
Chapter 4 

Source and channel waveforms 

4.1 Introduction 

This chapter has a dual objective. The first is to understand analog data compression, i.e., 
the compression of sources such as voice for which the output is an arbitrarily varying real or 
complex valued function of time; we denote such functions as waveforms. The second is to begin 
studying the waveforms that are typically transmitted at the input and received at the output of 
communication channels. The same set of mathematical tools are needed for the understanding 
and representation of both source and channel waveforms; the development of these results is 
the central topic in this chapter. 

These results about waveforms are standard topics in mathematical courses on analysis, real 
and complex variables, functional analysis, and linear algebra. They are stated here without the 
precision or generality of a good mathematics text, but with considerably more precision and 
interpretation than is found in most engineering texts. 

4.1.1 Analog sources 

The output of many analog sources (voice is the typical example) can be represented as a 
waveform,1 {u(t) :  R → R} or {u(t) :  R → C}. Often, as with voice, we are interested only 
in real waveforms, but the simple generalization to complex waveforms is essential for Fourier 
analysis and for baseband modeling of communication channels. Since a real valued function 
can be viewed as a special case of a complex valued function, the results for complex functions 
are also useful for real functions. 

We observed earlier that more complicated analog sources such as video can be viewed as 
mappings from Rn to R, e.g., as mappings from horizontal/vertical position and time to real 
analog values, but for simplicity we consider only waveform sources here. 

Recall why it is desirable to convert analog sources into bits: 

• The use of a standard binary interface separates the problem of compressing sources from 
1The notation {u(t) :  R R} refers to a function that maps each real number t ∈ R into another real number 

u(t) ∈ R. Similarly, {u(t) :
→

R C} maps each real number t ∈ R into a complex number u(t) ∈ C. These→
functions of time, i.e., these waveforms, are usually viewed as dimensionless, thus allowing us to separate physical 
scale factors in communication problems from the waveform shape. 
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88 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS 

the problems of channel coding and modulation. 

•	 The outputs from multiple sources can be easily multiplexed together. Multiplexers can 
work by interleaving bits, 8-bit bytes, or longer packets from different sources. 

•	 When a bit sequence travels serially through multiple links (as in a network), the noisy bit 
sequence can be cleaned up (regenerated) at each intermediate node, whereas noise tends 
to gradually accumulate with noisy analog transmission. 

A common way of encoding a waveform into a bit sequence is as follows: 

1. Approximate the analog waveform {u(t); t ∈ R} by its samples2 {u(mT ); m ∈ Z} at regularly 
spaced sample times, . . .  ,−T, 0, T, 2T, . . . . 

2. Quantize each sample (or n-tuple of samples) into a quantization region. 

3. Encode each quantization region (or block of regions) into a string of bits. 

These three layers of encoding are illustrated in Figure 4.1, with the three corresponding layers 
of decoding. 
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Figure 4.1: Encoding and decoding a waveform source. 

Example 4.1.1. In standard telephony, the voice is filtered to 4000 Hertz (4 kHz) and then 
sampled at 8000 samples per second.3 Each sample is then quantized to one of 256 possible 
levels, represented by 8 bits. Thus the voice signal is represented as a 64 kilobit/second (kb/s) 
sequence. (Modern digital wireless systems use more sophisticated voice coding schemes that 
reduce the data rate to about 8 kb/s with little loss of voice quality.) 

The sampling above may be generalized in a variety of ways for converting waveforms into 
sequences of real or complex numbers. For example, modern voice compression techniques first 

2Z denotes the set of integers, −∞ < m <  ∞, so  {u(mT ); m ∈ Z} denotes the doubly infinite sequence of 
samples with −∞ < m < ∞

3The sampling theorem, to be discussed in Section 4.6, essentially says that if a waveform is baseband-limited 
to W Hz, then it can be represented perfectly by 2W samples per second. The highest note on a piano is about 4 
kHz, which is considerably higher than most voice frequencies. 
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4.1. INTRODUCTION 89 

segment the voice waveform into 20 msec. segments and then use the frequency structure of 
each segment to generate a vector of numbers. The resulting vector can then be quantized and 
encoded as discussed before. 

An individual waveform from an analog source should be viewed as a sample waveform from a 
random process. The resulting probabilistic structure on these sample waveforms then deter­
mines a probability assignment on the sequences representing these sample waveforms. This 
random characterization will be studied in Chapter 7; for now, the focus is on ways to map de­
terministic waveforms to sequences and vice versa. These mappings are crucial both for source 
coding and channel transmission. 

4.1.2 Communication channels 

Some examples of communication channels are as follows: a pair of antennas separated by open 
space; a laser and an optical receiver separated by an optical fiber; and a microwave transmitter 
and receiver separated by a wave guide. For the antenna example, a real waveform at the 
input in the appropriate frequency band is converted by the input antenna into electromagnetic 
radiation, part of which is received at the receiving antenna and converted back to a waveform. 
For many purposes, these physical channels can be viewed as black boxes where the output 
waveform can be described as a function of the input waveform and noise of various kinds. 

Viewing these channels as black boxes is another example of layering. The optical or microwave 
devices or antennas can be considered as an inner layer around the actual physical channel. 
This layered view will be adopted here for the most part, since the physics of antennas, optics, 
and microwave are largely separable from the digital communication issues developed here. One 
exception to this is the description of physical channels for wireless communication in Chapter 
9. As will be seen, describing a wireless channel as a black box requires some understanding of 
the underlying physical phenomena. 

The function of a channel encoder, i.e., a modulator, is to convert the incoming sequence of 
binary digits into a waveform in such a way that the noise corrupted waveform at the receiver 
can, with high probability, be converted back into the original binary digits. This is typically 
done by first converting the binary sequence into a sequence of analog signals, which are then 
converted to a waveform. This procession - bit sequence to analog sequence to waveform - is the 
same procession as performed by a source decoder, and the opposite to that performed by the 
source encoder. How these functions should be accomplished is very different in the source and 
channel cases, but both involve converting between waveforms and analog sequences. 

The waveforms of interest for channel transmission and reception should be viewed as sample 
waveforms of random processes (in the same way that source waveforms should be viewed as 
sample waveforms from a random process). This chapter, however, is concerned only about the 
relationship between deterministic waveforms and analog sequences; the necessary results about 
random processes will be postponed until Chapter 7. The reason why so much mathematical 
precision is necessary here, however, is that these waveforms are a priori unknown. In other 
words, one cannot use the conventional engineering approach of performing some computation 
on a function and assuming it is correct if an answer emerges4 . 

4This is not to disparage the use of computational (either hand or computer) techniques to get a quick answer 
without worrying about fine points. Such techniques often provides insight and understanding, and the fine points 
can be addressed later. For a random process, however, one doesn’t know a priori which sample functions can 
provide computational insight. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



� 

� 

� 

90 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS 

4.2 Fourier series 

Perhaps the simplest example of an analog sequence that can represent a waveform comes from 
the Fourier series. The Fourier series is also useful in understanding Fourier transforms and 
discrete-time Fourier transforms (DTFTs). As will be explained later, our study of these topics 
will be limited to finite-energy waveforms. Useful models for source and channel waveforms 
almost invariably fall into the finite-energy class. 

The Fourier series represents a waveform, either periodic or time-limited, as a weighted sum of 
sinusoids. Each weight (coefficient) in the sum is determined by the function, and the function 
is essentially determined by the sequence of weights. Thus the function and the sequence of 
weights are essentially equivalent representations. 

Our interest here is almost exclusively in time-limited rather than periodic waveforms5. Initially 
the waveforms are assumed to be time-limited to some interval −T/2 ≤ t ≤ T/2 of an arbitrary 
duration T >  0 around 0. This is then generalized to time-limited waveforms centered at some 
arbitrary time. Finally, an arbitrary waveform is segmented into equal length segments each of 
duration T ; each such segment is then represented by a Fourier series. This is closely related 
to modern voice-compression techniques where voice waveforms are segmented into 20 msec 
intervals, each of which are separately expanded into a Fourier-like series. 

Consider a complex function {u(t) :  R C} that is nonzero only for −T/2 ≤ t ≤ T/2 (i.e., 
u(t) = 0 for t <  −T/2 and t > T/2).

→ 
Such a function is frequently indicated by {u(t) :  

[−T/2, T/2] C}. The Fourier series for such a time-limited function is given by6 → � �∞ ûk e
2πikt/T for − T/2 ≤ t ≤ T/2 

u(t) =  k=−∞ (4.1)
0 elsewhere, 

where i denotes7 
√
−1. The Fourier series coefficients ûk are in general complex (even if u(t) is  

real), and are given by 

ûk =
1 

� T/2 

u(t)e−2πikt/T dt, −∞ < k <  ∞. (4.2)
T −T/2 

The standard rectangular function, 

rect(t) =
1 for − 1/2 ≤ t ≤ 1/2 
0 elsewhere, 

can be used to simplify (4.1) as follows: 

u(t) =  
∞

ûk e 2πikt/T rect( 
t 
). (4.3)

T 
k=−∞ 

This expresses u(t) as a linear combination of truncated complex sinusoids, 

u(t) =  ûkθk(t) where θk(t) =  e 2πikt/T rect( 
t 
). (4.4)

T 
k∈Z 

5Periodic waveforms are not very interesting for carrying information; after observing one period, the rest of 
the waveform carries nothing new. 

6The conditions and the sense in which (4.1) holds are discussed later. 
7The use of i for 

√
−1 is standard in all scientific fields except electrical engineering. Electrical engineers 

formerly reserved the symbol i for electrical current and thus often use j to denote 
√
−1. 
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4.2. FOURIER SERIES 91 

Assuming that (4.4) holds for some set of coefficients {ûk; k ∈ Z}, the following simple and 
instructive argument shows why (4.2) is satisifed for that set of coefficients. Two complex 
waveforms, θk(t) and θm(t), are defined to be orthogonal if ∞ 

θk(t)θ∗ (t) dt = 0. The truncated −∞ m

complex sinusoids in (4.4) are orthogonal since the interval [−T/2, T/2] contains an integral 
number of cycles of each, i.e., for k =� m ∈ Z, � � T/2∞ 

θk(t)θ∗ (t) dt = e 2πi(k−m)t/T dt = 0.m
−∞ −T/2 

Thus the right side of (4.2) can be evaluated as � T/2 � �1 
u(t)e−2πikt/T dt =

1 ∞ ∞
ûmθm(t)θk

∗(t) dt 
T −T/2 T −∞� m=−∞ 

= 
ûk 

∞ 

|θk(t)|2 dt 
T −∞ 

ûk 
� T/2 

= dt = ûk. (4.5)
T −T/2 

An expansion such as that of (4.4) is called an orthogonal expansion. As shown later, the 
argument in (4.5) can be used to find the coefficients in any orthogonal expansion. At that 
point, more care will be taken in exchanging the order of integration and summation above. 

Example 4.2.1. This and the following example illustrate why (4.4) need not be valid for all 
values of t. Let u(t) = rect(2t) (see Figure 4.2). Consider representing u(t) by a Fourier series 
over the interval −1/2 ≤ t ≤ 1/2. As illustrated, the series can be shown to converge to u(t) at  
all t ∈ [−1/2, 1/2] except for the discontinuities at t = ±1/4. At t = ±1/4, the series converges 
to the midpoint of the discontinuity and (4.4) is not valid8 at t = ±1/4. The next section will 
show how to state (4.4) precisely so as to avoid these convergence issues. 

1 

• • 
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u(t) = rect(2t) 1
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2 cos(2πt) 1
2 + π 

2 cos(2πt) k uke
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− 2 cos(6πt)3π 

Figure 4.2: The Fourier series (over [−1/2, 1/2]) of a rectangular pulse. The second 
figure depicts a partial sum with k = −1, 0, 1 and the third figure depicts a partial sum 
with −3 ≤ k ≤ 3. The right figure illustrates that the series converges to u(t) except 
at the points t = ±1/4, where it converges to 1/2. 

Example 4.2.2. As a variation of the previous example, let v(t) be 1 for 0 ≤ t ≤ 1/2 and 0 
elsewhere. Figure 4.3 shows the corresponding Fourier series over the interval −1/2 ≤ t ≤ 1/2. 
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8Most engineers, including the author, would say ‘so what, who cares what the Fourier series converges to 
at a discontinuity of the waveform’. Unfortunately, this example is only the tip of an iceberg, especially when 
time-sampling of waveforms and sample waveforms of random processes are considered. 
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92 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS 

A peculiar feature of this example is the isolated discontinuity at t = −1/2, where the series 
converges to 1/2. This happens because the untruncated Fourier series, ∞ v̂ke

2πikt, is  k=−∞
periodic with period 1 and thus must have the same value at both t = −1/2 and t = 1/2. More 
generally, if an arbitrary function {v(t) : [−T/2, T/2] → C} has v(−T/2) =� v(T/2), then its 
Fourier series over that interval cannot converge to v(t) at both those points. 

• •• 

−

v(t) = rect(2t − 14 ) 
1
2 + π 

2 sin(2πt)	 ∞ vke
2πiktrect(t)k=−∞ 

Figure 4.3: The Fourier series over [−1/2, 1/2] of the same rectangular pulse shifted 
right by 1/4. The middle figure again depicts a partial expansion with k = −1, 0, 1. 
The right figure shows that the series converges to v(t) except at the points t = −1/2, 0, 
and 1/2, at each of which it converges to 1/2. 

1 

4.2.1 Finite-energy waveforms 

The energy in a real or complex waveform u(t) is defined9 to be ∞ |u(t)|2 dt. The energy in −∞ 

1 
2	

source waveforms plays a major role in determining how well the waveforms can be compressed 
for a given level of distortion. As a preliminary explanation, consider the energy in a time-limited 
waveform {u(t) : [−T/2, T/2] R}. This energy is related to the Fourier series coefficients of → 
u(t) by the following energy equation which is derived in Exercise 4.2 by the same argument 
used in (4.5): � T/2	 ∞

t=−T/2 
|u(t)|2 dt = T |ûk|2 .	 (4.6) 

k=−∞ 

Suppose that u(t) is compressed by first generating its Fourier series coefficients, {ûk; k ∈ Z} and 
then compressing those coefficients. Let {v̂k; k ∈ Z} be this sequence of compressed coefficients. 
Using a squared distortion measure for the coefficients, the overall distortion is k |ûk − v̂k|2 . 
Suppose these compressed coefficients are now encoded, sent through a channel, reliably decoded, 
and converted back to a waveform v(t) =  k v̂ke

2πikt/T as in Figure 4.1. The difference between 
the input waveform u(t) and the output v(t) is then u(t) − v(t), which has the Fourier series 

(ûk − v̂k)e2πikt/T . Substituting u(t)− v(t) into (4.6) results in the difference-energy equation,k � T/2	 � 
t=−T/2 

|u(t) − v(t)|2 dt = T |ûk − v̂k|2 .	 (4.7) 
k 

Thus the energy in the difference between u(t) and its reconstruction v(t) is simply T times 
the sum of the squared differences of the quantized coefficients. This means that reducing the 
squared difference in the quantization of a coefficient leads directly to reducing the energy in 
the waveform difference. The energy in the waveform difference is a common and reasonable 

1 1 1 10 0 0− −
2 2 2 2 2 

9 22 2 2 | = uu∗ =Note that u can be negative or complex and |u
is required to correspond to the intuitive notion of energy. 

if u is real, but for complex u, u= |u|
[�(u)]2 + [�(u)]2 
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measure of distortion, but the fact that it is directly related to mean-squared coefficient distortion 
provides an important added reason for its widespread use. 

There must be at least T units of delay involved in finding the Fourier coefficients for u(t) in  
| −T/2, T/2] and then reconstituting v(t) from the quantized coefficients at the receiver. There 
is additional processing and propagation delay in the channel. Thus the output waveform must 
be a delayed approximation to the input. All of this delay is accounted for by timing recovery 
processes at the receiver. This timing delay is set so that v(t) at the receiver, according to the 
receiver timing, is the appropriate approximation to u(t) at the transmitter, according to the 
transmitter timing. Timing recovery and delay are important problems, but they are largely 
separable from the problems of current interest. Thus, after recognizing that receiver timing is 
delayed from transmitter timing, delay can be otherwise ignored for now. 

Next, visualize the Fourier coefficients ûk as sample values of independent random variables and 
visualize u(t), as given by (4.3), as a sample value of the corresponding random process (this will 
be explained carefully in Chapter 7). The expected energy in this random process is equal to T 
times the sum of the mean-squared values of the coefficients. Similarly the expected energy in 
the difference between u(t) and v(t) is equal to T times the sum of the mean-squared coefficient 
distortions. It was seen by scaling in Chapter 3 that the the mean-squared quantization error 
for an analog random variable is proportional to the variance of that random variable. It is thus 
not surprising that the expected energy in a random waveform will have a similar relation to 
the mean-squared distortion after compression. 

There is an obvious practical problem with compressing a finite-duration waveform by quantizing 
an infinite set of coefficients. One solution is equally obvious: compress only those coefficients 
with a significant mean-squared value. Since the expected value of k |ûk|2 is finite for finite-
energy functions, the mean-squared distortion from ignoring small coefficients can be made as 
small as desired by choosing a sufficiently large finite set of coefficients. One then simply chooses 
v̂k = 0 in (4.7) for each ignored value of k. 

The above argument will be developed carefully after developing the required tools. For now, 
there are two important insights. First, the energy in a source waveform is an important param­
eter in data compression, and second, the source waveforms of interest will have finite energy 
and can be compressed by compressing a finite number of coefficients. 

Next consider the waveforms used for channel transmission. The energy used over any finite 
interval T is limited both by regulatory agencies and by physical constraints on transmitters and 
antennas. One could consider waveforms of finite power but infinite duration and energy (such 
as the lowly sinusoid). On one hand, physical waveforms do not last forever (transmitters wear 
out or become obsolete), but on the other hand, models of physical waveforms can have infinite 
duration, modeling physical lifetimes that are much longer than any time scale of communication 
interest. Nonetheless, for reasons that will gradually unfold, the channel waveforms in this text 
will almost always be restricted to finite energy. 

There is another important reason for concentrating on finite-energy waveforms. Not only are 
they the appropriate models for source and channel waveforms, but they also have remarkably 
simple and general properties. These properties rely on an additional constraint called mea­
surability which is explained in the following section. These finite-energy measurable functions 
are called L2 functions. When time-constrained, they always have Fourier series, and without 
a time constraint, they always have Fourier transforms. Perhaps the most important property, 
however, is that L2 functions can be treated essentially as conventional vectors (see Chapter 5). 
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One might question whether a limitation to finite-energy functions is too constraining. For 
example, a sinusoid is often used to model the carrier in passband communication, and sinusoids 
have infinite energy because of their infinite duration. As seen later, however, when a finite-
energy baseband waveform is modulated by that sinusoid up to passband, the resulting passband 
waveform has finite energy. 

As another example, the unit impulse (the Dirac delta function δ(t)) is a generalized function 
used to model waveforms of unit area that are nonzero only in a narrow region around t = 0,  
narrow relative to all other intervals of interest. The impulse response of a linear-time-invariant 
filter is, of course, the response to a unit impulse; this response approximates the response to 
a physical waveform that is sufficiently narrow and has unit area. The energy in that physical 
waveform, however, grows wildly as the waveform becomes more narrow. A rectangular pulse 
of width ε and height 1/ε, for example, has unit area for all ε >  0 but has energy 1/ε, which 
approaches ∞ as ε → 0. One could view the energy in a unit impulse as being either undefined 
or infinite, but in no way could view it as being finite. 

To summarize, there are many useful waveforms outside the finite-energy class. Although they 
are not physical waveforms, they are useful models of physical waveforms where energy is not 
important. Energy is such an important aspect of source and channel waveforms, however, that 
such waveforms can safely be limited to the finite-energy class. 

4.3 L2 functions and Lebesgue integration over [−T/2, T/2] 

A function {u(t) :  R C} is defined to be L2 if it is Lebesgue measurable and has a finite 
Lebesgue integral 

� ∞ 
→ 

u(t) 2 dt. This section provides a basic and intuitive understanding of −∞ | |
what these terms mean. The appendix provides proofs of the results, additional examples, and 
more depth of understanding. Still deeper understanding requires a good mathematics course 
in real and complex variables. The appendix is not required for basic engineering understanding 
of results in this and subsequent chapters, but it will provide deeper insight. 

The basic idea of Lebesgue integration is no more complicated than the more common Rie­
mann integration taught in freshman college courses. Whenever the Riemann integral exists, 
the Lebesgue integral also exists10 and has the same value. Thus all the familiar ways of calcu­
lating integrals, including tables and numerical procedures, hold without change. The Lebesgue 
integral is more useful here, partly because it applies to a wider set of functions, but, more 
importantly, because it greatly simplifies the main results. 

This section considers only time-limited functions, {u(t) : [−T/2, T/2] → C}. These are the 
functions of interest for Fourier series, and the restriction to a finite interval avoids some math­
ematical details better addressed later. 

Figure 4.4 shows intuitively how Lebesgue and Riemann integration differ. Conventional Rie­
mann integration of a nonnegative real-valued function u(t) over an interval [−T/2, T/2] is 
conceptually performed in Figure 4.4a by partitioning [−T/2, T/2] into, say, i0 intervals each 
of width T/i0. The function is then approximated within the ith such interval by a single 
value ui, such as the mid-point of values in the interval. The integral is then approximated as �i0 (T/i0)ui. If the function is sufficiently smooth, then this approximation has a limit, called i=1

the Riemann integral, as i0 → ∞. 
10There is a slight notional qualification to this which is discussed in the sinc function example of Section 4.5.1. 
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T 
2 

) + ( T 
2 
− t4) 
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δ 
2δ 
3δ 

−T/2 T/2 −T/2 T/2 � T/2 
−T/2 u(t) dt ≈ 

�i0 
i=1 ui/i0 

� T/2 
−T/2 u(t) dt ≈ 

� 
m mδ µm 

(a): Riemann (b): Lebesgue 

Figure 4.4: Example of Riemann and Lebesgue integration 

To integrate the same function by Lebesgue integration, the vertical axis is partitioned into 
intervals each of height δ, as shown in Figure 4.4(b). For the mth such interval,11 [mδ, (m+1)δ ), 
let Em be the set of values of t such that mδ ≤ u(t) < (m+1)δ. For example, the set E2 is 
illustrated by arrows in Figure 4.4 and is given by 

E2 = {t : 2δ ≤ u(t) < 3δ} = [t1, t2) ∪ (t3, t4]. 

As explained below, if Em is a finite union of separated12 intervals, its measure, µm is the sum 
of the widths of those intervals; thus µ2 in the example above is given by 

µ2 = µ(E2) = (t2 − t1) + (t4 − t3). (4.8) 

Similarly, E1 = [−T , t1) ∪ (t4, T ] and µ1 = (t1 + T ) + (T 
2 − t4).2 2 2

The Lebesque integral is approximated as m(mδ)µm. This approximation is indicated by the 
vertically shaded area in the figure. The Lebesgue integral is essentially the limit as δ 0.→ 

In short, the Riemann approximation to the area under a curve splits the horizontal axis into 
uniform segments and sums the corresponding rectangular areas. The Lebesgue approximation 
splits the vertical axis into uniform segments and sums the height times width measure for each 
segment. In both cases, a limiting operation is required to find the integral, and Section 4.3.3 
gives an example where the limit exists in the Lebesgue but not the Riemann case. 

4.3.1 Lebesgue measure for a union of intervals 

In order to explain Lebesgue integration further, measure must be defined for a more general 
class of sets. 

The measure of an interval I from a to b, a ≤ b is defined to be µ(I) =  b − a ≥ 0. For any finite 
union of, say, 
 separated intervals, E = 

�	 Ij , the measure µ(E) is defined asj=1

µ(E) =  µ(Ij). (4.9) 
j=1 

11The notation [a, b) denotes the semiclosed interval a ≤ t < b. Similarly, (a, b] denotes the semiclosed interval 
a < t  ≤ b, (a, b) the open interval a < t < b, and [a, b] the closed interval a ≤ t ≤ b. In the special case where 
a = b, the interval [a, a] consists of the single point a, whereas [a, a), (a, a], and (a, a) are empty. 

12Two intervals are separated if they are both nonempty and there is at least one point between them that lies 
in neither interval; i.e., (0, 1) and (1, 2) are separated. In contrast, two sets are disjoint if they have no points in 
common. Thus (0, 1) and [1, 2] are disjoint but not separated. 
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This definition of µ(E) was used in (4.8) and is necessary for the approximation in Figure 4.4b to 
correspond to the area under the approximating curve. The fact that the measure of an interval 
does not depend on inclusion of the end points corresponds to the basic notion of area under a 
curve. Finally, since these separated intervals are all contained in [−T/2, T/2], it is seen that 
the sum of their widths is at most T , i.e., 

0 ≤ µ(E) ≤ T.  (4.10) 

Any finite union of, say, 
 arbitrary intervals, E = 
�	 Ij , can also be uniquely expressed as j=1 

a finite union of at most 
 separated intervals, say I1
′ , . . .  , Ik

′ , k  ≤ 
 (see Exercise 4.5), and its 
measure is then given by 

k

µ(E) =  µ(Ij
′). (4.11) 

j=1 �
The union of a countably infinite collection13 of separated intervals, say B = ∞ Ij is also j=1 

defined to be measurable and has a measure given by 

µ(B) = lim µ(Ij ). (4.12) 
	→∞ 

j=1 

The summation on the right is bounded between 0 and T for each 
. Since µ(Ij ) ≥ 0, the sum is 
nondecreasing in 
. Thus the limit exists and lies between 0 and T . Also the limit is independent 
of the ordering of the Ij (see Exercise 4.4). 

Example 4.3.1. Let Ij = (T2−2j , T2−2j+1) for all integer j ≥ 1. The jth interval then has 
measure µ(Ij ) = 2−2j . These intervals get smaller and closer to 0 as j increases. They are � �
easily seen to be separated. The union B = j Ij then has measure µ(B) =  ∞

j=1 T2−2j = T/3. 
Visualize replacing the function in Figure 4.4 by one that oscillates faster and faster as t 0;→
B could then represent the set of points on the horizontal axis corresponding to a given vertical 
slice. � 
Example 4.3.2. As a variation of the above example, suppose B = Ij where Ij = j 

[T2−2j , T2−2j ] for each j. Then interval Ij consists of the single point T2−2j so µ(Ij ) = 0.  
In this case, 

�
j
	 
=1 µ(Ij ) = 0 for each 
. The limit of this as 
 → ∞ is also 0, so µ(B) = 0 in this 

case. By the same argument, the measure of any countably infinite set of points is 0. 

Any countably infinite union of arbitrary (perhaps intersecting) intervals can be uniquely14 

represented as a countable (i.e., either a countably infinite or finite) union of separated intervals 
(see Exercise 4.6); its measure is defined by applying (4.12) to that representation. 

4.3.2 Measure for more general sets 

It might appear that the class of countable unions of intervals is broad enough to represent any 
set of interest, but it turns out to be too narrow to allow the general kinds of statements that 

13An elementary discussion of countability is given in Appendix 4A.1. Readers unfamiliar with ideas such as 
the countability of the rational numbers are strongly encouraged to read this appendix. 

14The collection of separated intervals and the limit in (4.12) is unique, but the ordering of the intervals is not. 
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formed our motivation for discussing Lebesgue integration. One vital generalization is to require 
that the complement B (relative to [−T/2, T/2]) of any measurable set B also be measurable.15 

Since µ([−T/2, T/2]) = T and every point of [−T/2, T/2] lies in either B or B but not both, the 
measure of B should be T − µ(B). The reason why this property is necessary in order for the 
Lebesgue integral to correspond to the area under a curve is illustrated in Figure 4.5. 

�� �� �� �� 

�� �� �� B 

γ (t)B

B 

−T/2 T/2 

Figure 4.5: Let f(t) have the value 1 on a set B and the value 0 elsewhere in [−T/2, T/2]. 
Then f(t) dt = µ(B). The complement B of B is also illustrated and it is seen that 
1 − f(t) is 1 on the set B and 0 elsewhere. Thus [1 − f(t)] dt = µ(B), which must 
equal T − µ(B) for integration to correspond to the area under a curve. 

The subset inequality is another property that measure should have: this states that if A and 
B are both measurable and A ⊆ B, then µ(A) ≤ µ(B). One can also visualize from Figure 4.5 
why this subset inequality is necessary for integration to represent the area under a curve. 

Before defining which sets in [−T/2, T/2] are measurable and which are not, a measure-like 
function called outer measure is introduced that exists for all sets in [−T/2, T/2]. For an 
arbitrary set A, the set B is said to cover A if A ⊆ B and B is a countable union of intervals. The 
outer measure µo(A) is then essentially the measure of the smallest cover of A. In particular,16 

µ o(A) = inf µ(B). (4.13) 
B: B covers A 

Not surprisingly, the outer measure of a countable union of intervals is equal to its measure as 
already defined (see Appendix 4A.3). 

Measurable sets and measure over the interval [−T/2, T/2] can now be defined as follows: 

Definition: A set A (over [−T/2, T/2]) is measurable if µo(A)+µo(A) =  T . If  A is measurable, 
then its measure, µ(A), is the outer measure µo(A). 

Intuitively, then, a set is measurable if the set and its complement are sufficiently untangled 
that each can be covered by countable unions of intervals which have arbitrarily little overlap. 
The example at the end of Section 4A.4 constructs the simplest nonmeasurable set we are aware 
of; it should be noted how bizarre it is and how tangled it is with its complement. 

The definition of measurability is a ‘mathematician’s definition’ in the sense that it is very 
15Appendix 4A.1 uses the set of rationals in [−T/2, T/2] to illustrate that the complement B of a countable 

union of intervals B need not be a countable union of intervals itself. In this case µ(B) =  T − µ(B), which is 
shown to be valid also when B is a countable union of intervals. 

16The infimum (inf) of a set of real numbers is essentially the minimum of that set. The difference between the 
minimum and the infimum can be seen in the example of the set of real numbers strictly greater than 1. This set 
has no minimum, since for each number in the set, there is a smaller number still greater than 1. To avoid this 
somewhat technical issue, the infimum is defined as the greatest lower bound of a set. In the example, all numbers 
less than or equal to 1 are lower bounds for the set, and 1 is then greatest lower bound, i.e., the infimum. Every 
nonempty set of real numbers has an infimum if one includes −∞ as a choice. 
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succinct and elegant, but doesn’t provide many immediate clues about determining whether a 
set is measurable and, if so, what its measure is. This is now briefly discussd. 

It is shown in Appendix 4A.3 that countable unions of intervals are measurable according to 
this definition, and the measure can be found by breaking the set into separated intervals. Also, 
by definition, the complement of every measurable set is also measurable, so the complements of 
countable unions of intervals are measurable. Next, if A ⊆ A′, then any cover of A′ also covers 
A so the subset inequality is satisfied. This often makes it possible to find the measure of a set 
by using a limiting process on a sequence of measurable sets contained in or containing a set of 
interest. Finally, the following theorem is proven in Section 4A.4 of the appendix. �
Theorem 4.3.1. Let A 2, . . .  ,  be any sequence of measurable sets. Then S = j=1 Aj and� 1,A � ∞∞ are measurable. If A 2, . . .  are also disjoint, then µ(S) =  j µ(Aj ). If  D = j=1 Aj 1,A

µo(A) = 0, then A is measurable and has zero measure.


This theorem and definition say that the collection of measurable sets is closed under countable 
unions, countable intersections, and complementation. This partly explains why it is so hard to 
find nonmeasurable sets and also why their existence can usually be ignored - they simply don’t 
arise in the ordinary process of analysis. 

Another consequence concerns sets of zero measure. It was shown earlier that any set containing 
only countably many points has zero measure, but there are many other sets of zero measure. 
The Cantor set example in Section 4A.4 illustrates a set of zero measure with uncountably many 
elements. The theorem implies that a set A has zero measure if, for any ε >  0, A has a cover  
B such that µ(B) ≤ ε. The definition of measurability shows that the complement of any set of 
zero measure has measure T , i.e., [−T/2, T/2] is the cover of smallest measure. It will be seen 
shortly that for most purposes, including integration, sets of zero measure can be ignored and 
sets of measure T can be viewed as the entire interval [−T/2, T/2]. 

This concludes our study of measurable sets on [−T/2, T/2]. The bottom line is that not 
all sets are measurable, but that non-measurable sets arise only from bizarre and artificial 
constructions and can usually be ignored. The definitions of measure and measurability might 
appear somewhat arbitrary, but in fact they arise simply through the natural requirement that 
intervals and countable unions of intervals be measurable with the given measure17 and that 
the subset inequality and complement property be satisfied. If we wanted additional sets to be 
measurable, then at least one of the above properties would have to be sacrificed and integration 
itself would become bizarre. The major result here, beyond basic familiarity and intuition, is 
Theorem 4.3.1 which is used repeatedly in the following sections. The appendix fills in many 
important details and proves the results here 

4.3.3 Measurable functions and integration over [−T/2, T/2] 

A function {u(t) : [−T/2, T/2] R}, is said to be Lebesgue measurable (or more briefly mea­→
surable) if the set of points {t : u(t) < β} is measurable for each β ∈ R. If  u(t) is measurable, 
then, as shown in Exercise 4.11, the sets {t : u(t) ≤ β}, {t : u(t) ≥ β}, {t : u(t) > β} and 
{t : α ≤ u(t) < β} are measurable for all α < β  ∈ R. Thus, if a function is measurable, the 

17We have not distinguished between the condition of being measurable and the actual measure assigned a set, 
which is natural for ordinary integration. The theory can be trivially generalized, however, to random variables 
restricted to [−T/2, T/2]. In this case, the measure of an interval is redefined to be the probability of that interval. 
Everything else remains the same except that some individual points might have non-zero probability. 
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measure µm = µ({t : mδ ≤ u(t) < (m+1)δ}) associated with the mth horizontal slice in Figure 
4.4 must exist for each δ >  0 and m. 

For the Lebesgue integral to exist, it is also necessary that the Figure 4.4 approximation to 
the Lebesgue integral has a limit as the vertical interval size δ goes to 0. Initially consider 
only nonnegative functions, u(t) ≥ 0 for all t. For each integer n ≥ 1, define the nth order 
approximation to the Lebesgue integal as that arising from partitioning the vertical axis into 
intervals each of height δn = 2−n. Thus a unit increase in n corresponds to halving the vertical 
interval size as illustrated below. 

3δn 

2δn 

δn 

−T/2 T/2 

Figure 4.6: The improvement in the approximation to the Lebesgue integral by a unit 
increase in n is indicated by the horizontal crosshatching. 

Let µm,n be the measure of {t : m2−n ≤ u(t) < (m + 1)2−n}, i.e., the measure of the set of 
t ∈ [−T/2, T/2] for which u(t) is in the  mth vertical interval for the nth order approximation. 
The approximation m m2−n µm,n might be infinite18 for all n, and in this case the Lebesgue 
integral is said to be infinite. If the sum is finite for n = 1, however, the figure shows that the 
change in going from the approximation of order n to n + 1 is nonnegative and upper bounded 
by T2−n−1 . Thus it is clear that the sequence of approximations has a finite limit which is 
defined19 to be the Lebesgue integral of u(t). In summary, the Lebesgue integral of an arbitrary 
measurable nonnegative function {u(t) : [−T/2, T/2] R} is finite if any approximation is 
finite and is then given by 

→ 

∞
u(t) dt = lim m2−n µm,n where µm,n = µ(t : m2−n ≤ u(t) < (m + 1)2−n). (4.14) 

n→∞ 
m=0 

Example 4.3.3. Consider a function that has the value 1 for each rational number in 
[−T/2, T/2] and 0 for all irrational numbers. The set of rationals has zero measure, as shown 
in Appendix 4A.1, so that each of the above approximations to the Lebesgue integral are 0 and 
thus the limit is zero. This is a simple example of a function that has a Lebesgue integral but 
no Riemann integral. 

Next consider two non-negative measurable functions u(t) and v(t) on [−T/2, T/2] and assume 
u(t) =  v(t) except on a set of zero measure. Then each of the approximations in (4.14) are 
identical for u(t) and v(t), and thus the two integrals are identical (either both infinite or both 
the same number). This same property will be seen to carry over for functions that also take on 
negative values and for complex valued functions. This property says that sets of zero measure 

18For example, this sum is infinite if u(t) = 1/|t| for −T/2 ≤ t ≤ T/2. The situation here is essentially the 
same for Riemann and Lebesgue integration. 

19This limiting operation can be shown to be independent of how the quantization intervals approach 0. 
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can be ignored in integration. This is one of the major simplifications afforded by Lebesgue 
integration. Two functions that are the same except on a set of zero measure are said to be 
equal almost everywhere, abbreviated a.e. For example, the rectangular pulse and its Fourier 
series representation illustrated in Figure 4.2 are equal a.e. 

For functions taking on both positive and negative values, the function u(t) can be separated 
into a positive part u+(t) and a negative part u−(t). These are defined by 

u +(t) = 	
u(t) for t : u(t) ≥ 0

; u−(t) =  
0 for t : u(t) ≥ 0 

0 for t : u(t) < 0 −u(t) for t : u(t) < 0. 

For all t ∈ [−T/2, T/2] then, 

u(t) =  u +(t) − u−(t).	 (4.15) 

If u(t) is measurable, then u+(t) and u−(t) are also.20 Since these are nonnegative, they can be 
integrated as before, and each integral exists with either a finite or infinite value. If at most one 
of these integrals is infinite, the Lebesgue integral of u(t) is defined as 

u(t) =  u +(t) − u−(t) dt.	 (4.16) 

If both u+(t) dt and u−(t) dt are infinite, then the integral is undefined.


Finally, a complex function {u(t) : [−T/2 T/2] C} is defined to be measurable if the real and
→
imaginary parts of u(t) are measurable. If the integrals of �(u(t)) and �(u(t)) are defined, then 
the Lebesgue integral u(t) dt is defined by 

u(t) dt = �(u(t)) dt + i �(u(t)) dt.	 (4.17) 

The integral is undefined otherwise. Note that this implies that any integration property of 
complex valued functions {u(t) : [−T/2 T/2] C} is also shared by real valued functions 
{u(t) : [−T/2 T/2] R}. 

→ 
→ 

4.3.4 Measurability of functions defined by other functions 

The definitions of measurable functions and Lebesgue integration in the last subsection were 
quite simple given the concept of measure. However, functions are often defined in terms of other 
more elementary functions, so the question arises whether measurability of those elementary 
functions implies that of the defined function. The bottom-line answer is almost invariably yes. 
For this reason it is often assumed in the following sections that all functions of interest are 
measurable. Several results are now given fortifying this bottom-line view. 

First, if {u(t) : [−T/2, T/2] → R} is measurable, then −u(t), |u(t)|, u2(t), eu(t), and ln |u(t)| are 
also measurable. These and similar results follow immediately from the definition of measurable 
functions and are derived in Exercise 4.12. 

Next, if u(t) and v(t) are measurable, then u(t)+  v(t) and u(t)v(t) are measurable (see Exercise 
4.13). 

20 +	 +To see this, note that for β > 0, {t : u (t) < β} = {t : u(t) < β}. For  β ≤ 0, {t : u (t) < β} is the empty 
set. A similar argument works for u−(t). 
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Finally, if {uk(t) : [−T/2, T/2] R} is a measurable function for each integer k ≥ 1, then �→
infk uk(t) is measurable. This can be seen by noting that {t : infk[uk(t)] ≤ α} = k{t : uk(t) ≤
α}, which is measurable for each α. Using this result, Exercise 4.15, shows that limk uk(t) is  
measurable if the limit exists for all t ∈ [−T/2, T/2]. 

4.3.5 L1 and L2 functions over [−T/2, T/2] 

A function {u(t) : [−T/2, T/2] C} is said to be L1, or in the class L1, if  u(t) is measurable →
and the Lebesgue integral of |u(t)| is finite.21 

For the special case of a real function, {u(t) : [−T/2, T/2] → R}, the magnitude |u(t)| can be 
expressed in terms of the positive and negative parts of u(t) as  |u(t)| = u+(t) +  u−(t). Thus 
u(t) is  L1 if and only if both u+(t) and u−(t) have finite integrals. In other words, u(t) is  L1 if 
and only if the Lebesgue integral of u(t) is defined and finite. 

For a complex function {u(t) : [−T/2, T/2] C}, it can be seen that u(t) is  L1 if and only if 
both �[u(t)] and �[u(t)] are L1. Thus  u(t) is  

→
L1 if and only if 

� 
u(t) dt is defined and finite. 

A function {u(t) : [−T/2, T/2] R} or {u(t) : [−T/2, T/2] C} is said to be an L2 function,→ →
or a finite-energy function, if  u(t) is measurable and the Lebesgue integral of |u(t)|2 is finite. 
All source and channel waveforms discussed in this text will be assumed to be L2. Although L2 

functions are of primary interest here, the class of L1 functions is of almost equal importance 
in understanding Fourier series and Fourier transforms. An important relation between L1 and 
L2 is given in the following simple theorem, illustrated in Figure 4.7. 

Theorem 4.3.2. If {u(t) : [−T/2, T/2] C} is L2, then it is also L1.→

Proof: Note that |u(t)| ≤ |u(t)|2 for all t such that |u(t)| ≥ 1. Thus |u(t)| ≤ |u(t)|2 + 1 for 
all t, so that |u(t)| dt ≤ |u(t)|2 dt + T . If the function u(t) is  L2, then the right side of this 
equation is finite, so the function is also L1. 

� 
L2 functions [−T/2, T/2] → C �� L1 functions [−T/2, T/2] → C �
� Measurable functions [−T/2, T/2] → C �


Figure 4.7: Illustration showing that for functions from [−T/2, T/2] to C, the class 
of L2 functions is contained in the class of L1 functions, which in turn is contained 
in the class of measurable functions. The restriction here to a finite domain such as 
[−T/2, T/2] is necessary, as seen later. 

This completes our basic introduction to measure and Lebesgue integration over the finite in­
terval [−T/2, T/2]. The fact that the class of measurable sets is closed under complementation, 
countable unions, and countable intersections underlies the results about the measurability of 

21 L1 functions are sometimes called integrable functions. 
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functions being preserved over countable limits and sums. These in turn underlie the basic 
results about Fourier series, Fourier integrals, and orthogonal expansions. Some of those re­
sults will be stated without proof, but an understanding of measurability will let us understand 
what those results mean. Finally, ignoring sets of zero measure will simplify almost everything 
involving integration. 

4.4 The Fourier series for L2 waveforms 

The most important results about Fourier series for L2 functions are as follows: 

Theorem 4.4.1 (Fourier series). Let {u(t) : [−T/2, T/2] C} be an L2 function. Then for 
each k ∈ Z, the Lebesgue integral 

→

1 
� T/2 

ûk = u(t)e−2πikt/T dt (4.18)
T −T/2 

exists and satisfies ˆ 1 uk| ≤  |
u(t)| dt < ∞. Furthermore,
|
 T � T/2 

lim

	→∞ −T/2 

2 

u(t) − ûke 2πikt/T dt = 0, (4.19)

k=−	 

where the limit is monotonic in 
. Also, the energy equation (4.6) is satisfied.


Conversely,, if {ûk; k ∈ Z} is a two-sided sequence of complex numbers satisfying ∞ ûk
2 

k=−∞ |
 |
 <

∞, then an L2 function {u(t) : [−T/2, T/2] C} exists such that (4.6) and (4.19) are satisfied. →

The first part of the theorem is simple. Since u(t) is measurable and e−2πikt/T is measur­
able for each k, the product u(t)e−2πikt/T is measurable. Also u(t)e−2πikt/T = u(t) so that 
u(t)e−2πikt/T 

| | | |
is L1 and the integral exists with the given upper bound (see Exercise 4.17). The 

rest of the proof is in the next chapter, Section 5.3.4. 

The integral in (4.19) is the energy in the difference between u(t) and the partial Fourier series 
using only the terms −
 ≤ k ≤ 
. Thus (4.19) asserts that u(t) can be approximated arbitrarily 
closely (in terms of difference energy) by finitely many terms in its Fourier series. 

A series is defined to converge in L2 if (4.19) holds. The notation l.i.m. (limit in mean-square) 
is used to denote L2 convergence, so (4.19) is often abbreviated by 

u(t) = l.i.m. ûk e 2πikt/T rect( 
t 
T


). (4.20)

k 

The notation does not indicate that the sum in (4.20) converges pointwise to u(t) at each t; for 
example, the Fourier series in Figure 4.2 converges to 1/2 rather than 1 at the values t = ±1/4. 
In fact, any two L functions that are equal a.e. have the same Fourier series coefficients. 2 

Thus the best to be hoped for is that k ûk e
2πikt/T rect( t T ) converges pointwise and yields a


‘canonical representative’ for all the L2 functions that have the given set of Fourier coefficients, 
.{ûk; k ∈ Z}

Unfortunately, there are some rather bizarre L
ous example in Section 5A.1) for which k ûk e

2 functions (see the everywhere discontinu­
2πikt/T rect( t T ) diverges for some values of t.
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There is an important theorem due to Carleson [3], however, stating that if u(t) is  L2, then 
ûk e

2πikt/T rect( t ) converges almost everywhere on [−T/2, T/2]. Thus for any L2 functionk T 
u(t), with Fourier coefficients {ûk : k ∈ Z}, there is a well-defined function, 

∞ ûk e
2πikt/T rect(T

t ) if the sum converges 
ũ(t) =  k=−∞ (4.21)

0 otherwise. 

Since the sum above converges a.e., the Fourier coefficients of ũ(t) given by (4.18) agree with 
those in (4.21). Thus ũ(t) can serve as a canonical representative for all the L2 functions with 
the same Fourier coefficients {ûk; k ∈ Z}. From the difference-energy equation (4.7), it follows 
that the difference between any two L2 functions with the same Fourier coefficients has zero 
energy. Two L2 functions whose difference has zero energy are said to be L2 equivalent ; thus all 
L2 functions with the same Fourier coefficients are L2 equivalent. Exercise 4.18 shows that two 
L2 functions are L2 equivalent if and only if they are equal almost everywhere. 

In summary, each L2 function {u(t) : [−T/2, T/2] C} belongs to an equivalence class con­→
sisting of all L2 functions with the same set of Fourier coefficients. Each pair of functions in 
this equivalence class are L2 equivalent and equal a.e. The canonical representive in (4.21) is 
determined solely by the Fourier coefficients and is uniquely defined for any given set of Fourier 
coefficients satisfying k |ûk|2 < ∞; the corresponding equivalence class consists of the L2 

functions that are equal to ũ(t) a.e. 

From an engineering standpoint, the sequence of ever closer approximations in (4.19) is usu­
ally more relevant than the notion of an equivalence class of functions with the same Fourier 
coefficients. In fact, for physical waveforms, there is no physical test that can distinguish wave­
forms that are L2 equivalent, since any such physical test requires an energy difference. At the 
same time, if functions {u(t) : [−T/2, T/2] C} are consistently represented by their Fourier →
coefficients, then equivalence classes can usually be ignored. 

For all but the most bizarre L2 functions, the Fourier series converges everywhere to some 
function that is L2 equivalent to the original function, and thus, as with the points t = ±1/4 
in the example of Figure 4.2, it is usually unimportant how one views the function at those 
isolated points. Occasionally, however, particularly when discussing sampling and vector spaces, 
the concept of equivalence classes becomes relevant. 

4.4.1 The T-spaced truncated sinusoid expansion 

There is nothing special about the choice of 0 as the center point of a time-limited function. For 
a function {v(t) :  [∆  − T/2, ∆ +  T/2] C} centered around some arbitrary time ∆, the shifted 
Fourier series over that interval is22 

→ 

v(t) = l.i.m. 
� 

v̂k e 2πikt/T rect 
t − ∆ 

, where (4.22)
T 

k � ∆+T/2 

v̂k = 
T 
1 

∆−T/2 
v(t)e−2πikt/T dt, −∞ < k <  ∞. (4.23) 

To see this, let u(t) =  v(t + ∆). Then u(0) = v(∆) and u(t) is centered around 0 and has a 
Fourier series given by (4.20) and (4.18). Letting v̂k = ûke

−2πik∆/T yields (4.22) and (4.23). 
22Note that the Fourier relationship between the function v(t) and the sequence {vk } depends implicitly on the 

interval T and the shift ∆. 
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The results about measure and integration are not changed by this shift in the time axis. 

Next, suppose that some given function u(t) is either not time-limited or limited to some very 
large interval. An important method for source coding is first to break such a function into 
segments, say of duration T , and then to encode each segment23 separately. A segment can be 
encoded by expanding it in a Fourier series and then encoding the Fourier series coefficients. 

Most voice compression algorithms use such an approach, usually breaking the voice waveform 
into 20 msec segments. Voice compression algorithms typically use the detailed structure of 
voice rather than simply encoding the Fourier series coefficients, but the frequency structure of 
voice is certainly important in this process. Thus understanding the Fourier series approach is 
a good first step in understanding voice compression. 

The implementation of voice compression (as well as most signal processing techniques) usually 
starts with sampling at a much higher rate than the segment duration above. This sampling is 
followed by high-rate quantization of the samples, which are then processed digitally. Concep­
tually, however, it is preferable to work directly with the waveform and with expansions such 
as the Fourier series. The analog parts of the resulting algorithms can then be implemented by 
the standard techniques of high-rate sampling and digital signal processing. 

Suppose that an L2 waveform {u(t) :  R C} is segmented into segments um(t) of duration T .→
Expressing u(t) as the sum of these segments,24 � � 

t 
� 

u(t) = l.i.m. um(t), where um(t) =  u(t) rect 
T 

− m . (4.24) 
m 

Expanding each segment um(t) by the shifted Fourier series of (4.22) and (4.23): � t 
um(t) = l.i.m. ûk,m e 2πikt/T rect 

T 
− m , where (4.25) 

k 

1 
� mT +T/2 

(t) e−2πikt/T dtûk,m = um
T � mT −T/2 � � 

=
1 ∞ 

u(t) e−2πikt/T rect 
T

t − m dt. (4.26)
T −∞ 

Combining (4.24) and (4.25), � � t 
u(t) = l.i.m. ûk,m e 2πikt/T rect 

T 
− m . 

m k 

This expands u(t) as a weighted sum25 of doubly indexed functions 

u(t) = l.i.m. ûk,mθk,m(t) where θk,m(t) =  e 2πikt/T rect 
T

t − m . (4.27) 
m k 

23Any engineer, experienced or not, when asked to analyze a segment of a waveform, will automatically shift 
the time axis s that 0 is either the beginning or the center of the waveform. The added complication here simply 
arises from looking at multiple segments together so as to represent the entire waveform. 

24This sum double-counts the points at the ends of the segments, but this makes no difference in terms of L2 

convergence. Exercise 4.22 treats the convergence in (4.24) and (4.28) more carefully. 
25Exercise 4.21 shows why (4.27) (and similar later expressions) are independent of the order of the limits. 
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The functions θk,m(t) are orthogonal, since, for m =� m′, the functions θk,m(t) and θk′,m′ (t) do  
not overlap, and, for m = m′ and k =� k′, θk,m(t) and θk′,m(t) are orthogonal as before. These 
functions, {θk,m(t); k,m ∈ Z}, are called the T -spaced truncated sinusoids and the expansion in 
(4.27) is called the T -spaced truncated sinusoid expansion.


The coefficients ûk,m are indexed by k,m ∈ Z and thus form a countable set.26 This permits the

conversion of an arbitrary L2 waveform into a countably infinite sequence of complex numbers,

in the sense that the numbers can be found from the waveform, and the waveform can be

reconstructed from the sequence, at least up to L2 equivalence.


The l.i.m. notation in (4.27) denotes L2 convergence; i.e.,


2 n 	

u(t) − ûk,mθk,m(t)
∞

lim
 dt = 0. (4.28)

n,	→∞ −∞ m=−n k=−	 

This shows that any given u(t) can be approximated arbitrarily closely by a finite set of co­
efficients. In particular, each segment can be approximated by a finite set of coefficients, and 
a finite set of segments approximates the entire waveform (although the required number of 
segments and coefficients per segment clearly depend on the particular waveform). 

For data compression, a waveform u(t) represented by the coefficients {ûk,m; k,m ∈ Z} can 
be compressed by quantizing each ûk,m into a representative v̂k,m. The energy equation (4.6) 
and the difference-energy equation (4.7) generalize easily to the T -spaced truncated sinusoid 
expansion as 

∞ ∞∞ 

u(t) 2 dt 2 ûk,m (4.29)
= T
|
 |
 |
 |
 ,

−∞ m=−∞ k=−∞� ∞ 

−∞ 
|u(t) − v(t)|2 dt = T 

∞ ∞
|ûk,m − v̂k,m|2 . (4.30) 

k=−∞ m=−∞ 

As in Section 4.2.1, a finite set of coefficients should be chosen for compression and the remaining 
coefficients should be set to 0. The problem of compression (given this expansion) is then to 
decide how many coefficients to compress, and how many bits to use for each selected coefficient. 
This of course requires a probabilistic model for the coefficients; this issue is discussed later. 

There is a practical problem with the use of T -spaced truncated sinusoids as an expansion to be 
used in data compression. The boundaries of the segments usually act like step discontinuities (as 
in Figure 4.3) and this leads to slow convergence over the Fourier coefficients for each segment. 
These discontinuities could be removed prior to taking a Fourier series, but the current objective 
is simply to illustrate one general approach for converting arbitrary L2 waveforms to sequences 
of numbers. Before considering other expansions, it is important to look at Fourier transforms. 

4.5 Fourier transforms and L2 waveforms 

The T -spaced truncated sinusoid expansion corresponds closely to our physical notion of fre­
quency. For example, musical notes correspond to particular frequencies (and their harmonics), 

26Example 4A.2 in Section 4A.1 explains why the doubly indexed set above is countable. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



� 

� 

106 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS 

but these notes persist for finite durations and then change to notes at other frequencies. How­
ever, the parameter T in the T -spaced expansion is arbitrary, and quantizing frequencies in 
increments of 1/T is awkward. 

The Fourier transform avoids the need for segmentation into T -spaced intervals, but also removes 
the capability of looking at frequencies that change in time. It maps a function of time, {u(t) :  
R C} into a function of frequency,27 {û(f) :  R C}. The inverse Fourier transform maps → → 
û(f) back into u(t), essentially making û(f) an alternative representation of u(t). 

The Fourier transform and its inverse are defined by 

û(f) =  
∞ 

u(t)e−2πift dt. (4.31) �−∞ 

u(t) =  
∞ 

û(f)e 2πift df. (4.32) 
−∞ 

The time units are seconds and the frequency units Hertz (Hz), i.e., cycles per second. 

For now we take the conventional engineering viewpoint that any respectable function u(t) has 
a Fourier transform û(f) given by (4.31), and that u(t) can be retrieved from û(f) by (4.32). 
This will shortly be done more carefully for L2 waveforms. 

The following table reviews a few standard Fourier transform relations. In the table, u(t) and 
û(f) denote a Fourier transform pair, written u(t) û(f) and similarly v(t) v̂(f).↔ ↔ 

au(t) +  bv(t) aû(f) +  bv̂(f) linearity (4.33)↔ 

u∗(−t) ↔ û∗(f) conjugation (4.34) 
û(t) ↔ u(−f) time/frequency duality (4.35) 

u(t − τ ) e−2πifτ û(f) time shift (4.36)↔ 

u(t) e 2πif0t ↔ û(f − f0) frequency shift (4.37) 
u(t/T ) T û(fT  ) scaling (for T >  0) (4.38)↔ 

du(t)/dt 2πif û(f) differentiation (4.39)� ↔
∞ 

u(τ)v(t − τ) dτ ↔ û(f)v̂(f) convolution (4.40) � −∞

∞


u(τ)v∗(τ − t) dτ ↔ û(f)v̂∗(f) correlation (4.41) 
−∞ 

These relations will be used extensively in what follows. Time-frequency duality is particularly 
important, since it permits the translation of results about Fourier transforms to inverse Fourier 
transforms and vice versa. 

Exercise 4.23 reviews the convolution relation (4.40). Equation (4.41) results from conjugating 
v̂(f) in (4.40). 

Two useful special cases of any Fourier transform pair are: 
∞ 

u(0) = û(f) df ; (4.42) �−∞
∞ 

û(0) = u(t) dt. (4.43) 
−∞ 

27The notation û(f), rather the more usual U(f), is used here since capitalization is used to distinguish random 
variables from sample values. Later, {U(t) :  R C}will be used to denote a random process, where, for each t,→
U(t) is a random variable. 
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These are useful in checking multiplicative constants. Also Parseval’s theorem results from 
applying (4.42) to (4.41): 

∞	 ∞ 

u(t)v∗(t) dt = û(f)v̂∗(f) df.	 (4.44) 
−∞ −∞ 

As a corollary, replacing v(t) by  u(t) in (4.44) results in the energy equation for Fourier trans­
forms, namely 

∞ 

|u(t)|2 dt = 
∞ 

|û(f)|2 df.	 (4.45) 
−∞ −∞ 

The magnitude squared of the frequency function, |û(f)|2, is called the spectral density of u(t). 
It is the energy per unit frequency (for positive and negative frequencies) in the waveform. 
The energy equation then says that energy can be calculated by integrating over either time or 
frequency. 

As another corollary of (4.44), note that if u(t) and v(t) are orthogonal, then û(f) and v̂(f) are 
orthogonal; i.e., 

∞	 ∞ 

u(t)v∗(t) dt = 0 if and only if û(f)v̂∗(f) df = 0. (4.46) 
−∞ −∞ 

The following table gives a short set of useful and familiar transform pairs: 

sinc(t) =  
sin(πt) 

rect(f) =  
1 for |f | ≤ 1/2	

(4.47)
πt 

↔ 
0 for |f | > 1/2 

e−πt2 e−πf2	
(4.48)↔ 

1 
e−at; t ≥ 0 for a >  0	 (4.49)↔	

a + 2πif 
2a 

e−a|t| ↔ 
a2 + (2πif)2 

for a >  0	 (4.50) 

The above table, in conjunction with the relations above, yields a large set of transform pairs. 
Much more extensive tables are widely available. 

4.5.1 Measure and integration over R 

A set A ⊆ R is defined to be measurable if A ∩ [−T/2, T/2] is measurable for all T >  0. The 
definitions of measurability and measure in section 4.3.2 were given in terms of an overall interval 
[−T/2, T/2], but Exercise 4.14 verifies that those definitions are in fact independent of T . That 
is, if D ⊆ [−T/2, T/2], is measurable relative to [−T/2, T/2], then D is measurable relative to 
[−T1/2, T1/2] for each T1 > T  and µ(D) is the same relative to each of those intervals. Thus 
measure is defined unambiguously for all sets of bounded duration. 

For an arbitrary measurable set A ∈ R, the measure of A is defined to be 

µ(A) = lim µ(A ∩ [−T/2, T/2]).	 (4.51)
T →∞ 

Since A∩ [−T/2, T/2] is increasing in T , the subset inequality says that µ(A∩ [−T/2, T/2]) is 
also increasing, so the limit in (4.51) must exist as either a finite or infinite value. For example, 
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if A is taken to be R itself, then µ(R ∩ [−T/2, T/2]) = T and µ(R) =  ∞. The possibility 
for measurable sets to have infinite measure is the primary difference between measure over 
[−T/2, T/2] and R. 28 

Theorem 4.3.1 carries over without change to sets defined over R. Thus the collection of measur­
able sets over R is closed under countable unions and intersections. The measure of a measurable 
set might be infinite in this case, and if a set has finite measure, then its complement (over R) 
must have infinite measure. 

A real function {u(t) :  R R} is measurable if the set {t : u(t) ≤ β} is measurable for each 
β ∈ R. Equivalently, {u(t) :

→
R R} is measurable if and only if u(t)rect(t/T ) is measurable for 

all T >  0. A complex function 
→
{u(t) :  R C} is measurable if the real and imaginary parts of 

u(t) are measurable. 
→

If {u(t) :  R R} is measurable and nonnegative, there are two approaches to its Lebesgue →
integral. The first is to use (4.14) directly and the other is to first evaluate the integral over 
[−T/2, T/2] and then go to the limit T → ∞. Both approaches give the same result.29 

For measurable real functions {u(t) :  R R} that take on both positive and negative values, →
the same approach as in the finite duration case is successful. That is, let u+(t) and u−(t) be the 
positive and negative parts of u(t) respectively. If at most one of these has an infinite integral, 
the integral of u(t) is defined and has the value 

u(t) dt = u +(t) dt − u−(t) dt. 

Finally, a complex function {u(t) :  R C} is defined to be measurable if the real and imaginary →
parts of u(t) are measurable. If the integral of �(u(t)) and that of �(u(t)) are defined, then 

u(t) dt = �(u(t)) dt + i �(u(t)) dt. (4.52) 

A function {u(t) :  R C} is said to be in the class L1 if u(t) is measurable and the Lebesgue →
integral of |u(t)| is finite. As with integration over a finite interval, an L1 function has real and 
imaginary parts both of which are L1. Also the positive and negative parts of those real and 
imaginary parts have finite integrals. 

Example 4.5.1. The sinc function, sinc(t) = sin(πt)/πt is sketched below and provides an 
interesting example of these definitions. Since sinc(t) approaches 0 with increasing t only as 1/t, 
the Riemann integral of |sinc(t)| is infinite, and with a little thought it can be seen that the 
Lebesgue integral is also infinite. Thus sinc(t) is not an L1 function. In a similar way, sinc+(t) 
and sinc−(t) have infinite integrals and thus the Lebesgue integral of sinc(t) over (−∞, ∞) is  
undefined. 

The Riemann integral in this case is said to be improper, but can still be calculated by integrating 
from −A to +A and then taking the limit A → ∞. The result of this integration is 1, which 
is most easily found through the Fourier relationship (4.47) combined with (4.43). Thus, in 
a sense, the sinc function is an example where the Riemann integral exists but the Lebesgue 
integral does not. In a deeper sense, however, the issue is simply one of definitions; one can 

28In fact, it was the restriction to finite measure that permitted the simple definition of measurability in terms 
of sets and their complements in Subsection 4.3.2. 

29As explained shortly in the sinc function example, this is not necessarily true for functions taking on positive 
and negative values. 
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1 

sinc(t) 

0 1 2 3−2 −1 

Figure 4.8: The function sinc(t) goes to 0 as 1/t with increasing t 

always use Lebesgue integration over [−A, A] and go to the limit A → ∞, getting the same 
answer as the Riemann integral provides. 

A function {u(t) :  R C} is said to be in the class L2 if u(t) is measurable and the Lebesgue →
integral of |u(t)|2 is finite. All source and channel waveforms will be assumed to be L2. As  
pointed out earlier, any L2 function of finite duration is also L1. L2 functions of infinite duration, 
however, need not be L1; the sinc function is a good example. Since sinc(t) decays as 1/t, it is  
not L1. However, |sinc(t)|2 decays as 1/t2 as t → ∞, so the integral is finite and sinc(t) is an  
L2 function. 

In summary, measure and integration over R can be treated in essentially the same way as over 
[−T/2, T/2]. The point sets and functions of interest can be truncated to [−T/2, T/2] with a 
subsequent passage to the limit T → ∞. As will be seen, however, this requires some care with 
functions that are not L1. 

4.5.2 Fourier transforms of L2 functions 

The Fourier transform does not exist for all functions, and when the Fourier transform does exist, 
there is not necessarily an inverse Fourier transform. This section first discusses L1 functions 
and then L2 functions. A major result is that L1 functions always have well-defined Fourier 
transforms, but the inverse transform does not always have very nice properties. L2 functions 
also always have Fourier transforms, but only in the sense of L2 equivalence. Here however, the 
inverse transform also exists in the sense of L2 equivalence. We are primarily interested in L2 

functions, but the results about L1 functions will help in understanding the L2 transform. 

Lemma 4.5.1. Let {u(t) :  R C} be L1. Then û(f) =  ∞
u(t)e−2πift dt both exists and 

satisfies ˆ u(t) dt for each f ∈ R. Furthermore, {û(f) :  R C} is a continuous |u(f)| ≤  
� 
| |

→ −∞ 
→

function of f . 

Proof: Note that |u(t)e−2πift| = |u(t)| for all real t and f . Thus  u(t)e−2πift is L1 for each f 
and the integral exists and satisfies the given bound. This is the same as the argument about 
Fourier series coefficients in Theorem 4.4.1. The continuity follows from a simple ε/δ argument 
(see Exercise 4.24). 

As an example, the function u(t) = rect(t) is  L1 and its Fourier transform, defined at each f , is  
the continuous function sinc(f). As discussed before, sinc(f) is not  L1. The inverse transform 
of sinc(f) exists at all t, equaling rect(t) except at t = ±1/2, where it has the value 1/2. Lemma 
4.5.1 also applies to inverse transforms and verifies that sinc(f) can not be L1, since its inverse 
transform is discontinuous. 
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Next consider L2 functions. It will be seen that the pointwise Fourier transform u(t)e−2πift dt 
does not necessarily exist at each f , but that it does exist as an L2 limit. In exchange for this 
added complexity, however, the inverse transform exists in exactly the same sense. This result is 
called Plancherel’s theorem and has a nice interpretation in terms of approximations over finite 
time and frequency intervals. 

For any L2 function {u(t) :  R C} and any positive number A, define ûA(f) as the Fourier 
transform of the truncation of u

→
(t) to [−A, A]; i.e., � A 

ûA(f) =  u(t)e−2πift dt. (4.53) 
−A 

The function u(t)rect( t ) has finite duration and is thus L1. It follows that ûA(f) is continuous 2A 
and exists for all f by the above lemma. One would normally expect to take the limit in (4.53) 
as A → ∞ to get the Fourier transform û(f), but this limit does not necessarily exist for each 
f . Plancherel’s theorem, however, asserts that this limit exists in the L2 sense. This theorem is 
proved in Section 5A.1. 

Theorem 4.5.1 (Plancherel, part 1). For any L2 function {u(t) :  R C}, an  L2 function 
{û(f) :  R C} exists satisfying both 

→
→

∞ 
2lim |û(f) − ûA(f)| df = 0 (4.54) 

A→∞ −∞ 

and the energy equation, (4.45). 

This not only guarantees the existence of a Fourier transform (up to L2 equivalence), but also 
guarantees that it is arbitrarily closely approximated (in difference energy) by the continuous 
Fourier transforms of the truncated versions of u(t). Intuitively what is happening here is that 
L2 functions must have an arbitrarily large fraction of their energy within sufficiently large 
truncated limits; the part of the function outside of these limits cannot significantly affect the 
L2 convergence of the Fourier transform. 

The inverse transform is treated very similarly. For any L2 function {û(f) :  R C} and any 
B, 0<B<∞, define 

→

� B 

uB(t) =  û(f)e 2πift df. (4.55) 
−B 

As before, uB(t) is a continuous L2 function for all B, 0<B<∞. The final part of Plancherel’s 
theorem is then: 

Theorem 4.5.2 (Plancherel, part 2). For any L2 function {u(t) :  R C} let {û(f) :  R→ →
C} be the Fourier transform of Theorem 4.5.1 and let uB(t) satisfy (4.55). Then 

lim 
∞ 

|u(t) − uB(t)| 2 dt = 0. (4.56) 
B→∞ −∞ 

The interpretation is similar to the first part of the theorem. Specifically the inverse transforms 
of finite frequency truncations of the transform are continuous and converge to an L2 limit as 
B → ∞. It also says that this L2 limit is equivalent to the original function u(t). 
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Using the limit in mean-square notation, both parts of the Plancherel theorem can be expressed 
by stating that every L2 function u (t ) has a Fourier transform û (f ) satisfying � A � B 

û(f ) =  l. i. m. u (t )e −2πift dt ; u (t ) =  l. i. m. û(f )e 2πift df ; 
A→∞ −A B→∞ −B 

i.e., the inverse Fourier transform of û (f ) is  L2 equivalent to u (t ). The first integral above 
converges pointwise if u (t ) is also L1, and in this case converges pointwise to a continuous 
function û (f ). If u (t ) is not  L1, then the first integral need not converge pointwise. The second 
integral behaves in the analogous way. 

It may help in understanding the Plancherel theorem to interpret it in terms of finding Fourier 
transforms using Riemann integration. Riemann integration over an infinite region is defined as 
a limit over finite regions. Thus the Riemann version of the Fourier transform is shorthand for � A 

û(f ) = lim u (t )e −2πift dt = lim ûA(f ). (4.57) 
A→∞ −A A→∞ 

Thus the Plancherel theorem can be viewed as replacing the Riemann integral with a Lebesgue 
integral and replacing the pointwise limit (if it exists) in (4.57) with L2 convergence. The Fourier 
transform over the finite limits −A to A is continuous and well-behaved, so the major difference 
comes in using L2 convergence as A → ∞. 

As an example of the Plancherel theorem, let u (t ) = rect(t ). Then û A(f ) = sinc(f ) for all 
A ≥ 1/ 2, so û (f ) = sinc(f ). For the inverse transform, u B(t ) =  

� 
−
B
B sinc(f ) df is messy to 

compute but can be seen to approach rect(t ) as  B → ∞ except at t = ±1/ 2, where it equals 
1/2. At t = ±1/ 2, the inverse transform is 1/2, whereas u (t ) = 1.  

As another example, consider the function u (t ) where u (t ) = 1 for rational values of t ∈ [0, 1] and 
u (t ) = 0 otherwise. Since this is 0 a.e, the Fourier transform û (f ) is 0 for all f and the inverse 
transform is 0, which is L2 equivalent to u (t ). Finally, Example 5A.1 in Section 5A.1 illustrates 
a bizarre L1 function g (t ) that is everywhere discontinuous. Its transform ĝ (f ) is bounded 
and continuous by Lemma 4.5.1, but is not L1. The inverse transform is again discontinuous 
everywhere in (0, 1) and unbounded over every subinterval. This example makes clear why the 
inverse transform of a continuous function of frequency might be bizarre, thus reinforcing our 
focus on L2 functions rather than a more conventional focus on notions such as continuity. 

In what follows, L2 convergence, as in the Plancherel theorem, will be seen as increasingly 
friendly and natural. Regarding two functions whose difference has 0 energy as being the same 
(formally, as L2 equivalent) allows us to avoid many trivialities, such as how to define a discon­
tinuous function at its discontinuities. In this case, engineering common-sense and sophisticated 
mathematics arrive at the same conclusion. 

Finally, it can be shown that all the Fourier transform relations in (4.33) to (4.41) except 
differentiation hold for all L2 functions (see Exercises 4.26 and 5.15). The derivative of an L2 

function need not be L2, and need not have a well-defined Fourier transform. 

4.6 The DTFT and the sampling theorem 

The discrete-time Fourier transform (DTFT) is the time/frequency dual of the Fourier series. 
It will be shown that the DTFT leads immediately to the sampling theorem. 
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4.6.1 The discrete-time Fourier transform 

Let û (f ) be an  L2 function of frequency, nonzero only for −W ≤ f ≤ W. The DTFT of û (f ) 
over [−W, W] is then defined by 

u ke −2πikf/(2W)rect 
f 

û(f ) = l. i. m.
 , (4.58)

2W


k 

where the DTFT coefficients {u k; k ∈ Z} are given by 

1 
� W 

u k = û(f )e 2πikf/(2W) df. (4.59)
2W −W 

These are the same as the Fourier series equations, replacing t by f , T by 2W, and e 2πi by··· 

e −2πi···. Note that û (f ) has an inverse Fourier transform u (t ) which is thus baseband-limited to 
[−W, W]. As will be shown shortly, the sampling theorem relates the samples of this baseband 
waveform to the coefficients in (4.59). 

The Fourier series theorem (Theorem 4.4.1) clearly applies to (4.58)-(4.59) with the above no­
tational changes; it is repeated here for convenience. 

Theorem 4.6.1 (DTFT). Let {û(f ) : [−W, W] 
the Lebesgue integral (4.59) exists and satisfies 

C} be an L
1 û(f )

2 function. Then for each k ∈ Z, 
df < ∞. Furthermore, 

→

|u k| ≤  |
 |
2W 

2� W 

u k e −2πikf/(2W)lim

	→∞ −W 

û(f ) −
 df = 0, and (4.60)

k=−	 

� W ∞
|û(f )| 2 df = 2W |u k|2 . (4.61) 

−W k=−∞ 

|u k|2 < ∞, then an L
2Finally, if {u k, k  ∈Z} is a sequence of complex numbers satisfying k 
function {û(f ) : [−W, W] C} exists satisfying (4.60) and (4.61). →

As before, (4.58) is shorthand for (4.60). Again, this says that any desired approximation 
accuracy, in terms of energy, can be achieved by using enough terms in the series. 

Both the Fourier series and the DTFT provide a one-to-one transformation (in the sense of L2 

convergence) between a function and a sequence of complex numbers. In the case of the Fourier 
series, one usually starts with a function u (t ) and uses the sequence of coefficients to represent 
the function (up to L2 equivalence). In the case of the DTFT, one often starts with the sequence 
and uses the frequency function to represent the sequence. Since the transformation goes both 
ways, however, one can view the function and the sequence as equally fundamental. 

4.6.2 The sampling theorem 

The DTFT is next used to establish the sampling theorem, which in turn will help interpret the 
DTFT. The DTFT (4.58) expresses û (f ) as a weighted sum of truncated sinusoids in frequency, 

û(f ) = l. i. m.
 u kφ̂k(f ), where φ̂k(f ) =  e −2πikf/(2W)rect( 
f 

2W

). (4.62)


k 
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4.6. THE DTFT AND THE SAMPLING THEOREM 113 

Ignoring any questions of convergence for the time being, the inverse Fourier transform of û (f ) 
is then given by u (t ) =  

� 
k u kφ k(t ), where φ k(t ) is the inverse transform of φ̂k(f ). Since the 

inverse transform30 of rect( 2
f 
W) is 2Wsinc(2Wt ), the time-shift relation implies that the inverse 

transform of φ̂k(f ) is  

φ k(t ) = 2Wsinc(2Wt − k ) φ̂k(f ) =  e −2πikf/(2W)rect( 
f 

). (4.63)↔ 
2W

Thus u (t ), the inverse transform of û (f ), is given by 

∞ ∞
u (t ) =  u kφ k(t ) =  2Wu k sinc(2Wt − k ). (4.64) 

k=−∞ k=−∞ 

Since the set of truncated sinusoids {φ̂k; k ∈ Z} are orthogonal, the sinc functions {φ k; k ∈ Z}
are also orthogonal from (4.46). 

1 

sinc(t ) sinc(t − 1) 

0 1 2−2 −1 

Figure 4.9: Sketch of sinc(t ) =  sin(πt) and sinc(t − 1). Note that these spaced sinc πt 
functions are orthogonal to each other. 

Note that sinc(t ) equals 1 for t = 0 and 0 for all other integer t . Thus if (4.64) is evaluated for 
t = 2

k 
W , the result is that u (2

k 
W) = 2Wu k for all integer k . Substituting this into (4.64) results 

in the equation known as the sampling equation, 

∞
k 

u (t ) =  u ( ) sinc(2Wt − k ).
2W

k=−∞ 

This says that a baseband-limited function is specified by its samples at intervals T = 1/ (2W). 
In terms of this sample interval, the sampling equation is 

∞
t 

u (t ) =  u (kT ) sinc( − k ). (4.65)
T 

k=−∞ 

The following theorem makes this precise. See Section 5A.2 for an insightful proof. 

Theorem 4.6.2 (Sampling theorem). Let {u (t ) :  R C} be a continuous L2 function→
baseband-limited to W. Then (4.65) specifies u (t ) in terms of its T -spaced samples with 
T = 1 . The sum in (4.65) converges to u (t ) for each t ∈ R and u (t ) is bounded at each t2W

by û(f ) df .|u (t )| ≤ 
� 
−
W
W | | < ∞

The following example illustrates why u (t ) is assumed to be continuous above. 

30This is the time/frequency dual of (4.47). û(f) = rect( f ) is both L1 and L2; u(t) is continuous and L2 but
2W 

not L1. From the Plancherel theorem, the transform of u(t), in the L2 sense, is û(f ). 
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Example 4.6.1 (A discontinuous baseband function). Let u(t) be a continuous L2 base­
band function limited to |f | ≤ 1/2. Let v(t) satisfy v(t) =  u(t) for all noninteger t and 
v(t) =  u(t) + 1 for all integer t. Then u(t) and v(t) are L2 equivalent, but their samples at 
each integer time differ by 1. Their Fourier transforms are the same, say û(f), since the differ­
ences at isolated points have no effect on the transform. Since û(f) is nonzero only in [−W, W], 
it is L1. According to the time/frequency dual of Lemma 4.5.1, the point-wise inverse Fourier 
transform of û(f) is a continuous function, say u(t). Out of all the L2 equivalent waveforms that 
have the transform û(f), only u(t) is continuous, and it is that u(t) that satisfies the sampling 
theorem. 

The function v(t) is equal to u(t) except for the isolated discontinuities at each integer point. 
One could view v(t) as baseband-limited also, but v(t) is clearly not physically meaningful and 
is not the continuous function of the theorem. 

The above example illustrates an ambiguity about the meaning of baseband-limited functions. 
One reasonable definition is that an L2 function u(t) is baseband-limited to W if û(f) is 0  
for |f | > W. Another reasonable definition is that u(t) is baseband-limited to W if u(t) is  
the pointwise inverse Fourier transform of a function û(f) that is 0 for |f | > W. For a given 
û(f), there is a unique u(t) according to the second definition and it is continuous; all the 
functions that are L2 equivalent to u(t) are bandlimited by the first definition, and all but u(t) 
are discontinuous and potentially violate the sampling equation. Clearly the second definition 
is preferable on both engineering and mathematical grounds. 

Definition: An L2 function is baseband-limited to W if it is the pointwise inverse transform 
of an L2 function û(f) that is 0 for |f | > W. Equivalently, it is baseband-limited to W if it is 
continuous and its Fourier transform is 0 for f > 0.| |
The DTFT can now be further interpreted. Any baseband-limited L2 function {û(f) :  
[−W, W] C} has both an inverse Fourier transform u(t) =  û(f)e2πift df and a DTFT →
sequence given by (4.58). The coefficients uk of the DTFT are the scaled samples, Tu(kT ), of 
u(t), where T = 2

1 
W . Put in a slightly different way, the DTFT in (4.58) is the Fourier transform 

of the sampling equation (4.65) with u(kT ) =  uk/T . 31 

It is somewhat surprising that the sampling theorem holds with pointwise convergence, whereas 
its transform, the DTFT, holds only in the L2 equivalence sense. The reason is that the function 
û(f) in the DTFT is L1 but not necessarily continuous, whereas its inverse transform u(t) is  
necessarily continuous but not necessarily L1. 

The set of functions {φ̂k(f); k ∈ Z} in (4.63) is an orthogonal set, since the interval [−W, W] 
contains an integer number of cycles from each sinusoid. Thus, from (4.46), the set of sinc 
functions in the sampling equation is also orthogonal. Thus both the DTFT and the sampling 
theorem expansion are orthogonal expansions. It follows (as will be shown carefully later) that 
the energy equation, 

∞ ∞
2 |u(t)|2 dt = T |u(kT )| , (4.66) 

−∞ k=−∞ 

holds for any continuous L2 function u(t) baseband-limited to [−W, W] with T = 1 .2W

31Note that the DTFT is the time/frequency dual of the Fourier series but is the Fourier transform of the 
sampling equation. 
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In terms of source coding, the sampling theorem says that any L2 function u(t) that is baseband-
limited to W can be sampled at rate 2W (i.e., at intervals T = 2

1 
W) and the samples can later 

be used to perfectly reconstruct the function. This is slightly different from the channel coding 
situation where a sequence of signal values are mapped into a function from which the signals 
can later be reconstructed. The sampling theorem shows that any L2 baseband-limited function 
can be represented by its samples. The following theorem, proved in Section 5A.2, covers the 
channel coding variation: 

Theorem 4.6.3 (Sampling theorem for transmission). Let {ak; k∈Z} be an arbitrary se­
quence of complex numbers satisfying k |ak|2 < ∞. Then k ak sinc(2Wt − k) converges 
pointwise to a continuous bounded L2 function {u(t) :  R C} that is baseband-limited to W 
and satisfies ak = u(2

k 
W) for each k. 

→ 

4.6.3 Source coding using sampled waveforms 

The introduction and Figure 4.1 discuss the sampling of an analog waveform u(t) and quantizing 
the samples as the first two steps in analog source coding. Section 4.2 discusses an alternative in 
which successive segments {um(t)} of the source are each expanded in a Fourier series, and then 
the Fourier series coefficients are quantized. In this latter case, the received segments {vm(t)}
are reconstructed from the quantized coefficients. The energy in um(t) − vm(t) is given in (4.7) 
as a scaled version of the sum of the squared coefficient differences. This section treats the 
analogous relationship when quantizing the samples of a baseband-limited waveform. 

For a continuous function u(t), baseband-limited to W, the samples {u(kT ); k ∈ Z} at intervals 
T = 1/(2W) specify the function. If u(kT ) is quantized to v(kT ) for each k, and u(t) is  
reconstructed as v(t) =  k v(kT ) sinc( t − k), then, from (4.66), the mean-squared error is T 
given by 

∞ 

|u(t) − v(t)|2 dt = T 
∞

|u(kT ) − v(kT )|2 . (4.67) 
−∞ k=−∞ 

Thus whatever quantization scheme is used to minimize the mean-squared error between a 
sequence of samples, that same strategy serves to minimize the mean-squared error between the 
corresponding waveforms. 

The results in Chapter 3 regarding mean-squared distortion for uniform vector quantizers give 
the distortion at any given bit rate per sample as a linear function of the mean-squared value of 
the source samples. If any sample has an infinite mean-squared value, then either the quantiza­
tion rate is infinite or the mean-squared distortion is infinite. This same result then carries over 
to waveforms. This starts to show why the restriction to L2 source waveforms is important. It 
also starts to show why general results about L2 waveforms are important. 

The sampling theorem tells the story for sampling baseband-limited waveforms. However, physi­
cal source waveforms are not perfectly limited to some frequency W; rather, their spectra usually 
drop off rapidly above some nominal frequency W. For example, audio spectra start dropping 
off well before the nominal cutoff frequency of 4 kHz, but often have small amounts of energy 
up to 20 kHz. Then the samples at rate 2W do not quite specify the waveform, which leads to 
an additional source of error, called aliasing. Aliasing will be discussed more fully in the next 
two subsections. 
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There is another unfortunate issue with the sampling theorem. The sinc function is nonzero 
over all noninteger times. Recreating the waveform at the receiver32 from a set of samples 
thus requires infinite delay. Practically, of course, sinc functions can be truncated, but the 
sinc waveform decays to zero as 1/t, which is impractically slow. Thus the clean result of the 
sampling theorem is not quite as practical as it first appears. 

4.6.4 The sampling theorem for [∆ − W, ∆ +  W] 

Just as the Fourier series generalizes to time intervals centered at some arbitrary time ∆, the 
DTFT generalizes to frequency intervals centered at some arbitrary frequency ∆. 

Consider an L2 frequency function {v̂(f) : [∆−W, ∆+W] C}. The shifted DTFT for v̂(f) is  →
then 

v̂(f) = l.i.m. 
� 

vke
−2πikf/(2W) rect 

f−∆ 
where (4.68)

2W 
k 

1 
� ∆+W 

vk = v̂(f)e 2πikf/(2W) df. (4.69)
2W ∆−W 

Equation (4.68) is an orthogonal expansion, 

v̂(f) = l.i.m. 
� 

vk ̂θk(f) where θ̂k(f) =  e−2πikf/(2W) rect 
� 

f−∆ 
2W 

� 
. 

k 

The inverse Fourier transform of θ̂k(f) can be calculated by shifting and scaling to be 

k 
θk(t) = 2W sinc(2Wt − k) e 2πi∆(t− 

2W 
) ↔ θ̂k(f) =  e−2πikf/(2W) rect 

f

2
−
W 

∆ 
. (4.70) 

Let v(t) be the inverse Fourier transform of v̂(f). 

v(t) =  vkθk(t) =  2Wvk sinc(2Wt − k) e 2πi∆(t− 
2
k 
W 

). 
k k 

For t = 2
k 
W , only the kth term above is nonzero, and v(2

k 
W) = 2Wvk. This generalizes the 

sampling equation to the frequency band [∆−W, ∆+W], � k k 
v(t) =  v( ) sinc(2Wt − k) e 2πi∆(t− 

2W 
).

2W
k 

Defining the sampling interval T = 1/(2W) as before, this becomes � t 
v(t) =  v(kT ) sinc( 

T 
− k) e 2πi∆(t−kT ). (4.71) 

k 

Theorems 4.6.2 and 4.6.3 apply to this more general case. That is, with v(t) =� ∆+W 
v̂(f)e2πift df , the function v(t) is bounded and continuous and the series in (4.71) con­∆−W � 

verges for all t. Similarly, if k |v(kT )|2 < ∞, there is a unique continuous L2 function 
{v(t) :  [∆−W, ∆+W] C}, W = 1/(2T ) with those sample values. → 

32Recall that the receiver time reference is delayed from that at the source by some constant τ . Thus  v(t), 
the receiver estimate of the source waveform u(t) at source time t, is recreated at source time t + τ . With the 
sampling equation, even if the sinc function is approximated, τ is impractically large. 
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4.7 Aliasing and the sinc-weighted sinusoid expansion 

In this section an orthogonal expansion for arbitrary L2 functions called the T -spaced sinc­
weighted sinusoid expansion is developed. This expansion is very similar to the T -spaced trun­
cated sinusoid expansion discussed earlier, except that its set of orthogonal waveforms consist of 
time and frequency shifts of a sinc function rather than a rectangular function. This expansion 
is then used to discuss the important concept of degrees of freedom. Finally this same expansion 
is used to develop the concept of aliasing. This will help in understanding sampling for functions 
that are only approximately frequency-limited. 

4.7.1 The T -spaced sinc-weighted sinusoid expansion 

Let u(t) ↔ û(f) be an arbitrary L2 transform pair, and segment û(f) into intervals33 of width 
2W. Thus  � f 

û(f) = l.i.m. v̂m(f), where v̂m(f) = û(f) rect( 
2W 

− m). 
m 

Note that v̂0(f) is non-zero only in [−W, W] and thus corresponds to an L2 function v0(t) 
baseband-limited to W. More generally, for arbitrary integer m, v̂m(f) is non-zero only in 
[∆−W, ∆+W] for ∆ = 2Wm. From (4.71), the inverse transform with T = 1 satisfies2W � t 2πi(m )(t−kT )vm(t) =  vm(kT ) sinc( 

T 
− k) e T 

k 

= vm(kT ) sinc( 
T

t − k) e 2πimt/T . (4.72) 
k 

Combining all of these frequency segments, 

u(t) = l.i.m. vm(t) = l.i.m. vm(kT ) sinc( 
T

t − k) e 2πimt/T . (4.73) 
m m,k 

This converges in L2, but does not not necessarily converge pointwise because of the infinite 
summation over m. It expresses an arbitrary L2 function u(t) in terms of the samples of each 
frequency slice, vm(t), of u(t). 

This is an orthogonal expansion in the doubly indexed set of functions 

t {ψm,k(t) = sinc( 
T 

− k)e 2πimt/T ; m, k ∈ Z}. (4.74) 

These are the time and frequency shifts of the basic function ψ0,0(t) = sinc( T
t ). The time shifts 

are in multiples of T and the frequency shifts are in multiples of 1/T . This set of orthogonal 
functions is called the set of T -spaced sinc-weighted sinusoids. 

The T -spaced sinc-weighted sinusoids and the T -spaced truncated sinusoids are quite similar. 
Each function in the first set is a time and frequency translate of sinc( T

t ). Each function in 
the second set is a time and frequency translate of rect( T

t ). Both sets are made up of functions 
separated by multiples of T in time and 1/T in frequency. 

33The boundary points between frequency segments can be ignored, as in the case for time segments. 
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4.7.2 Degrees of freedom 

An important rule of thumb used by communication engineers is that the class of real functions 
that are approximately baseband-limited to W0 and approximately time-limited to [−T0/2, T0/2] 
have about 2T0W0 real degrees of freedom if T0 

W0 >> 1. This means that any function within that class can be specified approximately by 
specifying about 2T0W0 real numbers as coefficients in an orthogonal expansion. The same rule 
is valid for complex functions in terms of complex degrees of freedom. 

This somewhat vague statement is difficult to state precisely, since time-limited functions cannot 
be frequency-limited and vice-versa. However, the concept is too important to ignore simply 
because of lack of precision. Thus several examples are given. 

First, consider applying the sampling theorem to real (complex) functions u(t) that are strictly 
baseband-limited to W0. Then u(t) is specified by its real (complex) samples at rate 2W0. If the 
samples are nonzero only within the interval [−T0/2, T0/2], then there are about 2T0W0 nonzero 
samples, and these specify u(t) within this class. Here a precise class of functions have been 
specified, but functions that are zero outside of an interval have been replaced with functions 
whose samples are zero outside of the interval. 

Second, consider complex functions u(t) that are again strictly baseband-limited to W0, but now 
apply the sinc-weighted sinusoid expansion with W = W0/(2n + 1) for some positive integer n. 
That is, the band [−W0, W0] is split into 2n + 1 slices and each slice is expanded in a sampling-
theorem expansion. Each slice is specified by samples at rate 2W, so all slices are specified 
collectively by samples at an aggregate rate 2W0 as before. If the samples are nonzero only 
within [−T0/2, T0/2], then there are about34 2T0W0 nonzero complex samples that specify any 
u(t) in this class. 

If the functions in this class are further constrained to be real, then the coefficients for the 
central frequency slice are real and the negative slices are specified by the positive slices. Thus 
each real function in this class is specified by about 2T0W0 real numbers. 

This class of functions is slightly different for each choice of n, since the detailed interpretation 
of what “approximately time-limited” means is changing. From a more practical perspective, 
however, all of these expansions express an approximately baseband-limited waveform by samples 
at rate 2W0. As the overall duration T0 of the class of waveforms increases, the initial transient 
due to the samples centered close to −T0/2 and the final transient due to samples centered close 
to T0/2 should become unimportant relative to the rest of the waveform. 

The same conclusion can be reached for functions that are strictly time-limited to [−T0/2, T0/2] 
by using the truncated sinusoid expansion with coefficients outside of [−F0, F0] set to 0. 

In summary, all the above expansions require roughly 2W0T0 numbers for the approximate 
specification of a waveform essentially limited to time T0 and frequency W0 for T0W0 large. 

It is possible to be more precise about the number of degrees of freedom in a given time and 
frequency band by looking at the prolate spheroidal waveform expansion (see the Appendix, 
Section 5A.3). The orthogonal waveforms in this expansion maximize the energy in the given 
time/frequency region in a certain sense. It is perhaps simpler and better, however, to live with 
the very approximate nature of the arguments based on the sinc-weighted sinusoid expansion 
and the truncated sinusoid expansion. 

34 T0W0Calculating this number of samples carefully yields (2n + 1)  1 +  
2n+1 

. 
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4.7.3 Aliasing — a time domain approach 

Both the truncated sinusoid and the sinc-weighted sinusoid expansions are conceptually use­
ful for understanding waveforms that are approximately time- and bandwidth-limited, but in 
practice, waveforms are usually sampled, perhaps at a rate much higher than twice the nominal 
bandwidth, before digitally processing the waveforms. Thus it is important to understand the 
error involved in such sampling. 

Suppose an L2 function u(t) is sampled with T -spaced samples, {u(kT ); k ∈ Z}. Let s(t) denote 
the approximation to u(t) that results from the sampling theorem expansion, � t 

s(t) =  u(kT ) sinc 
T 

− k . (4.75) 
k 

If u(t) is baseband-limited to W = 1/(2T ), then s(t) =  u(t), but here it is no longer assumed 
that u(t) is baseband limited. The expansion of u(t) into individual frequency slices, repeated 
below from (4.73), helps in understanding the difference between u(t) and s(t): � t 

u(t) = l.i.m. vm(kT ) sinc 
T 

− k e 2πimt/T , where (4.76) 
m,k 

vm(t) =  û(f) rect(fT  − m)e 2πift df. (4.77) 

For an arbitrary L2 function u(t), the sample points u(kT ) might be at points of discontinu­
ity and thus be questionable. Also (4.75) need not converge, and (4.76) might not converge 
pointwise. To avoid these problems, û(f) will later be restricted beyond simply being L2. First, 
however, questions of convergence are disregarded and the relevant equations are derived without 
questioning when they are correct. 

From (4.75), the samples of s(t) are given by s(kT ) =  u(kT ), and combining with (4.76), 

s(kT ) =  u(kT ) =  vm(kT ). (4.78) 
m 

Thus the samples from different frequency slices get summed together in the samples of u(t). 
This phenomenon is called aliasing. There is no way to tell, from the samples {u(kT ); k ∈ Z}
alone, how much contribution comes from each frequency slice and thus, as far as the samples 
are concerned, every frequency band is an ‘alias’ for every other. 

Although u(t) and s(t) agree at the sample times, they differ elsewhere (assuming that u(t) is  
not strictly baseband-limited to 1/(2T )). Combining (4.78) and (4.75), � � t 

s(t) =  vm(kT ) sinc( 
T 

− k). (4.79) 
k m 

The expresssions in (4.79) and (4.76) agree at m = 0, so the difference between u(t) and s(t) is  � � t � � t 
u(t) − s(t) =  −vm(kT )sinc 

T 
− k + vm(kT )e 2πimt/T sinc 

T 
− k . 

k m=0 k m=0 

The first term above is v0(t)− s(t), i.e., the difference in the nominal baseband [−W, W]. This is 
the error caused by the aliased terms in s(t). The second term is the energy in the nonbaseband 
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portion of u(t), which is orthogonal to the first error term. Since each term is an orthogonal 
expansion in the sinc-weighted sinusoids of (4.74), the energy in the error is given by35 

2 2 2 
u(t) − s(t)
 dt = T
 vm(kT )
 + T
 vm(kT )
 .
 (4.80)


k m=0 k m=0 

Later, when the source waveform u(t) is viewed as a sample function of a random process U(t), 
it will be seen that under reasonable conditions the expected value of these two error terms are 
approximately equal. Thus, if u(t) is filtered by an ideal low-pass filter before sampling, then 
s(t) becomes equal to v0(t) and only the second error term in (4.80) remains; this reduces the 
expected mean-squared error roughly by a factor of 2. It is often easier, however, to simply 
sample a little faster. 

4.7.4 Aliasing — a frequency domain approach 

Aliasing can be, and usually is, analyzed from a frequency domain standpoint. From (4.79), s(t) 
can be separated into the contribution from each frequency band as 

t

s(t) =  sm(t), where sm(t) =  vm(kT )sinc .
 (4.81)


T 
− k


m k 

Comparing sm(t) to  vm(t) =  k vm(kT ) sinc( T
t − k) e2πimt/T , it is seen that 

vm(t) =  sm(t)e 2πimt/T . 

mFrom the Fourier frequency shift relation, v̂m(f) = ŝm(f − T ), so 

m 
ŝm(f) = v̂m(f + ). (4.82)

T 

Finally, since v̂m(f) = û(f) rect(fT  − m), one sees that v̂m(f + m ) = û(f + m ) rect(fT ). Thus, T T 
summing (4.82) over m, 

m

ŝ(f) =  û(f +
 ) rect[fT ]. (4.83)


T

m 

Each frequency slice v̂m(f) is shifted down to baseband in this equation, and then all these 
shifted frequency slices are summed together, as illustrated in Figure 4.10. This establishes the 
essence of the following aliasing theorem, which is proved in Section 5A.2. 

Theorem 4.7.1 (Aliasing theorem). Let û(f) be L2, and let û(f) satisfy the condition 
lim û(f) 1+ε Then û(f) is L1, and the inverse Fourier transform |f |→∞ 

converges pointwise to a continuous bounded function. For any given 
= 0  for some ε >  0.
|f

2

|
πift dfu(t) = 
 û(f)e


T >  0, the sampling approximation k u(kT ) sinc( t − k) converges pointwise to a continuous T 
bounded L2 function s(t). The Fourier transform of s(t) satisfies 

m

ŝ(f) = l.i.m. û(f +
 ) rect[fT ]. (4.84)


T

m 

35As shown by example in Exercise 4.38, s(t) need not be L2 unless the additional restrictions of Theorem 4.7.1 
are applied to û(f). In these bizarre situations, the first sum in (4.80) is infinite and s(t) is a complete failure as 
an approximation to u(t). 
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ŝ(f)����������û(f) 
1 3 1−1 −1 

�a
2T 
��

��û�(f�
) 
� 

2T 2T 2T 2T 

b� b�′ a′������������������

���������c�0 0� �c′ 

(i) (ii) 

Figure 4.10: The transform ŝ(f) of the baseband-sampled approximation s(t) to  u(t) is  
constructed by folding the transform û(f) into [−1/(2T ), 1/(2T )]. For example, using real 
functions for pictorial clarity, the component a is mapped into a′, b into b′ and c into c′. 
These folded components are added to obtain ŝ(f). If û(f) is complex, then both the real 
and imaginary parts of û(f) must be folded in this way to get the real and imaginary parts 
respectively of ŝ(f). The figure further clarifies the two terms on the right of (4.80). The first 
term is the energy of û(f)− ŝ(f) caused by the folded components in part (ii) . The final term 
is the energy in part (i) outside of [−T /2, T/2]. 

The condition that lim ̂u(f)f1+ε = 0 implies that û(f) goes to 0 with increasing f at a faster 
rate than 1/f . Exercise 4.37 gives an example in which the theorem fails in the absence of this 
condition. 

Without the mathematical convergence details, what the aliasing theorem says is that, corre­
sponding to a Fourier transform pair u(t) û(f), there is another Fourier transform pair s(t)↔
and ŝ(f); s(t) is a baseband sampling expansion using the T -spaced samples of u(t) and ŝ(f) is  
the result of folding the transform û(f) into the band [−W, W] with W = 1/(2T ). 

4.8 Summary 

The theory of L2 (finite-energy) functions has been developed in this chapter. These are in many 
ways the ideal waveforms to study, both because of the simplicity and generality of their math­
ematical properties and because of their appropriateness for modeling both source waveforms 
and channel waveforms. 

For encoding source waveforms, the general approach is 

• expand the waveform into an orthogonal expansion 

• quantize the coefficients in that expansion 

• use discrete source coding on the quantizer output. 

The distortion, measured as the energy in the difference between the source waveform and 
the reconstructed waveform, is proportional to the squared quantization error in the quantized 
coefficients. 

For encoding waveforms to be transmitted over communication channels, the approach is 

• map the incoming sequence of binary digits into a sequence of real or complex symbols 

• use the symbols as coefficients in an orthogonal expansion. 

Orthogonal expansions have been discussed in this chapter and will be further discussed in 
Chapter 5. Chapter 6 will discuss the choice of symbol set, the mapping from binary digits, and 
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the choice of orthogonal expansion.


This chapter showed that every L2 time-limited waveform has a Fourier series, where each

Fourier coefficient is given as a Lebesgue integral and the Fourier series converges in L2, i.e.,

as more and more Fourier terms are used in approximating the function, the energy difference

between the waveform and the approximation gets smaller and approaches 0 in the limit.


Also, by the Plancherel theorem, every L2 waveform u(t) (time-limited or not) has a Fourier

integral û(f). For each truncated approximation, uA(t) =  u(t)rect(2

t
A ), the Fourier integral


ûA(f) exists with pointwise convergence and is continuous. The Fourier integral û(f) is then

the L2 limit of these approximation waveforms. The inverse transform exists in the same way.


These powerful L2 convergence results for Fourier series and integrals are not needed for com­

puting the Fourier transforms and series for the conventional waveforms appearing in exercises.

They become important both when the waveforms are sample functions of random processes

and when one wants to find limits on possible performance. In both of these situations, one

is dealing with a large class of potential waveforms, rather than a single waveform, and these

general results become important.


The DTFT is the frequency/time dual of the Fourier series, and the sampling theorem is simply 
the Fourier transform of the DTFT, combined with a little care about convergence. 

The T -spaced truncated sinusoid expansion and the T -spaced sinc-weighted sinusoid expansion 
are two orthogonal expansions of an arbitrary L2 waveform. The first is formed by segmenting 
the waveform into T -length segments and expanding each segment in a Fourier series. The 
second is formed by segmenting the waveform in frequency and sampling each frequency band. 
The orthogonal waveforms in each are the time/frequency translates of rect(t/T ) for the first 
case and sinc(t/T ) for the second. Each expansion leads to the notion that waveforms roughly 
limited to a time interval T0 and a baseband frequency interval F0 have approximately 2T0F0 

degrees of freedom when T0F0 is large. 

Aliasing is the ambiguity in a waveform that is represented by its T -spaced samples. If an 
L2 waveform is baseband-limited to 1/(2T ), then its samples specify the waveform, but if the 
waveform has components in other bands, these components are aliased with the baseband 
components in the samples. The aliasing theorem says that the Fourier transform of the base­
band reconstruction from the samples is equal to the original Fourier transform folded into that 
baseband. 

4A Appendix: Supplementary material and proofs 

The first part of the appendix is an introduction to countable sets. These results are used 
throughout the chapter, and the material here can serve either as a first exposure or a review. 
The following three parts of the appendix provide added insight and proofs about the results on 
measurable sets. 

4A.1 Countable sets 

A collection of distinguishable objects is countably infinite if the objects can be put into one-to­
one correspondence with the positive integers. Stated more intuitively, the collection is countably 
infinite if the set of elements can be arranged as a sequence a1, a2, . . .  ,. A set is countable if it 
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contains either a finite or countably infinite set of elements. 

Example 4A.1 (The set of all integers). The integers can be arranged as the sequence 0, 
-1, +1, -2, +2, -3, . . .  , and thus the set is countably infinite. Note that each integer appears 
once and only once in this sequence, and the one-to-one correspondence is (0 ↔ 1), (−1 ↔
2), (+1 ↔ 3), (−2 ↔ 4), etc. There are many other ways to list the integers as a sequence, such 
as 0, -1, +1, +2, -2, +3, +4, -3, +5, . . .  , but, for example, listing all the non-negative integers 
first followed by all the negative integers is not a valid one-to-one correspondence since there 
are no positive integers left over for the negative integers to map into. 

Example 4A.2 (The set of 2-tuples of positive integers). Figure 4.11 shows that this set 
is countably infinite by showing one way to list the elements in a sequence. Note that every 
2-tuple is eventually reached in this list. In a weird sense, this means that there are as many 
positive integers as there are pairs of positive integers, but what is happening is that the integers 
in the 2-tuple advance much more slowly than the position in the list. For example, it can be 
verified that (n, n) appears in position 2n(n − 1) + 1 of the list. 

�
(1,4)��� (2,4) (3,4) (4,4) 

�
���

�
� 1 ↔ (1, 1)� (2,3) � (1, 2)(1,3)� �� � (3,3) � (4,3) 2 

� � � 
↔

��� �� � 
3 ↔ (2, 1) 

�� �� � 4 (1, 3)� (1,2) � (2,2) �� (3,2) � (4,2) 
↔

� �� � � � 5 (2, 2) 
� �� � � � 6 

↔
(3, 1)� (1,1) 

������� � � � � (5,1) 7 
↔

(1, 4)(2,1) (3,1) (4,1) ↔
and so forth 

Figure 4.11: A one-to-one correspondence between positive integers and 2-tuples of 
positive integers. 

By combining the ideas in the previous two examples, it can be seen that the collection of all 
integer 2-tuples is countably infinite. With a little more ingenuity, it can be seen that the set of 
integer n-tuples is countably infinite for all positive integer n. Finally, it is straightforward to 
verify that any subset of a countable set is also countable. Also a finite union of countable sets 
is countable, and in fact a countable union of countable sets must be countable. 

Example 4A.3. (The set of rational numbers] Each rational number can be represented by an 
integer numerator and denominator, and can be uniquely represented by its irreducible numer­
ator and denominator. Thus the rational numbers can be put into one-to-one correspondence 
with a subset of the collection of 2-tuples of integers, and are thus countable. The rational 
numbers in the interval [−T/2, T/2] for any given T >  0 form a subset of all rational numbers, 
and therefore are countable also. 

As seen in Subsection 4.3.1, any countable set of numbers a1, a2, can be expressed as a disjoint· · ·  
countable union of zero-measure sets, [a1, a1], [a2, a2], so the measure of any countable set· · ·  
is zero. Consider a function that has the value 1 at each rational argument and 0 elsewhere. 
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The Lebesgue integral of that function is 0. Since rational numbers exist in every positive-sized 
interval of the real line, no matter how small, the Riemann integral of this function is undefined. 
This function is not of great practical interest, but provides insight into why Lebesgue integration 
is so general. 

Example 4A.4 (The set of binary sequences). An example of an uncountable set of ele­
ments is the set of (unending) sequences of binary digits. It will be shown that this set contains 
uncountably many elements by assuming the contrary and constructing a contradiction. Thus, 
suppose we can list all binary sequences, a1,a2,a3, . . . . Each sequence, an, can be expressed 
as an = (an,1, an,2, . . . ), resulting in a doubly infinite array of binary digits. We now construct 
a new binary sequence b = b1, b2, . . .  ,  in the following way. For each integer n >  0, choose 
bn = an,n; since bn is binary, this specifies bn for each n and thus specifies b. Now  b differs from 
each of the listed sequences in at least one binary digit, so that b is a binary sequence not on 
the list. This is a contradiction, since by assumption the list contains each binary sequence. 

This example clearly extends to ternary sequences and sequences from any alphabet with more 
than one member. 

Example 4A.5 (The set of real numbers in [0, 1)). This is another uncountable set, and 
the proof is very similar to that of the last example. Any real number r ∈ [0, 1) can be represented 
as a binary expansion 0.r1r2, whose elements rk are chosen to satisfy r = k

∞
=1 rk2−k and· · ·  

where each rk ∈ {0, 1}. For example, 1/2 can be represented as 0.1, 3/8 as 0.011, etc. This 
expansion is unique except in the special cases where r can be represented by a finite binary 

mexpansion, r = k=1 rk; for example, 1/2 can also be represented as 0.0111 . By convention, · · ·
for each such r (other than r = 0) choose m as small as possible; thus in the infinite expansion, 
rm = 1 and rk = 0 for all k > m. Each such number can be alternatively represented with 
rm = 0 and rk = 1 for all k > m. 

By convention, map each such r into the expansion terminating with an infinite sequence of 
zeros. The set of binary sequences is then the union of the representations of the reals in [0, 1) 
and the set of binary sequences terminating in an infinite sequence of 1’s. This latter set is 
countable because it is in one-to-one correspondence with the rational numbers of the form

m 
k=1 rk2−k with binary rk and finite m. Thus if the reals were countable, their union with this 

latter set would be countable, contrary to the known uncountability of the binary sequences. 

By scaling the interval [0,1), it can be seen that the set of real numbers in any interval of 
non-zero size is uncountably infinite. Since the set of rational numbers in such an interval is 
countable, the irrational numbers must be uncountable (otherwise the union of rational and 
irrational numbers, i.e., the reals, would be countable). 

The set of irrationals in [−T/2, T/2] is the complement of the rationals and thus has measure 
T . Each pair of distinct irrationals is separated by rational numbers. Thus the irrationals can 
be represented as a union of intervals only by using an uncountable union36 of intervals, each 
containing a single element. The class of uncountable unions of intervals is not very interesting 
since it includes all subsets of R. 

36 �kThis might be a shock to one’s intuition. Each partial union j=1 [aj , aj ] of rationals has a complement 
which is the union of k + 1 intervals of non-zero width; each unit increase in k simply causes one interval in the 
complement to split into two smaller intervals (although maintaining the measure at T ). In the limit, however, 
this becomes an uncountable set of separated points. 
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4A.2 Finite unions of intervals over [−T/2, T/2] 

Let Mf be the class of finite unions of intervals, i.e., the class of sets whose elements can each 
be expressed as E = 

�	 Ij where {I1, . . .  , I	} are intervals and 
 ≥ 1 is an integer. Exercise j=1 

4.5 shows that each such E ∈ Mf can be uniquely expressed as a finite union of k ≤ 
 separated 
intervals, say E = 

�
j
k 
=1 Ij

′ . The measure of E was defined as µ(E) =  
�

j
k 
=1 µ(Ij

′). Exercise 4.7 
shows that µ(E) ≤ 

�
j
	 
=1 µ(Ij ) for the original intervals making up E and shows that this holds 

with equality whenever I1, . . .  , I	 are disjoint.37 

The class Mf is closed under the union operation, since if E1 and E2 are each finite unions of 
intervals, then E1 ∪ E2 is the union of both sets of intervals. It also follows from this that if E1 

and E2 are disjoint then 

µ(E1 ∪ E2) =  µ(E1) +  µ(E2). (4.85) � 
The class Mf is also closed under the intersection operation, since, if E1 = I1,j and E2 = � � j 

	 I2,	, then E1 ∩E2 = j,	(I1,j ∩ I2,	). Finally, Mf is closed under complementation. In fact, as 
illustrated in Figure 4.5, the complement E of a finite separated union of intervals E is simply 
the union of separated intervals lying between the intervals of E . Since E and its complement E
are disjoint and fill all of [−T/2, T/2], each E ∈ Mf satisfies the complement property, 

T = µ(E) +  µ(E). (4.86) 

An important generalization of (4.85) is the following: for any E1, E2 ∈ Mf , 

µ(E1 ∪ E2) +  µ(E1 ∩ E2) =  µ(E1) +  µ(E2). (4.87) 

To see this intuitively, note that each interval in E1 ∩ E2 is counted twice on each side of (4.87), 
whereas each interval in only E1 or only E2 is counted once on each side. More formally, E1 ∪E2 = 
E1 ∪ (E2 ∩ E1). Since this is a disjoint union, (4.85) shows that µ(E1 ∪ E2) =  µ(E1) +  µ(E2 ∩ E1). 
Similarly, µ(E2) =  µ(E2 ∩ E1) +  µ(E2 ∩ E1). Combining these equations results in (4.87). 

4A.3 Countable unions and outer measure over [−T/2, T/2] 

Let Mc be the class of countable unions of intervals, i.e., each set B ∈ Mc can be expressed as � 
B = Ij where {I1, I2 . . . } is either a finite or countably infinite collection of intervals. The j 
class Mc is closed under both the union operation and the intersection operation by the same 
argument as used for Mf . Mc is also closed under countable unions (see Exercise 4.8) but not 
closed under complements or countable intersections.38 

Each �B ∈ Mc can be uniquely39 expressed as a countable union of separated intervals, say 
B = I ′ where {I1

′ , I2
′ , . . . } are separated (see Exercise 4.6). The measure of B is defined as j j 

µ(B) =  µ(Ij
′ ). (4.88) 

j 

37Recall that intervals such as (0,1], (1,2] are disjoint but not separated. A set E ∈ Mf has many representations 
as disjoint intervals but only one as separated intervals, which is why the definition refers to separated intervals. 

38Appendix 4A.1 shows that the complement of the rationals, i.e., the set of irrationals, does not belong to 
Mc. The irrationals can also be viewed as the intersection of the complements of the rationals, giving an example 
where Mc is not closed under countable intersections. 

39What is unique here is the collection of intervals, not the particular ordering ; this does not affect the infinite 
sum in (4.88) (see Exercise 4.4). 
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As shown in Subsection 4.3.1, the right side of (4.88) always converges to a number between � 
0 and T . For  B = j Ij where I1, I2, . . .  ,  are arbitrary intervals, Exercise 4.7 establishes the 
following union bound, 

µ(B) ≤ µ(Ij ) with equality if I1, I2, . . . are disjoint. (4.89) 
j 

The outer measure µo(A) of an arbitary set A was defined in (4.13) as 

µ o(A) = inf µ(B). (4.90) 
B∈Mc, A⊆B 

Note that [−T/2, T/2] is a cover of A for all A (recall that only sets in [−T/2, T/2] are being 
considered). Thus µo(A) must lie between 0 and T for all A. Also, for any two sets A ⊆ A′, 
any cover of A′ also covers A. This implies the subset inequality for outer measure, 

µ o(A) ≤ µ o(A′) for A ⊆ A′. (4.91) 

The following lemma develops the union bound for outer measure. Its proof illustrates several 
techniques that will be used frequently. � 
Lemma 4A.1. Let S = k Ak be a countable union of arbitrary sets in [−T/2, T/2]. Then 

µ o(S) ≤ µ o(Ak). (4.92) 
k 

Proof: The approach is to first establish an arbitrarily tight cover to each Ak and then show 
that the union of these covers is a cover for S. Specifically, let ε be an arbitrarily small positive 
number. For each k ≥ 1, the infimum in (4.90) implies that covers exist with measures arbitrarily 
little greater than that infimum. Thus a cover Bk to Ak exists with 

µ(Bk) ≤ ε2−k + µ o(Ak). � 
For each k, let Bk = j Ij,k

′ where I1
′
,k, I2

′
,k, . . .  represents Bk by separated intervals. Then � � � 

B = k Bk = k I ′ is a countable union of intervals, so from (4.89) and Exercise 4.4, j j,k 

µ(B) ≤ µ(Ij,k
′ ) =  µ(Bk) 

k j k 

Since Bk covers Ak for each k, it follows that B covers S. Since µo(S) is the infimum of its 
covers, � �� � � 

µ o(S) ≤ µ(B) ≤ µ(Bk) ≤ ε2−k + µ o(Ak) = ε + µ o(Ak). 
k k k 

Since ε > 0 is arbitrary, (4.92) follows. 

An important special case is the union of any set A and its complement A. Since [−T/2, T/2] = 
A ∪A, 

T ≤ µ o(A) +  µ o(A). (4.93) 

The next subsection will define measurability and measure for arbitrary sets. Before that, the 
following theorem shows both that countable unions of intervals are measurable and that their 
measure, as defined in (4.88), is consistent with the general definition to be given later. 
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� 
Theorem 4A.1. Let B = Ij where {I1, I2, . . . } is a countable collection of intervals in j 
[−T/2, T/2] (i.e., B ∈ Mc). Then 

µ o(B) +  µ o(B) =  T and (4.94) 

µ o(B) =  µ(B). (4.95) 

Proof: Let {Ij
′ ; j ≥ 1} be the collection of separated intervals representing B and let 

k 

Ek = 
j=1 

Ij
′ ; then 

µ(E1) ≤ µ(E2) ≤ µ(E3) ≤ · · · ≤  lim µ(Ek) =  µ(B). 
k→∞ 

For any ε >  0, choose k large enough that 

µ(Ek) ≥ µ(B) − ε. (4.96) 

The idea of the proof is to approximate B by Ek, which, being in Mf , satisfies T = µ(Ek)+µ(Ek). 
Thus, 

µ(B) ≤ µ(Ek) +  ε = T − µ(Ek) +  ε ≤ T − µ o(B) +  ε, (4.97) 

where the final inequality follows because Ek ⊆ B  and thus B ⊆ Ek and µo(B) ≤ µ(Ek). 

Next, since B ∈ Mc and B ⊆ B, B is a cover of itself and is a choice in the infimum defining 
µo(B); thus µo(B) ≤ µ(B). Combining this with (4.97), µo(B) +  µo(B) ≤ T + ε. Since ε >  0 is  
arbitrary, this implies 

µ o(B) +  µ o(B) ≤ T.  (4.98) 

This combined with (4.93) establishes (4.94). Finally, substituting T ≤ µo(B) +  µo(B) into  
(4.97), µ(B) ≤ µo(B) +  ε. Since µo(B) ≤ µ(B) and ε >  0 is arbitrary, this establishes (4.95). 

Finally, before proceeding to arbitrary measurable sets, the joint union and intersection property, 
(4.87), is extended to Mc. 

Lemma 4A.2. Let B1 and B2 be arbitrary sets in Mc. Then 

µ(B1 ∪ B2) +  µ(B1 ∩ B2) =  µ(B1) +  µ(B2). (4.99) � 
Proof: Let B1 and B2 be represented respectively by separated intervals, B1 = j I1,j and 
B2 = 

� 
j I2,j . For  
 = 1, 2, let E	

k = 
�

j
k 
=1 I	,j and D	

k = 
�
k 

∞
j=k+1 I	,j . Thus  B	 = E	

k ∪D	
k for each 

integer k ≥ 1 and 
 = 1, 2. The proof is based on using E , which is in M and satisfies the joint 	 f 

union and intersection property, as an approximation to B	. To see how this goes, note that 

1 2 2 2B1 ∩ B2 = (E1 
k ∪ Dk) ∩ (E2 

k ∪ Dk) = (E1 
k ∩ Ek) ∪ (E1 

k ∩ Dk) ∪ (D1 
k ∩ B2). 
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k
	

k
	 ) ≤ ε for 
 = 1, 2.
For any ε > 0 we can choose k large enough that µ(E

Using the subset inequality and the union bound, we then have 

1 ∩ Ek

k 

) ≥ µ(B	) − ε and µ(D

k k k µ(B1 ∩ B2) ≤ µ(E ) +  µ(D
 ) +  µ(D
 )
2 2 1
k) + 2ε.
≤ µ(E1 ∩ E2 

By a similar but simpler argument, 

1 ∪ Ek k k 
1

k 
2µ(B1 ∪ B2) ≤ µ(E ) +  µ(D
 ) +  µ(D
 )
2 

≤ µ(E1 ∪ E

Combining these inequalities and using (4.87) on E

k k) + 2ε. 

1 ⊆ M

1 ∩ Ek

k 

k 

2 

k

k 

2 ⊆ M

k 

) +  µ(E1 ∪ E2 2 

f and E
 f , we have  

k k µ(B1 ∩ B2) +  µ(B1 ∪ B2) ≤ µ(E ) + 4ε


µ(E
 ) +  µ(E
 ) + 4ε
=
 1 2 

kk

k 

≤ µ(B1) +  µ(B2) + 4ε. 

where we have used the subset inequality in the final inequality. 

For a bound in the opposite direction, we start with the subset inequality, 

1 ∪ Ek k µ(B1 ∪ B2) +  µ(B1 ∩ B2) ≥ µ(E
k 

) +  µ(E1 ∩ E2 2 )

µ(E
 ) +  µ(E
 )
=
 1 2 

c

≥ µ(B1) +  µ(B2) − 2ε. 

Since ε is arbitrary, these two bounds establish (4.99). 

4A.4 Arbitrary measurable sets over [−T/2, T/2] 

An arbitrary set A ∈ [−T/2, T/2] was defined to be measurable if 

T = µ o(A) +  µ o(A). (4.100) 

f

The measure of a measurable set was defined to be µ(A) =  µo(A). The class of measurable sets 
is denoted as M is measurable, i.e., B ∈ M  and 
thus M c ⊆ M. The measure of B ∈ M
intervals, I1, I2, . . .  ,  whose union is B

. Theorem 4A.1 shows that each set B ∈ Mc

is µ(B) =  j µ(Ij ) for any disjoint sequence of ⊆ M 

.


Although the complements of sets in M
c are not necessarily in M
c (as seen from the rational

number example), they must be in M; in fact, from (4.100), all sets in M have complements 
in M, i.e., M is closed under complements. We next show that M is closed under, first, finite, 
and then, countable, unions and intersections. The key to these results is to first show that the 
joint union and intersection property is valid for outer measure. 

Lemma 4A.3. For any measurable sets A1 and A2, 

µ o(A1 ∪ A2) +  µ o(A1 ∩ A2) =  µ o(A1) +  µ o(A2). (4.101) 

Proof: The proof is very similar to that of lemma 4A.2, but here we use sets in M
imate those in M. For any ε >  0, let B1 and B2 be covers of A1 and A2 respectively such that 

to approx­
c
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µ(B	) ≤ µo(A	) +  ε for 
 = 1, 2. Let D	 = B	 ∩A	 for 
 = 1, 2. Note that A	 and D	 are disjoint 
and B	 = A	 ∪ D	. 

B1 ∩ B2 = (A1 ∪ D1) ∩ (A2 ∪ D2) = (A1 ∩ A2) ∪ (D1 ∩ A2) ∪ (B1 ∩ D2). 

Using the union bound and subset inequality for outer measure on this and the corresponding 
expansion of B1 ∪ B2, we get 

µ(B1 ∩ B2) ≤ µ o(A1 ∩ A2) +  µ o(D1) +  µ o(D2) ≤ µ o(A1 ∩ A2)+2ε 

µ(B1 ∪ B2) ≤ µ o(A1 ∪ A2)+µ o(D1) +  µ o(D2) ≤ µ o(A1 ∪ A2)+2ε, 

where we have also used the fact (see Exercise 4.9) that µo(D	) ≤ ε for 
 = 1, 2. Summing these 
inequalities and rearranging terms, 

µ o(A1 ∪ A2) +  µ o(A1 ∩ A2) ≥ µ(B1 ∩ B2) +  µ(B1 ∪ B2) − 4ε 

= µ(B1)+µ(B2) − 4ε 

≥ µ o(A1)+µ o(A2) − 4ε, 

where we have used (4.99) and then used A	 ⊆ B	 for 
 = 1, 2. Using the subset inequality and 
(4.99) to bound in the opposite direction, 

µ(B1) +  µ(B2) =  µ(B1 ∪ B2) +  µ(B1 ∩ B2) ≥ µ o(A1 ∪ A2)+µ o(A1 ∩ A2). 

Rearranging and using µ(B	) ≤ µo(A	) +  ε, 

µ o(A1 ∪ A2)+µ o(A1 ∩ A2) ≤ µ o(A1) +  µ o(A2) + 2ε. 

Siince ε is arbitrary, these bounds establish (4.101). 

Theorem 4A.2. Assume A1, A2 ∈ M. Then A1 ∪ A2 ∈ M  and A1 ∩ A2 ∈ M. 

Proof: Apply (4.101) to A1 and A2, getting 

µ o(A1 ∪ A2) +  µ o(A1 ∩ A2) =  µ o(A1) +  µ o(A2). 

Rewriting A1 ∪ A2 as A1 ∩ A2 and A1 ∩ A2 by A1 ∪ A2 and adding this to (4.101), 

µ o(A1 ∪ A2) +  µ o(A1 ∪ A2 + µ o(A1 ∩ A2) +  µ o(A1 ∩ A2) 
= µ o(A1) +  µ o(A2) +  µ o(A1) +  µ o(A2) = 2T,  (4.102) 

where we have used (4.100). Each of the bracketed terms above is at least T from (4.93), so 
each term must be exactly T . Thus  A1 ∪ A2 and A1 ∩ A2 are measurable. 

Since A1 ∪ A2 and A1 ∩ A2 are measurable if A1 and A2 are, the joint union and intersection 
property holds for measure as well as outer measure for all measurable functions, i.e., 

µ(A1 ∪ A2) +  µ(A1 ∩ A2) =  µ(A1) +  µ(A2). (4.103) 

If A1 and A2 are disjoint, then (4.103) simplifies to the additivity property 

µ(A1 ∪ A2) =  µ(A1) +  µ(A2). (4.104) 

Actually, (4.103) shows that (4.104) holds whenever µ(A1 ∩ A2) = 0. That is, A1 and A2 need 
not be disjoint, but need only have an intersection of zero measure. This is another example in 
which sets of zero measure can be ignored. 

The following theorem shows that M is closed over disjoint countable unions and that M is 
countably additive. 
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Theorem 4A.3. Assume that Aj ∈ M for each integer j ≥ 1 and that µ(Aj ∩ A	) = 0  for all � 
j =� 
. Let  A = j Aj . Then A ∈ M and 

µ(A) =  µ(Aj ). (4.105) 
j 

Proof: Let Ak = 
�

j
k 
=1 Aj for each integer k ≥ 1. Then Ak+1 = Ak ∪ Ak+1 and, by induction 

on the previous theorem, Ak ∈ M. It also follows that 

k

µ(Ak) =  µ(Aj ). 
j=1 

The sum on the right is nondecreasing in k and bounded by T , so the limit as k → ∞ exists. 
Applying the union bound for outer measure to A, 

µ o(A) ≤ µ o(Aj ) = lim µ o(Ak) = lim µ(Ak). (4.106) 
j

k→∞ k→∞ 

Since Ak ⊆ A, we see that A ⊆ Ak and µo(A) ≤ µ(Ak) =  T − µ(Ak). Thus 

µ o(A) ≤ T − lim µ(Ak). (4.107) 
k→∞ 

Adding (4.106) and (4.107) shows that µo(A) +  µo(A) ≤ T . Combining with (4.93), µo(A) +  
µo(A) =  T and (4.106) and (4.107) are satisfied with equality. Thus A ∈ M  and countable 
additivity, (4.105), is satisfied. 

Next it is shown that M is closed under arbitrary countable unions and intersections. � � 
Theorem 4A.4. Assume that Aj ∈ M for each integer j ≥ 1. Then A = j Aj and D = j Aj 

are both in M. 

Proof: Let A′
1 = A1 and, for each k ≥ 1, let Ak = 

�k
j=1 Aj and let A�′k+1 = Ak+1 ∩ Ak. 

By induction, the sets A′
1,A2

′ , . . .  ,  are disjoint and measurable and A = j Aj
′ . Thus, from 

Theorem 4A.3, A is measurable. Next suppose D = ∩Aj . Then D = ∪Aj . Thus, D ∈ M , so  
D ∈ M also. 

Proof of Theorem 4.3.1: The first two parts of Theorem 4.3.1 are Theorems 4A.4 and 
4A.3. The third part, that A is measurable with zero measure if µo(A) = 0, follows from 
T ≤ µo(A) +  µo(A) =  µo(A) and µo(A) ≤ T , i.e., that µo(A) =  T . 

Sets of zero measure are quite important in understanding Lebesgue integration, so it is impor­
tant to know whether there are also uncountable sets of points that have zero measure. The 
answer is yes; a simple example follows. 

Example 4A.6 (The Cantor set). Express each point in the interval (0,1) by a ternary ex­
pansion. Let B be the set of points in (0,1) for which that expansion contains only 0’s and 2’s 
and is also nonterminating. Thus B excludes the interval [1/3, 2/3), since all these expansions 
start with 1. Similarly, B excludes [1/9, 2/9) and [7/9, 8/9), since the second digit is 1 in these 
expansions. The right end point for each of these intervals is also excluded since it has a ter­
minating expansion. Let Bn be the set of points with no 1 in the first n digits of the ternary 
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expansion. Then µ(Bn) = (2/3)n . Since B is contained in Bn for each n ≥ 1, B is measurable 
and µ(B) = 0.  

The expansion for each point in B is a binary sequence (viewing 0 and 2 as the binary digits 
here). There are uncountably many binary sequences (see Section 4A.1), and this remains true 
when the countable number of terminating sequences are removed. Thus we have demonstrated 
an uncountably infinite set of numbers with zero measure. 

Not all point sets are Lebesgue measurable, and an example follows. 

Example 4A.7 (A non-measurable set). Consider the interval [0, 1). We define a collection 
of equivalence classes where two points in [0, 1) are in the same equivalence class if the difference 
between them is rational. Thus one equivalence class consists of the rationals in [0,1). Each other 
equivalence class consists of a countably infinite set of irrationals whose differences are rational. 
This partitions [0, 1) into an uncountably infinite set of equivalence classes. Now consider a set 
A that contains exactly one number chosen from each equivalence class. We will assume that A
is measurable and show that this leads to a contradiction. 

For the given set A, let A + r, for r rational in (0, 1), denote the set that results from mapping 
each t ∈ A into either t + r or t + r − 1, whichever lies in [0, 1). The set A+ r is thus the set A, 
shifted by r, and then rotated to lie in [0, 1). By looking at outer measures, it is easy to see that 
A + r is measurable if A is and that both then have the same measure. Finally, each t ∈ [0, 1) 
lies in exactly one equivalence class, and if τ is the element of A in that equivalence class, then t � 
lies in A+r where r = t−τ or t−τ +1. In other words, [0, 1) = (A+r) and the sets A+r are r � 
disjoint. Assuming that A is measurable, Theorem 4A.3 asserts that 1 = µ(A+r). The sum r 
on the right, however, is 0 if µ(A) = 0 and infinite if µ(A) > 0, establishing the contradiction. 
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4.E Exercises 

4.1. (Fourier series) (a) Consider the function u(t) = rect(2t) of Figure 4.2. Give a general 
expression for the Fourier series coefficients for the Fourier series over [−1/2, 1/2]. and 
show that the series converges to 1/2 at each of the end points, -1/4 and 1/4. Hint: You 
don’t need to know anything about convergence here. 
(b) Represent the same function as a Fourier series over the interval [−1/4, 1/4]. What 
does this series converge to at -1/4 and 1/4? Note from this exercise that the Fourier series 
depends on the interval over which it is taken. 

4.2. (Energy equation) Derive (4.6), the energy equation for Fourier series. Hint: Substitute the 
Fourier series for u(t) into  u(t)u∗(t) dt. Don’t worry about convergence or interchange of 
limits here. 

4.3. (Countability) As shown in Appendix 4A.1, many subsets of the real numbers, including 
the integers and the rationals, are countable. Sometimes, however, it is necessary to give 
up the ordinary numerical ordering in listing the elements of these subsets. This exercise 
shows that this is sometimes inevitable. 
(a) Show that every listing of the integers (such as 0,−1, 1,−2, . . . ) fails to preserve the 
numerical ordering of the integers (hint: assume such a numerically ordered listing exists 
and show that it can have no first element (i.e., no smallest element.) 
(b) Show that the rational numbers in the interval (0, 1) cannot be listed in a way that 
preserves their numerical ordering. 
(c) Show that the rationals in [0,1] cannot be listed with a preservation of numerical ordering 
(the first element is no problem, but what about the second?). 

4.4. (Countable sums) Let a1, a2, . . .  ,  be a countable set of non-negative numbers and assume 
that sa(k) =  

�
j
k 
=1 aj ≤ A for all k and some given A > 0. 

(a) Show that the limit limk→∞ sa(k) exists with some value Sa between 0 and A. (Use 
any level of mathematical care that you feel comfortable with.) 
(b) Now let b1, b2, . . .  ,  be another ordering of the numbers a1, a2, . . .  ,. That is, let b1 = 
aj(1), b2 = aj(2), . . .  , b	 = aj(	), . . .  , where j(
) is a permutation of the positive integers, i.e., 
a one-to-one function from Z+ to Z+. Let sb(k) =  

�k b	. Show that limk→∞ sb(k) ≤ Sa.	=1 

Hint: Note that 
k k

b	 = aj(	). 
	=1 	=1 

(c) Define Sb = limk→∞ sb(k) and show that Sb ≥ Sa. Hint: Consider the inverse permua­
tion, say 
−1(j), which for given j′ is that 
 for which j(
) =  j′. Note that you have shown 
that a countable sum of non-negative elements does not depend on the order of summation. 
(d) Show that the above result is not necessarily true for a countable sum of numbers that 
can be positive or negative. Hint: consider alternating series. 

4.5. (Finite unions of intervals) Let E = 
�	 Ij be the union of 
 ≥ 2 arbitrary nonempty j=1 

intervals. Let aj and bj denote the left and right end points respectively of Ij ; each end 
point can be included or not. Assume the intervals are ordered so that a1 ≤ a2 ≤ · · · ≤ a	. 
(a) For 
 = 2, show that either I1 and I2 are separated or that E is a single interval whose 
left end point is a1. 
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(b) For 
 > 2 and 2 ≤ k < 
, let Ek = 
�k Ij . Give an algorithm for constructing a union j=1


of separated intervals for Ek+1 given a union of separated intervals for Ek .

(c) Note that using part (b) inductively yields a representation of E as a union of separated 
intervals. Show that the left end point for each separated interval is drawn from a1, . . .  , a	 

and the right end point is drawn from b1, . . .  , b	. 
(d) Show that this representation is unique, i.e.., that E can not be represented as the 
union of any other set of separated intervals. Note that this means that µ(E) is defined 
unambiguously in (4.9). � 

4.6. (Countable unions of intervals) Let B = Ij be a countable union of arbitrary (perhaps j 

intersecting) intervals. For each k ≥ 1, let Bk = 
�k Ij and for each k ≥ j, let Ij,k be the j=1


separated interval in Bk containing Ij (see Exercise 4.5).

(a) For each k ≥ j ≥ 1, show that Ij,k ⊆ Ij,k+1. �
(b) Let ∞ Ij,k = I ′ . Explain why Ij

′ is an interval and show that Ij
′ ⊆ B.k=j j 

(c) For any i, j, show that either Ij
′ = Ii

′ or Ij
′ and Ii

′ are separated intervals. 
(d) Show that the sequence {Ij

′ ; 1  ≤ j <  ∞} with repetitions removed is a countable 
separated-interval representation of B. 
(e) Show that the collection {Ij

′ ; j ≥ 1} with repetitions removed is unique; i.e., show that 
if an arbitrary interval I is contained in B, then it is contained in one of the Ij

′ . Note 
however that the ordering of the Ij

′ is not unique. 

4.7. (Union bound for intervals) Prove the validity of the union bound for a countable collection 
of intervals in (4.89). The following steps are suggested: � 
(a) Show that if B = I1 I2 for arbitrary intervals I1, I2, then µ(B) ≤ µ(I1) +  µ(I2) with 
equality if I1 and I2 are disjoint. Note: this is true by definition if I1 and I2 are separated, 
so you need only treat the cases where I1 and I2 intersect or are disjoint but not separated. 
(b) Let Bk = 

�k Ij be represented as the union of say mk separated intervals (mk ≤ k),j=1� � 
so Bk = mk I . Show that µ(Bk Ik+1) ≤ µ(Bk) +  µ(Ik+1) with equality if Bk and Ik+1j=1 j

′

are disjoint. 
(c) Use finite induction to show that if B = 

�k Ij is a finite union of arbitrary intervals, j=1


then µ(B) ≤ 
�

j
k 
=1 µ(Ij ) with equality if the intervals are disjoint.


(d) Extend part (c) to a countably infinite union of intervals. �
4.8. For each positive integer n, let Bn be a countable union of intervals. Show that B = ∞

n=1 Bn 

is also a countable union of intervals. Hint: Look at Example 4A.2 in Section 4A.1. 

4.9. (Measure and covers) Let A be an arbitrary measurable set in [−T/2, T/2] and let B be 
a cover of A. Using only results derived prior to Lemma 4A.3, show that µo(B ∩ A) =  
µ(B) − µ(A). You may use the following steps if you wish. 
(a) Show that µo(B ∩ A) ≥ µ(B) − µ(A). 
(b) For any δ > 0, let B′ be a cover of A with µ(B′) ≤ µ(A) +  δ. Use Lemma 4A.2 to show 
that µ(B ∩ B′) =  µ(B) +  µ(B′) − T . 
(c) Show that µo(B ∩ A) ≤ µ(B ∩ B′) ≤ µ(B) − µ(A) +  δ. 
(d) Show that µo(B ∩ A) =  µ(B) − µ(A). 

4.10. (Intersection of covers) Let A be an arbitrary set in [−T/2, T/2]. 
(a) Show that A has a sequence of covers, B 2, . . .  such that µo(A) =  µ(D) where � 1,B

n.D = n B
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(b) Show that A ⊆ D. 
(c) Show that if A is measurable, then µ(D ∩ A) = 0. Note that you have shown that an 
arbitrary measurable set can be represented as a countable intersection of countable unions 
of intervals, less a set of zero measure. Argue by example that if A is not measurable, then 
µo(D ∩ A) need not be 0. 

4.11. (Measurable functions) (a) For {u(t) : [−T/2, T/2] R}, show that if {t : u(t) < β} is 
measurable, then {t : u(t) ≥ β} is measurable. 

→

(b) Show that if {t : u(t) < β} and {t : u(t) < α} are measurable, α < β, then {t : α ≤ 
u(t) < β} is measurable. 
(c) Show that if {t : u(t) < β} is measurable for all β, then {t : u(t) ≤ β} is also measurable. 
Hint: Express {t : u(t) ≤ β} as a countable intersection of measurable sets. 

→
(a) Show that −u(t) and |u(t)| are measurable. 

result. 

� 

(c) Show that exp[u(t)], u2(t), and ln |u(t)| are all measurable. 

4.13. (Measurable functions) (a) Show that if{u(t) : [−T/2, T/2] R} and {v(t) : [−T/2, T/2]→ →
R} are measurable, then u(t)+v(t) is also measurable. Hint: Use a discrete approximation 
to the sum and then go to the limit. 
(b) Show that u(t)v(t) is also measurable. 

4.14. (Measurable sets) Suppose A is a subset of [−T/2, T/2] and is measurable over [−T/2, T/2]. 
Show that A is also measurable, with the same measure, over [−T ′/2, T ′/2] for any T ′ 

satisfying T ′ > T . Hint: Let µ′(A) be the outer measure of A over [−T ′/2, T ′/2] and show 
othat µ′(A) =  µo(A) where µ is the outer measure over [−T/2, T/2]. Then let A′ be the 

(d) Show that if ( ) is measurable for all , then ( ) is also measurable, : :β β < βt t t t≤u u{ } { }
i.e., the definition of measurable function can use either strict or nonstrict inequality. 

4.12. (Measurable functions) Assume throughout that ( ) : [ 2 2] is measurable. RT/ , T/t{ − }u

(b) Assume that ( ) : is an increasing function (i.e. ( )R R =< x <{ }g x x g x, 1 2 1→ ⇒
( )). Prove that ( ) = ( ( )) is measurable Hint: This is a one liner. If the abstraction t tg x v g u2

confuses you, first show that exp( ( )) is measurable and then prove the more general tu

′complement of over [ 2 2] and show that ( ) = ( ) +′ ′ ′ ′oT / , T / T TA − A A −µ µ . 

� 

4.15. (Measurable limits) (a) Assume that {un(t) : [−T/2, T/2] R} is measurable for each → 
n ≥ 1. Show that lim infn un(t) is measurable ( lim infn un(t) means limm vm(t) where 
vm(t) = inf∞n=m un(t) and infinite values are allowed). 
(b) Show that limn un(t) exists for a given t if and only if lim infn un(t) = lim supn un(t). 
(c) Show that the set of t for which limn un(t) exists is measurable. Show that a function 
u(t) that is limn un(t) when the limit exists and is 0 otherwise is measurable. 

4.16. (Lebesgue integration) For each integer n ≥ 1, define un(t) = 2n rect(2n t − 1). Sketch 
the first few of these waveforms. Show that limn→∞ u (t) 0 for all t. Show that =
n

limn un(t) dt = limn un(t) dt. 

4.17. (L1 integrals)) (a) Assume that {u(t) : [−T/2, T/2]
→ R} is L1. Show that 

u(t) dt
 =
 u
+(t) dt − u−(t) dt ≤ |
u(t) dt.
|
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(b) Assume that {u(t) : [−T/2, T/2] C} is L1. Show that ���( ) dttu �
→


≤ |u(t)| dt.


Hint: Choose α such that α u(t) dt is real and nonnegative and |α| = 1. Use part (a) on 
αu(t). 

4.18. (L2 equivalence) Assume that {u(t) : [−T/2, T/2] C} and {v(t) : [−T/2, T/2] C} are 
L2 functions. 

→ → 

(a) Show that if u(t) and v(t) are equal a.e., then they are L2 equivalent. 
(b) Show that if u(t) and v(t) are L2 equivalent, then for any ε >  0, the set {t : u(t) − 
v(t)|2 ≥ ε} has zero measure. 

|

(c) Using (b), show that µ{t : |u(t) − v(t)| > 0} = 0 ,  i.e., that u(t) =  v(t) a.e. 

4.19. (Orthogonal expansions) Assume that {u(t) :  R C} is L2. Let {θk(t); 1 ≤ k <  ∞} be a →
set of orthogonal waveforms and assume that u(t) has the orthogonal expansion 

∞
u(t) =  ukθk(t). 

k=1 

Assume the set of orthogonal waveforms satisfy 

∞ 

θk(t)θj
∗(t) dt =	

0 for k =� j 
Aj for k = j,−∞ 

where {Aj } is an arbitrary set of positive numbers. Do not concern yourself with conver­
gence issues in this exercise. 
(a) Show that each uk can be expressed in terms of −∞

∞ 
u(t)|2dt in terms of {uk}, and {Ak}. 

(c) Suppose that 

∞ 
u(t)θk

∗(t) dt and Ak. 

(b) Find the energy
 |
−∞ 

v(t) =  k vkθk(t) where v(t) also has finite energy. Express 
∞ 

u(t)v∗(t) dt as a function of {uk, vk, Ak; k ∈ Z}. −∞ 

4.20. (Fourier series) (a) Verify that (4.22) and (4.23) follow from (4.20) and (4.18) using the

transformation u(t) =  v(t + ∆). 

(b) Consider the Fourier series in periodic form, w(t) =  k ŵke

2πikt/T where ŵk = � T/2 
w(t)e−2πikt/T dt.	

� T/2+∆ 
w(t)e−2πikt/T dt is(1/T ) −T/2 Show that for any real ∆, (1/T ) −T/2+∆


also equal to ŵk, providing an alternate derivation of (4.22) and (4.23).


4.21. Equation (4.27) claims that 

n 	

u(t) − ûk,mθk,m(t) 
2 

lim
 dt = 0 

n→∞,	→∞ 

m=−n k=−	 

(a) Show that the integral above is non-increasing in both 
 and n. 
(b) Show that the limit is independent of how n and 
 approach ∞. Hint: See Exercise 4.4. 
(c) More generally, show that the limit is the same if the pair (k,m), k ∈ Z, m  ∈ Z is 
ordered in an arbitrary way and the limit above is replaced by a limit on the partial sums 
according to that ordering. 
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136 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS 

4.22. (Truncated sinusoids) (a) Verify (4.24) for L2 waveforms, i.e., show that � n
2 

lim
 dt = 0.

n→∞ 

u(t) − um(t) 
m=−n 

(b) Break the integral in (4.28) into separate integrals for |t| > (n + 2
1)T and |t| ≤ (n+ 2

1)T . 
Show that the first integral goes to 0 with increasing n. 
(c) For given n, show that the second integral above goes to 0 with increasing 
. 

4.23. (Convolution) The left side of (4.40) is a function of t. Express the Fourier transform of 
this as a double integral over t and τ . For each t, make the substitution r = t − τ and 
integrate over r. Then integrate over τ to get the right side of (4.40). Do not concern 
yourself with convergence issues here. 

4.24. (Continuity of L1 transform) Assume that {u(t) :  R C} is L1 and let û(f) be its Fourier 
transform. Let ε be any given positive number. 

→

(a) Show that for sufficiently large T , |t|>T |u(t)e−2πift − u(t)e−2πi(f−δ)t| dt < ε/2 for all f 
and all δ >  0. 
(b) For the ε and T selected above, show that |t|≤T |u(t)e−2πift − u(t)e−2πi(f−δ)t| dt < ε/2 
for all f and sufficiently small δ >  0. This shows that û(f) is continuous. 

4.25. (Plancherel) The purpose of this exercise is to get some understanding of the Plancherel 
theorem. Assume that u(t) is  L2 and has a Fourier transform û(f). 
(a) Show that û(f) − ûA(f) is the Fourier transform of the function xA(t) that is 0 from 
−A to A and equal to u(t) elsewhere. 

∞ ∞2dt is finite, the integral 2 dt must go to 0 as A(b) Argue that since
 u(t)
 xA(t)|
 |
 |
 |
 →
−∞ −∞
∞. Use whatever level of mathematical care and common sense that you feel comfortable 
with. 
(c) Using the energy equation (4.45), argue that 

∞ 

û(f) − ûA(f) 2 dt = 0.lim
 |
 |

A→∞ −∞ 

Note: This is only the easy part of the Plancherel theorem. The difficult part is to show 
the existence of û(f). The limit as A → ∞ of the integral 

� 
−
A
A u(t)e−2πift dt need not exist 

for all f , and the point of the Plancherel theorem is to forget about this limit for individual 
f and focus instead on the energy in the difference between the hypothesized û(f) and the 
approximations. 

4.26. (L2 functions) Assume that {u(t) :  R C} and {v(t) :  R C} are L2 and that a and b→ →
are complex numbers. Show that au(t) +  bv(t) is  L2. For  T >  0, show that u(t − T ) and 
u( t ) are L2 functions.T 

4.27. (Relation of Fourier series to Fourier integral) Assume that {u(t) : [−T/2, T/2] C} is→
L2. Without being very careful about the mathematics, the Fourier series expansion of 
{u(t)} is given by 

u(t) = lim u(	)(t) where u(	)(t) =  ûke 2πikt/T rect( 
	→∞ 

k=−	 

ûk =
1 

� T/2 

u(t)e−2πikt/T dt. 
T −T/2 

t

)


T
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(a) Does the above limit hold for all t ∈ [−T/2, T/2]? If not, what can you say about the 
type of convergence? 

(b) Does the Fourier transform û(f) =  
� 
−
T/
T/
2
2 u(t)e−2πift dt exist for all f? Explain. 

(c) The Fourier transform of the finite sum u(	)(t) is  ̂u(	)(f) =  
�	 

=−	 ûkT sinc(fT  − k). In k

the limit 
 → ∞, û(f) = lim	→∞ û
(	)(f), so 

û(f) = lim ûkT sinc(fT  − k). 
	→∞ 

k=−	 

Give a brief explanation why this equation must hold with equality for all f ∈ R. Also show 
that {û(f) :  f ∈ R} is completely specified by its values, {û(k/T ) :  k ∈ Z} at multiples of 
1/T . 

4.28. (sampling) One often approximates the value of an integral by a discrete sum; i.e., 

∞ � 
g(t) dt ≈ δ g(kδ). 

k−∞ 

(a) Show that if u(t) is a real finite-energy function, low-pass limited to W Hz, then the 
above approximation is exact for g(t) =  u2(t) if  δ ≤ 1/(2W); i.e., show that 

∞ 

u 2(t) dt = δ 
� 

u 2(kδ). 
k−∞ 

(b) Show that if g(t) is a real finite-energy function, low-pass limited to W Hz, then for 
δ ≤ 1/(2W), 

∞ � 
g(t) dt = δ g(kδ). 

k−∞ 

(c) Show that if δ >  1/2W, then there exists no such relation in general. 

4.29. (degrees of freedom) This exercise explores how much of the energy of a baseband-limited 
function {u(t) : [−1/2, 1/2] R} can reside outside the region where the sampling coef­→
ficients are nonzero. Let T = 1/(2W) = 1 and let n be a given positive even integer. Let 
uk = (−1)k for −n ≤ k ≤ n and uk = 0 for k > n. Show that u(n + 1) increases without 2| |

u(n + m + 
|
1 

|
1bound as the end point n is increased. Show that | 2)| > |u(n − m − 2)| for all 

integer m, 0  ≤ m < n. In other words, shifting the sample points by 1/2 leads to most of 
the sample point energy being outside the interval [−n, n]. 

4.30. (sampling theorem for [∆ − W, ∆ +  W)]) (a) Verify the Fourier transform pair in (4.70). 
Hint: Use the scaling and shifting rules on rect(f) sinc(t).↔
(b) Show that the functions making up that expansion are orthogonal. Hint: Show that 
the corresponding Fourier transforms are orthogonal. 
(c) Show that the functions in (4.74) are orthogonal. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



� 

� � 

138 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS 

4.31. (Amplitude limited functions) Sometimes it is important to generate baseband waveforms 
with bounded amplitude. This problem explores pulse shapes that can accomplish this 
(a) Find the Fourier transform of g(t) = sinc2(Wt). Show that g(t) is bandlimited to 
f ≤ W and sketch both g(t) and ĝ(f). (Hint: Recall that multiplication in the time 
domain corresponds to convolution in the frequency domain.) 
(b) Let u(t) be a continuous real L2 function baseband limited to f ≤ W (i.e., a function 
such that u(t) =  k u(kT )sinc (t/T − k) where T = 1/2W). Let v(t) =  u(t) ∗ g(t). Express 
v(t) in terms of the samples {u(kT ); k ∈ Z} of u(t) and the shifts {g(t − kT ); k ∈ Z} of 
g(t). Hint: Use your sketches in part (a) to evaluate g(t) ∗ sinc(t/T ). 
(c) Show that if the T -spaced samples of u(t) are non-negative, then v(t) ≥ 0 for all t. 
(d) Explain why k sinc(t/T − k) = 1 for all t. 
(e) Using (d), show that k g(t − kT ) =  c for all t and find the constant c. Hint: Use the 
hint in (b) again. 
(f) Now assume that u(t), as defined in part (b), also satisfies u(kT ) ≤ 1 for all k ∈ Z. 
Show that v(t) ≤ 2 for all t. 
(g) Allow u(t) to be complex now, with |u(kT )| ≤ 1. Show that |v(t)| ≤ 2 for all t. 

4.32. (Orthogonal sets) The function rect(t/T ) has the very special property that it, plus its time 
and frequency shifts, by kT and j/T respectively, form an orthogonal set. The function 
sinc(t/T ) has this same property. We explore other functions that are generalizations 
of rect(t/T ) and which, as you will show in parts (a) to (d), have this same interesting 
property. For simplicity, choose T = 1.  
These functions take only the values 0 and 1 and are allowed to be non-zero only over [-1, 
1] rather than [−1/2, 1/2] as with rect(t). Explicitly, the functions considered here satisfy 
the following constraints: 

p(t) =  p 2(t) for all t (0/1 property) (4.108) 
p(t) = 0 for |t| > 1 (4.109) 
p(t) =  p(−t) for all t (symmetry) (4.110) 
p(t) = 1  − p(t−1) for 0 ≤ t <  1/2. (4.111) 

Note: Because of property (4.110), condition (4.111) also holds for 1/2 < t  ≤ 1. Note also 
that p(t) at the single points t = ±1/2 does not effect any orthogonality properties, so you 
are free to ignore these points in your arguments. 

−1/2 1/2 

1 

rect(t) 

another choice 
of p(t) that 
satisfies (1) to (4). 

−1 −1/2 0 1/2 1 

(a) Show that p(t) is orthogonal to p(t−1). Hint: evaluate p(t)p(t−1) for each t ∈ [0, 1] 
other than t = 1/2. 
(b) Show that p(t) is orthogonal to p(t−k) for all integer k = 0.  �
(c) Show that p(t) is orthogonal to p(t−k)ei2πmt for integer m = 0 and � k = 0.  �
(d) Show that p(t) is orthogonal to p(t)e2πimt for integer m = 0. Hint: Evaluate 
p(t)e−2πimt + p(t−1)e−2πim(t−1)

�
. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



�
� 

� 

� � 

� 
�

�
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(e) Let h(t) = p̂(t) where p̂(f) is the Fourier transform of p(t). If p(t) satisfies properties 
(1) to (4), does it follow that h(t) has the property that it is orthogonal to h(t − k)e2πimt 

whenever either the integer k or m is non-zero?

Note: Almost no calculation is required in this problem.


4.33. (limits) Construct an example of a sequence of L2 functions v(m)(t), m  ∈ Z, m  >  0 such that 
lim v(m)(t) = 0 for all t but for which l.i.m. v(m)(t) does not exist. In other words show 

m→∞ m→∞
that pointwise convergence does not imply L2 convergence. Hint: Consider time shifts. 

4.34. (aliasing) Find an example where û(f) is 0 for |f | > 3W and nonzero for W < |f | < 3W 
but where, with T = 1/(2W), s(kT ) =  v0(kT ) (as defined in (4.77)) for all k ∈ Z). Hint: 
Note that it is equivalent to achieve equality between ŝ(f) and û(f) for |f | ≤ W. Look  at  
Figure 4.10. 

4.35. (aliasing) The following exercise is designed to illustrate the sampling of an approximately 
baseband waveform. To avoid messy computation, we look at a waveform baseband-limited 
to 3/2 which is sampled at rate 1 (i.e., sampled at only 1/3 the rate that it should be 
sampled at). In particular, let u(t) = sinc(3t). 
(a) Sketch û(f). Sketch the function v̂m(f) = rect(f − m) for each integer m such that 
vm(f) = 0. Note that û(f) =  m v̂m(f). 
(b) Sketch the inverse transforms vm(t) (real and imaginary part if complex). 
(c) Verify directly from the equations that u(t) =  vm(t). Hint: this is easiest if you 
express the sine part of the sinc function as a sum of complex exponentials. 
(d) Verify the sinc-weighted sinusoid expansion, (4.73). (There are only 3 nonzero terms 
in the expansion.) 
(e) For the approximation s(t) =  u(0)sinc(t), find the energy in the difference between u(t) 
and s(t) and interpret the terms. 

4.36. (aliasing) Let u(t) be the inverse Fourier transform of a function û(f) which is both L1 and 
L2. Let vm(t) =  û(f)rect(fT−� m)e2πift df and let v(n)(t) =  −

n
n vm(t). 

(a) Show that |u(t) − v(n)(t)| ≤  f |≥(2n+1)/T |û(f)| df and thus that u(t) = limn→∞ v
(n)(t) 

for all t. 
|

(b) Show that the sinc-weighted sinusoid expansion of (4.76) then converges pointwise for 
all t. Hint: for any t and any ε >  0, choose n so that |u(t) − vn(t)| ≤ ε/2. Then for each 
m, |m| ≤ n, expand 

ε 
vm(t) in a sampling expansion using enough terms to keep the error 

less than .4n+2

4.37. (aliasing) (a) Show that ŝ(f) in (4.83) is L1 if û(f) is. 
(b) Let û(f) =  rect[k2(f − k)]. Show that û(f) is  L1 and L2. Let T = 1 for ŝ(f) and k=0 

show that ŝ(f) is not  L2. Hint: Sketch û(f) and ŝ(f). 
(c) Show that û(f) does not satisfy lim û(f) f 1+ε = 0.  � |f |→∞ | |

4.38. (aliasing) Let u(t) =  rect[k2(t − k)] and show that u(t) is  L2. Find s(t) =� k=0 � 
k u(k)sinc(t − k) and show that it is neither L1 nor L2. Find k u

2(k) and explain 
why the sampling theorem energy equation (4.66) does not apply here. 
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