And then I can use a capital T in here, which is j

times this little t that I was using. And I can send another set of functions. So I can

do that, I can move up and down in frequency. I can choose any old set of

orthonormal functions that I want to. But the thing that I want to do is I want to make

sure that for each vector, x of k, that I'm sending in time when I modulate it to a

waveform, that waveform is orthonormal to the waveforms for every other k. And

there are lots of ways of doing that. OK, mainly there are lots of choices of

orthonormal functions.

OK so anyway what I'm going to be doing is making all of these signals orthogonal

to each other. OK, so the transmitting waveform for this sequence of modulated

signals is x of t, which is the sum of x of k times t minus kt. Mainly the same thing we

were doing before. Except now I have also the problem that each of these

waveforms, x of k of t, has to be some sum of orthonormal functions. So the

problem becomes a little more difficult than what it was before. But in fact it's-- I

mean this is just standard communication. Every wireless system in the world uses

this kind of scheme. They don't use QAM or PAM. They use something much more

like this.

OK, so now our problem is you want to detect a generic x from this sequence. OK,

in other words, one of these x sub k in sequence, we want to be able to detect what

signal was sent. We want to detect which hypothesis chose a signal which was then

formed into a waveform, x of k of t. And if I can do this for one k, I can do it for all of

them. So I want to solve the problem for one generic value of k. OK, how is this

problem different from what I was looking at before? Before I was looking at the

problem where we built a communication system, we tuned it all up, we sent one bit.
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We detected it, we tore it all down and we went home. Now what we're doing is

we're building the communication system. We're tuning at all up. We're sending a

sequence of bits. And then all I'm interested in at the moment is detecting the k'th of

them. But if I find a way to detect the k'th of them, I can then use it for every k. OK?

So I'm going to build a detector which is going to detect, in some optimal way, each

one of these signals that gets sent. OK? Is it clear how the problem is different?

Mainly I have to deal with the fact that these other signals are floating around there.

And that's my problem.

Ok, so the input to the channel is hypothesis H. That takes values one up the m.

The symbol, m, is mapped into the signal, vector a sub m, it's modulated into x of t

equals summation over j, a sub mj, phi j of t. OK, this waveform, now, is a function

of which particular signal I'm sending. Which is a function of which particular

hypothesis entered the encoder. The trouble with this material is all the complication

comes in this awful notation, which you can't avoid. Because you're dealing with

sequences, you're dealing with vectors, and you're dealing with wave forms all at

the same time. What's going on, after you understand it, you'll say why was it so

difficult to understand this? Because eventually when you see it, it becomes very,

very simple And I understand why there's just too much stuff all going on at the

same time.

OK, so what I'm going to do now is I'm going to take these J, capital J, orthonormal

waveforms. And we've already seen that you can start out with any old orthonormal

waveforms and if you want to you can extend that set of waveforms into an

orthonormal set that spans all of L2. OK? So I'm going to imagine that we've done

that. It's taken us a long time, but we've done it. We're all through with it. We have

this orthonormal set now.

If I'm smart, that orthonormal set, which I generated, will also include easy ways to

represent each of the other signals that we're going to send. But I don't care about

that right now. All I'm dealing with is this one hypothesis that came in. This one

signal, a sub m-- oh, the hypothesis m, the signal a sub m, an the particular time
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instant, k, and this waveform that gets sent, which can be represented as the first J

terms in this orthonormal sequence.

OK, so what I'm going to get then is the received random process. Is going to be a

sum -- and forgot about the j prime now-- I can represent it as a sum of coefficients

times these orthonormal waveforms. OK, that's what we've done for arbitrary

sequences, and then we've said we can also do it for at least well defined random

processes. I'm going to make, I mean, instead of making this an infinite dimensional

sum, I want to make it a finite dimensional sum where J prime is very, very large.

Say, 10 to the fiftieth if you want to. I don't want to make it infinite, I want to look at

what happens when I let it get bigger or smaller. So I'm expanding Y of t over an

orthonormal expansion. But I'm not going all the way. I'm just going to try to do

maximum likelihood detection with this finite set of observations.

So I wont do quite as well as if I have all the observations, but I'll still do pretty well.

We hope. OK, well so Y sub j-- the output that I see in this degree of freedom

corresponding to phi sub j of t. Is going to be xj-- what I sent in that degree of

freedom-- plus zj. And there are j degrees of-- capital J degrees of freedom that I'm

using. So the outputs in those degrees of freedom, namely in the phi1 of t, phi2 of t,

phi3 of t directions in this L2 space are going to be the signal plus the noise. For all

of these dimensions. And Yj is just going to be equal to zj for all the other terms. OK,

now I want to add one extra thing here. What I should be putting in here is all the

other signals that are going to be transmitted. I don't know how to do that.

Notationally it gets very confusing. So what I'm going to say is, OK Z sub j here is

not just Gaussian noise. Z sub j is Gaussian noise plus all the signals from other

time instance that we're sending. Plus all of the signals that anybody else is

sending. If we're dealing with wireless then we have interference from them. Plus

any old other thing you can think of. z sub j is everything but in these other degrees

of freedom. In these other coordinates. This solves another problem for us,

because when we defined white Gaussian noise we had this problem. That we

could only say it looked white over the region of interest. We could only say it looked

white over some time span. Because the earth keeps changing, you know. And over

some frequency span because different frequencies behave in different ways.
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So this also allows us to have different Gaussian random variables here. So when

we have arbitrary random variables here, they can be Gaussian or non-Gaussian.

They don't have to have the same variance. They don't have to have anything.

What I am going to assume is that these out of band, out of sense, out of view

random variables are all independent of the things that I am looking at. And for

white Gaussian noise, that's true. All of these random variables here are

independent of all of these random variables here. For these first capital J different

random variables that I'm interested in.

And all these random variables are independent of they input that I'm using. OK? In

other words, a hypothesis came into the transmitter that generated a signal. The

signal got turned into a waveform, which is defined solely in terms of these J

degrees of freedom, these J orthonormal functions. And now everything everywhere

else is independent of these J functions that I'm interested in. Why is that a shaky

assumption? Anybody think of a situation where that is absolute nonsense? Yeah?

AUDIENCE: The stuff from the other message had t--

PROFESSOR: Mm hmm.

AUDIENCE: You said t of j is not just Gaussian noise--

PROFESSOR: It also includes all those other signals, yes. Well, but I want to assume that those

other signals are independent of this particular signal that I'm sending. But in fact

that is making a pretty big assumption. Because one of the things that a lot of

people like to do is, when these bits come into a channel, the first thing they do is

they encode the bits for error correction. And then they take those bits that come

out of the error correction device, error encoding device, which are as correlated as

could be. And they're all statistically very dependent, because we want to use that

statistical dependence later to correct errors.

And this assumption that I'm making here says, "no that's not the case. I'm

assuming that all that other stuff is independent of what I'm transmitting here." So
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I'm very specifically assuming at this point that all of that stuff has not been encoded

first. That I'm sending something which is independent of everything else. Which is

going to enter this channel. We'll just assume that and after we get done assuming

it and seeing what the consequence of it is, we'll go back and see what it all means.

OK, so for a little more notation. I'm going to call the vector, Y, the first J, capital J,

outputs. I'm going to call the vector Y prime all the other outputs. Now intuitively

what were aiming at is, we would like to say this stuff doesn't have anything to do

with it. We're going to base our decision on this. But I want to prove that to you, and

show you why it works and why it doesn't. And the noise I'm going to break up the

same way. Z is this the first J components of the noise. And Z prime is the other

components of noise. So what I have is that the output, the output that I want to look

at, namely the output this vector of dimension J output. Which is equal to a vector of

dimension J input plus of a vector of dimension J noise is equal to-- well Y is equal X

plus Z. And the out of band stuff, the output, is just these noise and other signals.

OK? And I want to assume that Z prime, X, and Z are statistically independent.

Question, test your probability. If I assume that Z prime is independent of Z, and if I

assume that Z prime is independent of X, does that mean that Z prime is

independant of X and Z? If a is independent of b, and a is independent of c, is a

necessarily independent of the pair bc? How many think that's true? Better go back

and study a little elementary probability again. And the notes are occasionally wrong

about that, too. So you shouldn't feel, you shouldn't feel badly about it.

No, the problem is you really need this joint independence between all three of

them. I could, for example, make X plus Y be equal to Z. I could do this with discrete

random variables. Which are equally probably zero and one. And make the plus

equal to a mod 2 operation. And if I did that, each pair would be independent of

each other, and the triple would be very, very highly dependant. So anyway, I want

to assume that Z prime, X, and Z are statistically independent. In other words, what

I'm doing is saying, "If I assume that, what's the consequence of it?"

OK, so the likelihood then, the probability density of the output, Y-- this is the output
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in the first j dimensions given a particular hypothesis Y-- is equal to the probability

density of the noise evaluated at Y minus am. Where this is the signal that goes with

this hypothesis, well with am. Times the probability density of Y prime for Z prime.

OK? And I don't even have to assume that this is Gaussian. All I've done is to

assume that these random variables are independent of these random variables.

And therefore this probability density is multiplied by this probability density. OK, well

that's kind of neat. Because if I put a different i in here in place of m, I get this thing.

Changes all around. F sub Z of Y minus a sub i. But this stuff, which is out of band,

doesn't change at all. When I form the likelihood ratio, what I get then is this divided

by that. What has happened to Y prime? Y prime has disappeared.

In other words, Y1 to Y sub j are a sufficient statistic for this problem. We've shown

that sufficient statistics are the only thing you need to use to do maximum likelihood

detection. OK? In other words, all those other signals, all that other noise, all that

stuff from out of band has disappeared.

Now let's go back to the fact that we were looking at a finite dimensional problem.

What happens now when I make j prime bigger? When I start enlarging j prime?

What happens to all these probabilities that we're talking about? This probability

density goes ape because of this term here. We're talking about a probability

density here which is involving more and more and more terms. I can't talk about

that. It doesn't go to any limit. It goes to absolute nonsense as j prime gets big. But

if I form the likelihood ratio before I go to the limit, then I can go to the limit quite

easily. Because there isn't any limit involved there. OK, in other words this is the

likelihood ratio between hypothesis m and hypothesis i, if in fact I looked at this

entire infinite amount of observation. This is all I need to make the optimal MAP

decision.

OK, so there's a theorem here which is called the theorem of irrelevance. This is

something that Wosencraft and Jacobs in their book on communication many years

ago stressed a lot in trying to come up with a single space viewpoint of

communication. And you'll see why this really does give you a single point viewpoint

of communication. It says that assume that Z prime is statistically independent of
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the pair X and Z. Then the MAP detection of X from the observation of Y and Y

prime depends only on Y. The observed sample value of Y prime is irrelevant. OK?

So you can do all of detection theory, you can do all of communication, simply

forgetting about that irrelevant stuff.

Because of the theorem we can stick to finite dimensional vectors and the other

signals can be viewed as part of Z prime. So you don't have to worry about them.

So long as each signal is independent of each other-- which means that these

groups of bits, the first group a bit is used to form a sub x sub 1. The next group,

the form x sub 2, the next group the form x sub 3, and so forth. So long as those

sequences of bits are independent of each other, you're fine.

Now, suppose they aren't? What happens then? Interesting question. We said that if

they are independent, I can really do maximum likelihood detection on the whole

sequence. If they aren't independent, suppose I say, "oh I don't care about that." I'm

just going to use this portion of the output to make my decision and not worry about

whether this is independent of anything else. I can do that, this still is going to give

me the optimal maximum likelihood detection in terms of the observation y1 up to y

sub j. So in other words, whether I have coding done before this or not doesn't

make any difference. I can still use maximum likelihood detection on the basis of y1

up to y sub j. What the theorem says is if the out of band stuff-- both these inputs

and the noise-- are independent of what I'm trying to detect, maximum likelihood

becomes the optimum thing to do for equally likely inputs. And otherwise, it's a

perfectly reasonable thing to do but it's not optimal.

Now, a lot of people-- and we'll see some examples of this when we look at

wireless-- in fact, use coding. Then they use this particular kind of detection where

they forget about all of the added information from other signals. They make a

decision on each of these x sub k, namely each of the M-ary signals that goes in,

they make a hard decision on it. It's called a hard decision, not because it's difficult it

because they refuse to ever go back and change it. If they just say likelihoods and

try to put things together in the final decoder, it's called soft decoding. Otherwise it's

called hard decoding. If you do soft decoding, it has to work better. Because you're
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making, in a sense, a better decision because eventually you're using more

information. So soft decisions are better than hard decisions. Used to be that

everybody used hard decisions because hard decisions were easy and soft

decisions were hard. Strange, strange thing. But anyway that's changed. Why? Well

it ought to be obvious why. Because anything you build now cost a tenth of what it

used to cost to build it. I heard Irwin Jacobs awhile ago saying that one of the things

that they always did when they were designing new pieces of equipment is they

would look at how much it would cost to build these devices. And then, as opposed

to most companies which would say that's too expensive let's find the cheaper way

to do it, they said OK how long is it going to take for us to do it, and what is the price

of components going to be by time we got it done? And they would usually say, well

it's going to cost a year before we can go into mass production. By that time,

everything will cost less than a half of what it's costing now. So let's go ahead and

do it the right way. So again the argument comes that you can do the hard thing

now. Which is soft decisions, and that's what most people do at this point.

Let me give you one more picture to get ready for what we're doing next time.

Because it's a nice picture of different signal sets. Because we've just talked

abstractly of having multiple signals viewed as vectors, and this will give us some

idea of what all of these mean.

I can have two signals, a binary signal set, and I can insist on the signals being

orthogonal to each other. Which is a nice thing to do some times. But then I can

look at it and I can say, "how can I make that a better signal system?" The trouble

with this signal system is it's not antipodal. It's not antipodal because somehow by

alternating between these two orthogonal signals-- there's a mean between them--

and I'm transmitting that mean plus the difference. And the difference between them

is minus 0.7 and plus 0.7 in that direction that way. If you can, I guess you can't see

it that way. In this direction this way. Well anyway, OK.

A better thing to do than this is this, which is called bi orthogonal. So you take

orthogonal signals and then you have a signal set consisting of four signals and two

dimensional space. We then talk about orthogonal signals and higher dimensional
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space. You can talk about three orthogonal signals in three dimensional space here.

There, there, and there. So that's m equals 3 and j equals 3.

If you do the same thing that we did here-- we're going to make this into an

equilateral triangle. Namely we're going to center it around the center. If we do the

same thing that we did here we're going to turn this into a set of six waveforms

which are still using the three degrees of freedom, but at least get us more signals.

For the same number of degrees of freedom. So you can extend this picture as far

as you want to. You can talk about many, many orthogonal signals going into many

more degrees of freedom. For each one of them you can come up with a simplex

set of signals. The nice thing about the simplex set of signals is that all of the signals

are arranged around the center point. They're all equally distant from each other.

You can get these for every dimension by starting with these and simply taking the

mean out, which loses you one dimension and makes this sort of ideal set. Well

tomorrow-- on Wednesday what we're going to do is, we're going to talk about these

large sets here, and see what happens. And we'll see that you in fact get to channel

capacity this way. OK.

25


