
6.450 Principles of Digital Communications October 17, 2001 
MIT, Fall 2001 Handout #Q1 Solution 

In-class quiz 

Problem Q-1 (20 points) 

(a) Give an example of a Huffman code in which li for some code word i is one but 
log(1/pi) is arbitrarily large.


[6 points] The simplest example is for M = 2. Then both code words have length 1, but

the probability of symbol i can be arbitrarily close to 0, making log(1/pi) arbitrarily large.


(b) Find an example of a Huffman code with 7 code words in which one code word has 
length 6 but �log(1/pi)� = 4.


[8 points] Since Huffman codes are full, the only possibility is to have two code words of

length 6, and one code word of each shorter length down to 1 (see Figure 1).
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Figure 1: Code tree to maximize p. 

Our objective here is to maximize the probability of one of the code words of length 6 
while maintaining the constraints of a Huffman code. Let p be the probability of one code 
word of length 6, and let ε (arbitrarily small) be the probability of the other. We choose 
the probability of each of the other nodes to be as small as possible, while still allowing 
the Huffman algorithm to choose the above code. 

The figure shows the minimum probability that can be assigned to each leaf node, and 
results in 1 = 13p +8ε. Since ε can be chosen arbitrarily small, we see that we can choose 
p to have any desired value greater than 1/13. Thus we can choose p > 2−4, which leads 
to �log(1/pi)� = 4. 

An alternative approach is to set p = 1/16 at the outset and then either choose ε as 
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above, or choose any ε small enough and then choose p1 to make i pi = 1. 

(c) Explain how this can be generalized to Huffman codes in which li − �log(1/pi)� is 
arbitrarily large for an least one code word. 

[6 points] The coefficients of p, moving from right to left on the upper nodes, are 
1, 1, 2, 3, 5, 8, 13. These are the terms of the Fibonnaci series, which increases geomet­
rically as (1 + 

√
5)/2. More precisely, the nth term of the series is 
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If we extend the argument in part (b) to a tree of length n − 1 with n code words, we 

get − log p ≈ n log (1+
√

5) − log 
√

5. This is increasing linearly with n but at a smaller 2 
slope than 1. Since the length of the code word is increasing with n with slope 1, the 
difference between the length and the log pmf is growing without bound1 . 

Problem Q-2 (35 points) 

(a) Show that a Huffman code can be rearranged, with no loss in expected length, into a 
code for which the “binary decimal” numbers associated with the code words are increasing 
with decreasing code word probabilities. 

[5 points] Any set of code word length that satisfies Kraft can be arranged in binary 
decimal order. This was shown in lecture 2 when we proved that any set of lengths that 
satisfied the Kraft inequality could be turned into a prefix-free code with those lengths. 

It is not in general possible to assign 0’s and 1’s in the Huffman construction so as to 
achieve this ordering property. As an example look at the Huffman code for the symbol 
probabilities {.15, .15, .2, .2, .3}. 

(b) Give an intuitive explanation for why the most probable code words, i.e., those with 

pXn (xn) ≥ 2−n(H(X)−ε) are not viewed as typical. 

[6 points] There are very few of the large probability words, so even though they have 
large probability individually, their aggregate probability is very small. 

(c) Assume that there are both intermediate nodes and leaf nodes at some given length l. 
Prove that each code word of length l has a probability p ≥ ql/2 where ql is the maximum 
of the probabilities of the intermediate nodes of length l. 

[6 points] For each intermediate node (and in particular the most probable one), both of 
the immediate descendants of that node have probabilities, say q� and q�� satisfying q� ≤ p 
and q�� ≤ p, since if q� > p (or q�� > p), the node of probability p could be interchanged 
with the subtree stemming from q� (or q��) with a reduction in the average code word 

1You were not expected to go through this entire analytic argument. 
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length. Thus ql = q� + q�� ≤ 2p. Thus, p ≥ ql/2. 

(d) Let m be the shortest length for which leaf nodes exist (you may assume that all such 
leaf nodes correspond to atypical n-tuples). Let Mm be the number of leaf nodes of length 
m. Let δm ≤ δ be the sum of the probabilities of these atypical leaf nodes. Find a lower 
bound to δm in terms of qm (the maximum of the probabilities of the intermediate nodes 
of length m) and Mm. Hint: Use part (c). 

[6 points] Let pi; 1 ≤ i ≤ Mm be the probabilities of the leaf nodes of length m. Then
�Mm 

i=1 pi = δm. From part (c), pi ≥ qm/2 for each i; 1 ≤ i ≤ Mm. Thus 

δm = 
Mm

pi ≥ 
Mm qm = 

Mmqm 

2 2 
i=1 i=1 

(e) Find a lower bound to qm in terms of δm and Mm. Hint: The sum of the probabilities 
of the intermediate nodes plus leaf nodes at length m must be one. 

[6 points] Let qm(i) be the probability of the ith intermediate node at length m. Thus 
qm = maxi{qm(i)}. The number of intermediate nodes of length m is 2m − Mm, so 

2m
�

−Mm 

qm(2m − Mm) ≥ qM (i) = 1 − δm 

i=1 

qm ≥ 
(2m 

1 −
− 

δ
M
m

m) 

(f) Let βm = Mm/2m be the fraction of nodes at length m that are leaf nodes. Show that 

βm 2δm


1 − βm 
≤ 

1 − δm


[6 points] Combining parts (d) and (e), we have 

Mmqm Mm(1 − δm)
δm ≥ 

2 
≥ 

2(2m − Mm) 

With the substitution βm = Mm/2m, this becomes 

βmqm βm(1 − δm)
δm ≥ 

2 
≥ 

2(1 − βm) 

which, on rearrangement, is what is to be proven. 
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Problem Q-3 (30 points) 

(a) Let U be a source output. Find the probability that the distance from U to V1 exceeds 
some given number r. Ignore edge effects throughout, i.e., assume that the sample value 
of U is more than r away from the boundary of the region A. 

[5 points] For any given sample value u of U , the distance from u to the sample value v1 

of V1 is less than or equal to r if v1 lies within a circle of radius r (i.e., of area πr2) around 
u. Since V1 is uniformly selected over the area A, the probability that V1 lies within this 
area is πr2/A (we are using the symbol A both for the area of the region and the region 
itself). Thus, for each u, Pr(�V1 − u� > r) = 1 − πr2/A. 

Many of you tried to approach this problem componentwise (i.e. along each dimension). 
Since A is unspecified and we are dealing with circular regions around u, that approach 
doesn’t quite work. 

Note that it is important to distinguish between, 

Pr(�V1 − u� > r) and Pr(�V1 − U� > r) 

Most of you missed this distinction and derived the former and then equated it to the 
latter. 

(b) Find the probability that the distance from U to each of the {Vj } (i.e., to the closest 
of the {Vj }) exceeds r.


[5 points] Since V1, . . . , VM are independent, the events �Vj − u� > r are independent

events for any given u. Thus, for any given u,


Pr(�Vj − u� > r for all j; 1 ≤ j ≤ M) = (1 − πr2/A)M 

Since this is the same for all sample values u of U , 

Pr(�Vj − U� > r for all j; 1 ≤ j ≤ M) = (1 − πr2/A)M 

(c) Assume that r2/A is extremely small and approximate the probability in (b) as e−Mg(r) 

for the appropriate function g(r). 

[5 points] For any ε > 0, (1 − ε)M = eM ln(1−ε). For ε very small, ln(1 − ε) ≈ ε, so 
(1 − ε)M ≈ e−Mε . Using πr2/A for ε, this becomes 

(1 − πr2/A)M ≈ e−Mπr2/A 

(d) Let R be the error when the source output is represented as the closest quantization 
point. Express the distribution function of the random variable R in terms of your answer 
to c. 

[7 points] The distribution function of R is FR(r) = Pr(R ≤ r) = 1−Pr(R > r). However, 
R > r means that �Vj − U� > r for all j; 1 ≤ j ≤ M , which is the quantity found in part 
(c). Thus 

FR(r) = 1 − e−Mπr2/A 
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(e) Find the mean square error. The mean square error here is averaged over both the 
source output and the random choice of quantizer points. Compare your result with that 
of a quantizer using a square of quantization regions. 

[6 points] From part (d), the probability density for R is 

2πMr −πMr2 

fR(r) = exp
A A 

The mean square error per dimension is then (1/2) r2fR(r)dr. If we substitute y for r2 , 
this simplifies to 

1 
� ∞ πMy 

� 
−πMy 

� 
A 

MSE = exp dy = 
2 y=0 A A 2πM 

[2 points] For the 2D quantizer using square regions, each of area A/M , the MSE per 
dimension is (1/12)(A/M). Thus, the random choice of quantization points in 2D is not 
as good as the much more straight forward uniform scalar quantizer. 

Some students attempted to find the distribution of R2 and then find its mean. While 
this is not necessary here, it is useful to know. See the solutions to HW 5.2(e) to see how 
to do this. 

Several students were confused regarding the limits of integration in this part (and the 
range of r in defining the distribution in part (d)). If we derived a precise distribution 
for r, then r clearly cannot exceed the diameter of region A (the diameter is simply the 
largest distance between any two points in A). However, in part (d), we approximated the 
distribution function by 1 − e−Mπr2/A. For this to be a valid distribution, r must range 
from 0 to infinity. This is why the limits of integration are 0 to infinity. 

The other way of looking at this is that under the assumption r2 << A, the diameter 
of A is much larger than r. This, combined with the fact that the distribution is falling 
exponentially in r is why integrating from 0 to infinity is justified. 

Some of you forgot to normalize both the MSEs per dimension leading to an incorrect 
comparison of the random and square case. 

Problem Q-4 (15 points) 

(a) Express the coefficients {uk} as inner products involving u(t), {θk}, and {Ak}. 
[7 points] As done in the notes several times, we have 

� ∞ � ∞ 
� 

u(t)θj 
∗(t) dt = ukθk(t)θj 

∗(t) dt 
−∞ −∞ k 

�

� ∞ 

= uk θk(t)θj 
∗(t) dt = uj Aj 

k −∞ 

Thus, 
1 

uk = �u , θk�Ak 
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� 
(b) Find the energy �u�2 = ∞ u(t) 2dt in the simplest form you can in terms of {uk}, 
{θk} and {Ak}. 

−∞ | |

[8 points] Again, as before, 
� ∞ � ∞ 

� 
u(t)u∗(t) dt = u(t) u∗ 

kθk
∗(t) dt 

−∞ −∞ k 

= 
� 

u∗ 
k 

� ∞ 

u(t)θk
∗(t) dt = 

� 
|uk|2Ak 

k −∞ k 

Common errors in this part had to do with scaling. People either forgot to scale or 
assumed that all of the Aj s were identical. 
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