
Chapter 10

Trellis representations of binary
linear block codes

We now return to binary linear block codes and discuss trellis representations, particularly
minimal trellis representations. The three main reasons for doing so are:

(a) Trellis-based (Viterbi algorithm) decoding is one of the most efficient methods known for
maximum-likelihood (ML) decoding of general binary linear block codes;

(b) The complexity of a minimal trellis gives a good measure of the complexity of a code,
whereas the parameters (n, k, d) do not;

(c) Trellis representations are the simplest class of graphical representations of codes, which
will be a central concept in our later discussion of capacity-approaching codes.

The topic of trellis complexity of block codes was an active research area in the 1990s. We will
summarize its main results. For an excellent general review, see [A. Vardy, “Trellis structure of
codes,” in Handbook of Coding Theory, Elsevier, 1998.]

10.1 Definition

We saw in the previous chapter that certain binary linear block codes could be represented as
terminated convolutional codes, and therefore have trellis representations.

Example 1. (SPC codes) Any (n, n− 1, 2) single-parity-check (SPC) code has a two-state trellis

representation like that shown in Figure 1 (see Exercise 9.4).

0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n* * * * � �1� � 1� � 1�� 1� � 1� * *HH1H
HHH

HHH
HHH

HHH ��1 H 1n
�1�� �H 1n - � 1 H 1n

�
- � 1 H 1n -j � 1 H 1n

�
j � 1 H 1n

�
j

HHH
0 j 0 - 0 j 0 - 0 j

Figure 1. Two-state trellis for a binary (n, n − 1, 2) single-parity-check code (n = 7).

In this chapter, we will show that all binary linear block codes have trellis (finite-state) repre-
sentations. Indeed, we will show how to find minimal trellis representations.

135

��

136 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

In general, a trellis representation of a block code is a directed graph like that of Figure 1 in
which there is one starting state (root) at time 0, one ending state (goal, “toor”) at time N , and
state spaces Sk of size greater than one at all N − 1 intermediate times k, 1 ≤ k < N . All edges
(branches, state transitions) go from a state at some time k to a state at the next time k + 1.
Each edge is labelled by an n-tuple of output symbols. The set of all possible codewords is in
one-to-one correspondence with the set of all possible paths through the trellis. The codeword
associated with any particular path is the sequence of corresponding n-tuple labels.

Example 2. ((8, 4, 4) RM code.) Figure 2 shows a trellis representation of an (8, 4, 4) binary
Reed-Muller code with generators {11110000, 10101010, 11001100, 11111111}. Here two output
symbols (bits) are associated with each branch. It can be seen that each of the 16 codewords in
this code corresponds to a unique path through this trellis.

*����

HH HHH HHH H-

00
*��
H

HHH-

j

*��
Hj

00
1111 �

�

�n n 1111

�

01 01

--

**���
H

�
H

HHH
HHH--jj

jj

**���
H

�
H

10 10 01
10��

10n n n

��

10

��

��

Figure 2. Four-state trellis for (8, 4, 4) Reed-Muller code.

Given a trellis representation of a block code and a sequence of received symbol log likelihoods,
the Viterbi algorithm (VA) may be used to find the trellis path with greatest log likelihood—
i.e., to perform ML decoding of the code.

There are various measures of the complexity of a trellis, which are all related to VA decoding
complexity. The most common is perhaps the state complexity profile, which is just the sequence
of state space sizes. For example, the state complexity profile of the trellis of Figure 1 is
{1, 2, 2, 2, 2, 2, 2, 1}, and that of the trellis of Figure 2 is {1, 4, 4, 4, 1}. The state complexity of a
trellis is often defined as the maximum state space size; e.g., 2 or 4, respectively, for these two
trellises. The branch complexity profile is the sequence of numbers of branches in each section—
e.g., {2, 4, 4, 4, 4, 4, 2} and {4, 8, 8, 4} for the trellises of Figures 1 and 2, respectively— and the
branch complexity is the maximum number of branches in any section— e.g., 4 or 8, respectively.
The complexity of VA decoding is more precisely measured by the branch complexity profile,
but any of these measures gives a good idea of VA decoding complexity. 1

10.2 Minimal trellises and the state space theorem

A minimal trellis for a given linear block code will be defined as a trellis that has the minimum
possible state space size at each time. It is not immediately clear that there exists a single trellis
that minimizes every state space size, but for linear block codes, we will see that there exists a
canonical minimal trellis with this property. It turns out that the canonical minimal trellis also
minimizes every other trellis complexity measure, including VA decoding complexity, so that we
need not worry whether we are minimizing the right quantity.

1The most precise measure of VA decoding complexity is 2|E|− |V |+ 1, where |E| and |V | denote the numbers
of edges and vertices in the graph of the trellis, respectively.

-- -n n n
@

00 �

R-Hj
@@

@00nHHH1100
 0011 n
01HHHHj

*���
�
��
 - -- -n n n n

10 01 01

10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM 137

10.2.1 The state space theorem for linear block codes

The state space theorem is an easy but fundamental theorem that sets a lower bound on the state
space size of a trellis for a linear block code at any time, and also indicates how to construct a
canonical minimal trellis. For simplicity, we will prove it here only for binary linear block codes,
but it should be clear how it generalizes to arbitrary linear codes. (In fact, it generalizes to
arbitrary codes over groups.)

The reader should think of a trellis as defining a state-space realization of a time-varying finite-
state discrete-time linear system, where these terms are used as in system theory. The time axis
I of the system is some subinterval of the integers Z; e.g., a finite subinterval I = [0, N] ⊆ Z.

In a state-space realization, a state space Sk is defined at each time k ∈ I. The defining
property of a state space is the Markov property :

Markov property. The state space Sk of a system at time k has the Markov property if, given
that the system is in a certain state sk ∈ Sk at time k, its possible future trajectories depend
only on sk and not otherwise on the previous history of the system. In other words, the state
sk ∈ Sk is a sufficient statistic for the past with respect to prediction of possible futures.

Let the past at time k be the set P = (−∞, k) ∩ I of time indices in I prior to time k, and
the future at time k be the set F = [k,∞) ∩I of time indices at time k or later. Given a linear
code C, the state space theorem may be expressed in terms of certain linear codes defined on
the past P and future F , as follows.

Given any subset J ⊆ I, the subcode CJ is defined as the set of codewords whose components
are equal to 0 on the complement of J in I. It is possible to think of CJ either as a code of
length |J | or as a code of length |I| in which all symbols not in J equal 0. It should be clear
from the context which of these two viewpoints is used.

The subcode CJ is evidently a subset of the codewords in C that has the group property, and
therefore is a linear code. In coding theory, CJ is called a shortened code of C. Because CJ ⊆ C,
the minimum Hamming distance of CJ is at least as great as that of C.

Similarly, given J ⊆ I, the projection C|J is defined as the set of all projections of codewords
of C onto J . By projection, we mean either zeroing of all coordinates whose indices are not in
J , or throwing away (puncturing) all such coordinates. Correspondingly, it is possible to think
of C|J either as a code of length |J | or as a code of length |I| in which all symbols not in J
equal 0. In coding theory, C|J is called a punctured code of C.

The projection C|J evidently inherits the group property from C, and therefore is also a linear
code defined on J . Moreover, CJ is evidently a subcode of C|J .

Example 2 (cont.) For the (8, 4, 4) code illustrated in Figure 2, regarding the “past” as the
first two time units or first four bits, the subcode CP consists of the two codewords CP =
{00000000, 11110000}. This code may be regarded as effectively a (4, 1, 4) binary repetition
code defined on the past subinterval P = [0, 1, 2, 3]. The projection on this subinterval is the set
C|P = {0000, 0011, 1100, 1111, 0101, 0110, 1001, 1010}, which is a (4, 3, 2) binary linear SPC code
that has the (4, 1, 4) code as a subcode.

Now for any time k ∈ I, let P and F denote the past and future subintervals with respect
to k, and let CP , C|P , CF and C|F be the past and future subcodes and projections, respectively.

138 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Then C must have a generator matrix of the following form:
⎡ ⎤

G(CP) 0
⎣ 0 G(CF) ,⎦

G(C|P /CP) G(C|F /CF)

where [G(CP), 0] is a generator matrix for the past subcode CP , [0, G(CF)] is a generator matrix
for the future subcode CF , and [G(C|P /CP), G(C|F /CF)] is an additional set of linearly indepen-
dent generators that together with [G(CP), 0] and [0, G(CF)] generate C. Moreover, it is clear
from the form of this generator matrix that G(CP) and G(C|P /CP) together generate the past
projection C|P , and that G(CF) and G(C|F /CF) generate the future projection C|F .

The state code S will be defined as the linear code generated by this last set of generators,
[G(C|P /CP), G(C|F /CF)]. The dimension of the state code is evidently

dim S = dim C − dim CP − dim CF .

Moreover, by the definitions of CP and CF , the state code cannot contain any codewords that
are all-zero on the past or on the future. This implies that the projections S|P and S|F on the
past and future are linear codes with the same dimension as S, so we also have

dim S = dim S|P = dim C|P − dim CP ;
dim S = dim S|F = dim C|F − dim CF .

Example 2 (cont.) Taking P as the first four symbols and F as the last four, the (8, 4, 4) code
has a generator matrix ⎡ ⎤

1111 0000
⎥⎢ 0000 1111 ⎢ ⎥ ⎦⎣ 1010 1010

.

1100 1100

Here the state code S is generated by the last two generators and has dimension 2. The past
and future projections of the state code evidently also have dimension 2.

In view of the generator matrix above, any codeword c ∈ C may be expressed uniquely as the
sum of a past codeword cP ∈ CP , a future codeword cF ∈ CF , and a state codeword s ∈ S.
We then say that the codeword c is associated with the state codeword s. This allows us to
conclude that the state codewords have the Markov property, and thus may be taken as states:

Lemma 10.1 (Markov property) For all codewords c ∈ C that are associated with a given
state codeword s ∈ S, the past projection c|P has the same set of possible future trajectories. On
the other hand, if two codewords c and c′ are associated with different state codewords, then the
sets of possible future trajectories of c|P and c′ |P are disjoint.

Proof. If c is associated with s, then c = cP + cF + s for some cP ∈ CP and cF ∈ CF . Hence
c|P = (cP)|P + s|P and c|F = (cF)|F + s|F . Thus, for every such c|P , the set of possible future
trajectories is the same, namely the coset CF + s|F = {(cF)|F + s|F | cF ∈ CF }.

If c and c′ are associated with different state codewords s and s′, then the sets of possible
future trajectories are CF + s|F and CF + s′ |F , respectively; these cosets are disjoint because the
difference s|F − s′ |F is not a codeword in CF .

In other words, a codeword c ∈ C is in the coset CP + CF + s if and only if c|P ∈ C|P is in the
coset CP + s|P and c|F ∈ C|F is in the coset CF + s|F .

⋃ () ()

139 10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM

This yields the following picture. The set of past projections associated with a given state
codeword s is CP + s|P = {(cP)|P + s|P | cP ∈ CP }. For any past projection in this set, we have
the same set of possible future trajectories, namely CF + s|F . Moreover, these past and future
subsets are disjoint. Therefore the entire code may be written as a disjoint union of Cartesian
products of past and future subsets:

C = CP + s|P × CF + s|F .
s∈S

n
CP

n
������ 0 CF (4, 1, 4) ���

(4, 1, 4)�PP PPPP
������� n�

HHHHHHHH
�nCP + s|P CF + s|F n � (4, 1, 4) + 1100(4, 1, 4) + 1100

XXXXXXX�· · · n n· · ·
�� ���� XXXXXXX ������� nPPPPPP

sn
(4, 1, 4) + 1010 (4, 1, 4) + 1010 n
(4, 1, 4) + 0110 n(4, 1, 4) + 0110

Figure 3. (a) Two-section trellis for generic code; (b) two-section trellis for (8, 4, 4) code.

Figure 3(a) is a two-section trellis that illustrates this Cartesian-product decomposition for a
general code. The states are labelled by the state codewords s ∈ S to which they correspond.
Each edge represents an entire set of parallel projections, namely CP +s|P for past edges and CF +
s|F for future edges, and is therefore drawn as a thick line. The particular path corresponding
to s = 0 is shown, representing the subcode CP + CF , as well as a generic path corresponding to
a general state s, representing CP + CF + s.

Example 2 (cont.) Figure 3(b) is a similar illustration for our running example (8, 4, 4) code.
Here CP = CF = (4, 1, 4) = {0000, 1111}, so each edge represents two paths that are binary
complements of one another. The reader should compare Figure 3(b) to Figure 2 and verify
that these two trellises represent the same code.

It should now be clear that the code C has a trellis representation with a state space Sk at time
k that is in one-to-one correspondence with the state code S, and it has no trellis representation
with fewer states at time k. Indeed, Figure 3(a) exhibits a two-section trellis with a state space
Sk such that |Sk| = |S|. The converse is proved by noting that no two past projections c|P , c′

that do not go to the same state in Figure 3(a) can go to the same state in any trellis for
|P
C,

because by Lemma 10.1 they must have different sets of future continuations.

We summarize this development in the following theorem:

Theorem 10.2 (State space theorem for binary linear block codes) Let C be a binary
linear block code defined on a time axis I = [0, N], let k ∈ I, and let CP , C|P , CF and C|F be
the past and future subcodes and projections relative to time k, respectively. Then there exists
a trellis representation for C with |Sk | = 2(dim S) states at time k, and no trellis representation
with fewer states, where dim S is given by any of the following three expressions:

dim S = dim C − dim CP − dim CF ;
= dim C|P − dim CP ;
= dim C|F − dim CF .

We note that if we subtract the first expression for dim S from the sum of the other two, then
we obtain yet another expression:

dim S = dim C|P + dim C|F − dim C.

140 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Exercise 1. Recall the |u|u + v| construction of a Reed-Muller code RM(r,m) with length
n = 2m and minimum distance d = 2m−r :

RM(r,m) = {(u,u + v) | u ∈ RM(r,m − 1),v ∈ RM(r − 1, m − 1)}.
Show that if the past P is taken as the first half of the time axis and the future F as the second
half, then the subcodes CP and CF are both effectively equal to RM(r − 1, m − 1) (which has
the same minimum distance d = 2m−r as RM(r,m)), while the projections C|P and C|F are
both equal to RM(r,m− 1). Conclude that the dimension of the minimal central state space of
RM(r,m) is

dim S = dim RM(r,m − 1) − dim RM(r − 1, m − 1).

Evaluate dim S for all RM codes with length n ≤ 32.

Similarly, show that if the past P is taken as the first quarter of the time axis and the future F
as the remaining three quarters, then the subcode CP is effectively equal to RM(r−2, m−2), while
the projection C|P is equal to RM(r,m − 2). Conclude that the dimension of the corresponding
minimal state space of RM(r,m) is

dim S = dim RM(r,m − 2) − dim RM(r − 2, m − 2).

Using the relation dim RM(r,m) = dim RM(r,m − 1) + dim RM(r − 1, m − 1), show that
dim RM(r,m− 2) − dim RM(r − 2, m− 2) = dim RM(r,m− 1) − dim RM(r − 1, m− 1).

Exercise 2. Recall that the dual code to a binary linear (n, k, d) block code C is defined as the
orthogonal subspace C⊥, namely the set of of all n-tuples that are orthogonal to all codewords
in C, and that C⊥ is a binary linear block code whose dimension is dim C⊥ = n − k.

Show that for any partition of the time axis I of C into past P and future F , the subcode
(C⊥)P is equal to the dual (C|P)⊥ of the projection C|P , and vice versa. [Hint: notice that (a,0)
is orthogonal to (b, c) if and only if a is orthogonal to b.]

Conclude that the minimal state spaces of C and C⊥ at any time k have the same size.

10.2.2 Canonical minimal trellis representation

We now show that we can construct a single trellis for C such that the state space is minimal
according to the state space theorem at each time k.

The construction is straightforwardly based on the development of the previous subsection.
We define a state space Sk at each time k ∈ I = [0, N] corresponding to the state code S at
time k. Note that S0 is trivial, because C|F = CF = C, so dim S0 = 0; similarly dim SN = 0.

Every codeword c ∈ C passes through a definite state in Sk corresponding to the state codeword
s ∈ S in the unique decomposition c = cP + cF + s. It thus goes through a well-defined sequence
of states (s0, s1, . . . , sN), which defines a certain path through the trellis. Each edge in each
such path is added to the trellis. The result must be a trellis representation of C.

Example 1 (cont.) We can now see that the two-state trellis of Figure 1 is a canonical minimal
trellis. For each time k, 0 < k < N , CP is the set of all even-weight codewords that are all-zero
on F , which is effectively a (k, k−1, 2) SPC code, and C|P is the universe (k, k, 1) code consisting
of all binary k-tuples. There are thus two states at each time k, 0 < k < N , one reached by
all even-weight pasts, and the other by all odd-weight pasts. A given codeword passes through
a well-defined sequence of states, and makes a transition from the zero (even) to the nonzero
(odd) state or vice versa whenever it has a symbol equal to 1.

141 10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM

Example 2 (cont.) Similarly, the four-state trellis of Figure 2 is a canonical minimal trellis.
For k = 1, CP is the trivial (2, 0,∞) code, so each of the four past projections at time k = 1
leads to a different state. The same is true at time k = 3 for future projections. Each of the 16
codewords goes through a well-defined state sequence (s0, s1, s2, s3, s4), and the set of all these
sequences defines the trellis.

10.2.3 Trellis-oriented generator matrices

It is very convenient to have a generator matrix for C from which a minimal trellis for C and
its parameters can be read directly. In this subsection we define such a generator matrix, show
how to find it, and give some of its properties.

The span of a codeword will be defined as the interval from its first to last nonzero symbols.
Its effective length will be defined as the length of this span.

A trellis-oriented (or minimum-span) generator matrix will be defined as a set of k = dim C
linearly independent generators whose effective lengths are as short as possible.

Concretely, a trellis-oriented generator matrix may be found by first finding all codewords
with effective length 1, then all codewords of effective length 2 that are not linearly dependent
on codewords of effective length 1, . . . , all codewords of effective length i that are not linearly
dependent on codewords of lower effective length, . . . , until we have k independent generators.

The following theorem shows how to check whether a given generator matrix is trellis-oriented,
and also suggests how to reduce any given generator matrix to one that is trellis-oriented.

Theorem 10.3 (Trellis-oriented generator matrices) A set of k linearly independent gen-
erators is a trellis-oriented generator matrix if and only if the starting times of all spans are
distinct and the ending times of all spans are distinct.

Proof. If all starting times and ending times are distinct, then given a linear combination (with
nonzero coefficients) of a certain subset of generators, the starting time and ending time of the
combination are the least and greatest starting and ending times of the given subset of generators.
It follows that the generators that combine to form any non-generator codeword have effective
lengths no greater than the effective length of that codeword, so the given generators are indeed
a set of generators whose effective lengths are as short as possible.

Conversely, if two starting or ending times are not distinct, then the sum of the two corre-
sponding generators is a codeword whose effective length is shorter than that of at least one
of the two generators. If this generator is replaced by this codeword, then we obtain a set of
linearly independent generators of which one has a shorter effective length, so the original set
was not trellis-oriented.

The second part of the proof suggests a simple greedy algorithm for finding a trellis-oriented
generator matrix from a given generator matrix. If the starting or ending times of two generators
in the given matrix are not distinct, then replace the generator with greater effective length by
the sum of the two generators, which must necessarily have a shorter effective length. This
algorithm reduces the aggregate effective length in each step, and therefore must terminate after
a finite number of steps in a trellis-oriented generator matrix.

142 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Example 2 (cont.) The standard generator matrix for the (8, 4, 4) RM code is as follows:
⎡ ⎤

1111 0000
⎥⎢ 1010 1010 ⎢ ⎥ ⎦⎣ 1100 1100

.

1111 1111

The ending times are all distinct, but the starting times are all the same. Adding the first
generator to all others results in ⎡

1111 0000	
⎤

⎥⎢ 0101 1010 ⎢ ⎥ ⎦⎣ 0011 1100
.

0000 1111

All starting and ending times are now distinct, so this generator matrix is trellis-oriented.

Exercise 3. Consider the following generator matrix for the (16, 5, 8) RM code, which follows
directly from the |u|u + v| construction:

⎡
1111111100000000

⎤

⎢ 1111000011110000 ⎥ ⎢	 ⎥ ⎥⎢ 1100110011001100 . ⎢	 ⎥ ⎦⎣	 1010101010101010
1111111111111111

Convert this generator matrix to a trellis-oriented generator matrix.

Exercise 4 (minimum-span generators for convolutional codes).

(a) Let C be a rate-1/n binary linear convolutional code generated by a rational n-tuple g(D),
and let g′(D) be the canonical polynomial n-tuple that generates C. Show that the generators
{Dkg′(D), k ∈ Z} are a set of minimum-span generators for C.

(b) Show that the greedy algorithm of Section 9.2.4 chooses a set of minimum-span generators
for a rate-k/n binary linear convolutional code.

The key property of a trellis-oriented generator matrix, used in the first part of the proof
of Theorem 10.3, is that the starting and ending times of a linear combination (with nonzero
coefficients) of a subset of generators are the earliest and latest starting times of the component
generators, respectively. We state this important observation as a lemma:

Lemma 10.4 (Generators for subcodes) Given a trellis-oriented generator matrix for a
linear code C, if [k, k′] ⊆ I is any subinterval of the time axis I, then the subcode C[k,k�] is
the set of all linear combinations of generators whose spans are contained in [k, k′].

Thus the dimensions of each past and future subcode may be read directly from a trellis-
oriented generator matrix. Moreover, for any partition into past and future, the state subcode
S is generated by those generators which lie neither wholly in the past nor wholly in the future.
The dimension of the minimal state space is the number of such active generators.

143 10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM

Example 1 (cont.) A trellis-oriented generator matrix for the (7, 6, 2) SPC code of Figure 1 is
⎡ ⎤

1100000
⎢ 0110000 ⎥ ⎢ ⎥ ⎥⎢ 0011000 ⎢ ⎥ ⎥⎢ 0001100

.
⎢ ⎥ ⎦⎣	 0000110

0000011

At each cut time k, only one generator is active, so each state space Sk has dimension 1.

Example 2 (cont.) For the (8, 4, 4) code, we constructed the following trellis-oriented generator
matrix: ⎡

1111 0000
⎤

⎢ 0101 1010 ⎥ ⎢ ⎣ 0011 1100
⎥ ⎦ .

0000 1111

There are two active generators at each of the three cut times corresponding to a nontrivial
state space in the trellis of Figure 2, so the four-state trellis of Figure 2 is minimal.

Notice from this matrix that the complete state complexity profile of a minimal 8-section
trellis for this code is as follows: {1, 2, 4, 8, 4, 8, 4, 2, 1}. The maximum state complexity is 8, so
a 4-section trellis somewhat masks the state complexity of a full minimal trellis.

Exercise 3 (cont.). For the (16, 5, 8) code given earlier, determine the state complexity profile

of a minimal trellis.

Exercise 5. (Trellis complexity of MDS codes, and the Wolf bound)

Let C be a linear (n, k, d = n − k + 1) MDS code over a finite field Fq. Using the property that
in an MDS code there exist q − 1 weight-d codewords with support J for every subset J ⊆ I of
size |J | = d, show that a trellis-oriented generator matrix for C must have the following form:

⎡
xxxx0000

⎤

⎢ 0xxxx000 ⎥ ⎢ ⎥ ⎥⎢ 00xxxx00 , ⎢ ⎥ ⎦⎣	 000xxxx0
0000xxxx

where xxxx denotes a span of length d = n − k + 1, which shifts right by one position for each
of the k generators (i.e., from the interval [1, n − k + 1] to [k, n]).

For example, show that binary linear (n, n − 1, 2) and (n, 1, n) block codes have trellis-oriented
generator matrices of this form.

Conclude that the state complexity profile of any (n, k, d = n − k + 1) MDS code is

2{1, q, q , . . . , |S|max, |S|max, . . . , q 2 , q, 1},

where |S|max = qmin(k, n−k).

Using the state space theorem and Exercise 2, show that this is the worst possible state
complexity profile for a (n, k) linear code over Fq. This is called the Wolf bound.

144 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

10.2.4 Branch complexity

Most of the work on trellis complexity has focussed on state complexity. However, branch
complexity is in some respects more fundamental. It is a better measure of Viterbi algorithm
decoding complexity. Also, as we shall see, it cannot be reduced by sectionalization.

The time axis for branches is not the same as the time axis I = [0, N] for states. Branches
occur at symbol times, whereas states occur between symbol times. Thus there are only N
branch times, say [0, N), whereas there are N + 1 state times.

A branch at time k may be identified by a triple (sk , ck , sk+1), where (sk , sk+1) is a valid state
transition, and ck is a valid code symbol that may be generated during that transition. Thus
there may be more than one branch (parallel transition) associated with a given state transition,
if there is more than one output possible during that transition. The branch space at time k is
the set of all possible branches, Bk = {(sk , ck , sk+1)}.

Theorem 10.5 (Branch space theorem) Let C be a binary linear block code defined on a
time axis I = [0, N]. Then in any minimal trellis for C, for any k ∈ I, the branch space
Bk = {(sk , ck , sk+1)} is a linear vector space with dimension

dim Bk = dim C − dim C[0,k) − dim C[k+1,N).

where C|[0,k) and C|[k+1,N) are the subcodes defined on [0, k) and [k + 1, N), respectively.

Proof In a minimal trellis, the state spaces Sk and Sk+1 are linear vector spaces of minimum
dimension. The set of all codewords that pass through a given branch (sk , ck , sk+1) is the set
that have a past projection c|P = (cP)|P + s|P consistent with the state sk associated with s|P ,
a projection c|{k} at time k equal to ck , and a future projection (with respect to time k + 1)
c|F = (cF)|F + s|F consistent with the state sk+1 associated with s|P . Thus two codewords
go through the same branch at time k if and only if they differ only by an element of the past
subcode C[0,k) and/or an element of the future subcode C[k+1,N). It follows that the branch space
is a linear vector space with dimension dim Bk = dim C − dim C[0,k) − dim C[k+1,N).

Since dim C[0,k) is equal to the number of generators in a trellis-oriented generator matrix whose
span lies in [0, k), and dim C[k+1,N) is the number that lie in [k + 1, N), we can read the branch
complexity profile by inspection from a trellis-oriented generator matrix. In other words, dim Bk

is equal to the number of trellis-oriented generators that are active at symbol time k.

Example 2 (cont.) For the (8, 4, 4) code, the trellis-oriented generator matrix given above shows
that the branch complexity profile of a minimal 8-section trellis is as follows: {2, 4, 8, 8, 8, 8, 4, 2}.
The maximum branch complexity is 8, which here equals the maximum state complexity.

Exercise 3 (cont.) Find the branch complexity profile of a minimal trellis for the (16, 5, 8) code.

10.2.5 Average dimension bounds, and asymptotics

Each generator in a trellis-oriented generator matrix contributes one dimension to the state and
branch spaces during the time that it is active; i.e., between its start and its end. More precisely,
if its span has length L, then it contributes to L − 1 state spaces and L branch spaces.

The one-dimensional code generated by each generator may in fact be realized by a small
time-varying state machine that has a state space of size 1 when it is inactive and of size 2 when
it is active, illustrated for the generator 11110000 in Figure 4.

10.3.	 THE PERMUTATION AND SECTIONALIZATION PROBLEMS 145

0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n��HH1H	 �
*

j	 � 1H 1n 1 - 1n 1 - 1n

Figure 4. Two-state trellis for the one-dimensional code generated by the generator 11110000.

A minimal trellis is in effect the “product” of component trellises of this type, with the minimal
state space at each time being the Cartesian product of the state spaces of each of the component
trellises, and the branch space the product of the component branch spaces.

It follows that the sum of the dimensions of all state spaces is equal to the sum of the effective
lengths of all generators, and the sum of the dimensions of all branch spaces is equal to the sum
of the span lengths. Since each of the k generators must have span length at least d and effective
length at least d − 1, the sum of the branch space dimensions must be at least kd, and the sum
of the state space dimensions must be at least k(d − 1).

Since there are n branch spaces and n − 1 nontrivial state spaces, the average branch space
dimension must be at least kd/n, and the average nontrivial state space dimension must be at
least k(d − 1)/(n − 1). Since the maximum dimension must be at least as large as the average
dimension, this implies the following average dimension bounds:

|B|max ≥ 2kd/n; |S|max ≥ 2k(d−1)/(n−1).

Note that we may write the branch complexity bound as |B|max ≥ 2γc , where γc = kd/n is the
nominal coding gain of a binary (n, k, d) code on an AWGN channel. Although rarely tight, this
bound is reasonably indicative for small codes; e.g., a branch complexity of at least 4 is required
to get a nominal coding gain of γc = 2 (3 dB), 16 to get γc = 4 (6 dB), and 256 to get γc = 8 (9
dB). This bound applies also to convolutional codes. The convolutional code tables show that
it gives a good idea of how many states are needed to get how much nominal coding gain.

Asymptotically, this implies that, given any “good” sequence of codes such that n → ∞ with
d/n and k/n both bounded above zero, both the branch and state complexity must increase
exponentially with n. Thus if codes are “good” in this sense, then their “complexity” (in the
sense of minimal VA decoding complexity) must increase exponentially with n.

However, note that to approach the Shannon limit, the nominal coding gain γc = kd/n needs
only to be “good enough,” not necessarily to become infinite with increasing n. In more classical
coding terms, we need the minimum distance d to be “large enough,” not arbitrarily large.
Therefore capacity-approaching codes need not be “good” in this sense. Indeed, turbo codes
have poor minimum distances and are not “good” in this sense.

10.3 The permutation and sectionalization problems

The astute reader will have observed that the minimal trellis for a linear code C that was found
in the previous section assumes a given coordinate ordering for C. On a memoryless channel,
the performance of a code C is independent of the coordinate ordering, so two codes that differ
only by a coordinate permutation are often taken to be equivalent. This raises a new question:
what is the minimal trellis for C over all permutations of its coordinates?

Another point that has not been explicitly addressed previously is whether to take code symbols
(bits) one at a time, two at a time, or in some other manner; i.e., how to divide the code trellis
into sections. This will affect the trellis appearance and (slightly) how the VA operates.

146 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

In this section we address these two problems. Permutations can make a big difference in
trellis complexity, but finding the optimum permutation is intractable (NP-hard). Nonetheless,
a few results are known. Sectionalization typically makes little difference in trellis complexity,
but optimum sectionalization is fairly easy.

10.3.1 The permutation problem

Finding the optimum coordinate permutation from the point of view of trellis complexity is the
only substantive outstanding issue in the field of trellis complexity of linear codes. Since little is
known theoretically about this problem, it has been called “the art of trellis decoding” [Massey].

To illustrate that coordinate permutations do make a difference, consider the (8, 4, 4) code
that we have used as a running example. As an RM code with a standard coordinate ordering,
we have seen that this code has state complexity profile {1, 2, 4, 8, 4, 8, 4, 2, 1}. On the other
hand, consider the equivalent (8, 4, 4) code generated by the following trellis-oriented generator
matrix: ⎡ ⎤

11101000
⎥⎢ 01110100 ⎢ ⎥ ⎦⎣ 00111010

.

00010111

We see that the state complexity profile of this code is {1, 2, 4, 8, 16, 8, 4, 2, 1}, so its maximum
state space size is 16.

In general, generator matrices that have a “cyclic” structure have poor state complexity pro-
files. For example, Exercise 5 shows that a trellis-oriented generator matrix for an MDS code
always has such a structure, so an MDS code has the worst possible state complexity profile.

Finding the coordinate permutation that minimizes trellis complexity has been shown to be
an NP-hard problem. On the other hand, various fragmentary results are known, such as:

•	 The Muder bound (see next subsection) applies to any coordinate permutation.

•	 The optimum coordinate ordering for RM codes is the standard coordinate ordering that
results from the |u|u + v| construction.

•	 A standard coordinate ordering for the (24, 12, 8) binary Golay code achieves the Muder
bound on the state complexity profile (see Exercise 6, below) everywhere.

10.3.2 The Muder bound

The Muder bound is a simple lower bound which shows that certain trellises have the smallest
possible state space sizes. We show how this bound works by example.

Example 2 (cont.) Consider the (8, 4, 4) code, with the first and last 4-tuples regarded as the
past and future. The past subcode CP is then effectively a binary linear block code with length
4 and minimum distance at least 4. An upper bound on the largest possible dimension for such
a code is dim CP ≤ 1, achieved by the (4, 1, 4) repetition code. A similar argument holds for the
future subcode CF . Thus the dimension of the state code S is lowerbounded by

dim S = dim C − dim CP − dim CF ≥ 4 − 1 − 1 = 2.

Thus no (8, 4, 4) code can have a central state space with fewer than 4 states.

147 10.3. THE PERMUTATION AND SECTIONALIZATION PROBLEMS

Example 3 Consider any (32, 16, 8) binary linear block code. If we partition the time axis into
two halves of length 16, then the past subcode CP is effectively a binary linear block code with
length 16 and minimum distance at least 8. An upper bound on the largest possible dimension
for such a code is dim CP ≤ 5, achieved by the (16, 5, 8) biorthogonal code. A similar argument
holds for the future subcode CF . Therefore dim S is lowerbounded by

dim S = dim C − dim CP − dim CF ≥ 16 − 5 − 5 = 6.

Thus no (32, 16, 8) code can have a central state space with fewer than 64 states. Exercise 1
showed that the (32, 16, 8) RM code has a trellis whose central state space has 64 states.

In general, define kmax(n, d) as the largest possible dimension of code of length n and minimum
distance d. There exist tables of kmax(n, d) for large ranges of (n, d). The Muder bound is
then (with k denoting the time index k and dim C denoting the dimension of C):

dim Sk ≥ dim C − kmax(k, d) − kmax(n − k, d).

Similarly, for branch complexity, we have the Muder bound

dim Bk ≥ dim C − kmax(k − 1, d) − kmax(n − k, d).

Exercise 6. The maximum possible dimension of a binary linear (n, k, d ≥ 8) block code is

kmax = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12}

for n = {1, 2, . . . , 24}, respectively. [These bounds are achieved by (8, 1, 8), (12, 2, 8), (16, 5, 8)
and (24, 12, 8) codes and shortened codes thereof.] Show that the best possible state complexity
profile of any (24, 12, 8) code (known as a binary Golay code) is

{1, 2, 4, 8, 16, 32, 64, 128, 64, 128, 256, 512, 256, 512, 256, 128, 64, 128, 64, 32, 16, 8, 4, 2, 1}.

Show that the best possible branch complexity profile is

{2, 4, 8, 16, 32, 64, 128, 128, 128, 256, 512, 512, 512, 512, 256, 128, 128, 128, 64, 32, 16, 8, 4, 2}.

A standard coordinate ordering that achieves both these bounds exists.

10.3.3 The sectionalization problem

The sectionalization problem is the problem of how many symbols to take at a time in the
construction of a trellis. For example, we have seen that if we take one symbol at a time with
our example (8, 4, 4) code, then we obtain a state complexity profile of {1, 2, 4, 8, 4, 8, 4, 2, 1} and
a branch complexity profile of {2, 4, 8, 8, 8, 8, 4, 2}, whereas if we take two symbols at a time we
obtain a state complexity profile of {1, 4, 4, 4, 1} and a branch complexity profile of {4, 8, 8, 4}.
The latter trellis has less apparent state complexity and a nicer-looking trellis, but its branch
complexity is not significantly less.

Sectionalization affects to some degree the order of operations in VA decoding. For example,
taking symbols two at a time means that the VA computes metrics of pairs of symbols before
making comparisons. For the two trellises that we have considered for the (8, 4, 4) code, it is
apparent that this makes no material difference in VA decoding complexity.

148 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Sectionalization may reduce the apparent state complexity, as we have seen. In fact, if the
whole trellis is clustered into one section, then the state complexity profile becomes {1, 1}.

However, clustering cannot reduce and may increase branch complexity. For example, with a
one-section trellis, there are 2k parallel transitions from the starting to the ending state.

To prove this, we generalize the branch space theorem from intervals {k} = [k, k + 1) of length
1 to general clustered intervals [k, k′). A branch is then identified by a triple (sk , c|[k,k�), sk�),
where sk ∈ Sk, sk� ∈ Sk� , and c|[k,k�) is the projection of a codeword onto the interval [k, k′).
The branch space B[k,k�) is the set of all such branches such that there exists a codeword c that
passes through states (sk , sk�) and has the projection c|[k,k�).

By a similar argument to that in the proof of Theorem 10.5, we can conclude that in a minimal
trellis two codewords go through the same branch in B[k,k�) if and only if they differ only by an
element of the past subcode C[0,k) and/or an element of the future subcode C[k�,N). This implies
that the branch space B[k,k�) is a linear vector space with dimension

dim B[k,k�) = dim C − dim C[0,k) − dim C[k�,N).

Since dim C[0,k) is nonincreasing with decreasing k, and dim C[k�,N) is nonincreasing with increas-
ing k′, this shows that dim B[k,k�) ≥ dim B[κ,κ�) for [κ, κ′) ⊆ [k, k′); in other words,

Theorem 10.6 Clustering cannot decrease branch complexity.

A good elementary rule for sectionalization is therefore to cluster as much as possible with-
out increasing branch complexity. A heuristic rule for clustering as much as possible without
increasing branch complexity is therefore as follows:

Heuristic clustering rule: Extend sections toward the past as long as dim C[0,k) does not
decrease, and toward the future as long as dim C(k�)+ does not decrease; i.e., to the past up to
the next trellis-oriented generator stop time, and to the future up to the next trellis-oriented
generator start time.

Example 2 (cont.) For our example (8, 4, 4) code, the time-3 section may be extended back
to the beginning and the time-4 section to the end without violating our rule, so the optimum
sectionalization has just one boundary, at the center of the trellis— i.e., we take symbols four at
a time, as in Figure 3(b). The state complexity profile with this sectionalization is {1, 4, 1}, and
the branch complexity profile is {8, 8}, so this sectionalization simplifies the state complexity
profile as much as possible without increasing the maximum branch complexity.

Exercise 6 (cont.). Assuming that an optimum coordinate ordering for the (24, 12, 8) binary
Golay code exists such that the Muder bounds are met everywhere (it does), show that applica-
tion of our heuristic clustering rule results in section boundaries at k = {0, 8, 12, 16, 24}, state
complexity profile {0, 64, 256, 64, 0} and branch complexity profile {128, 512, 512, 128}.

Lafourcade and Vardy have shown that, for any reasonable definition of optimality, there
exists a polynomial-time algorithm for optimal sectionalization. They further observe that the
following simple rule appears always to yield the optimal sectionalization:

LV rule: Between any time when branches merge and the next subsequent time when branches
diverge in an unclustered trellis, insert one and only one section boundary.

The LV rule and our rule give the same sectionalizations for the (8, 4, 4) and (24, 12, 8) codes.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

