
6.451 Principles of Digital Communication II Wednesday, February 2, 2005 
MIT, Spring 2005 Handout #3 

Due: Wednesday, February 9, 

Problem Set 1 

These exercises use the decibel (dB) scale, defined by: 

ratio or multiplicative factor of α ↔ 10 log10 α dB. 

The following short table should be committed to memory: 

α dB dB 
(round numbers) (two decimal places) 

1 0 0.00 
1.25 1 0.97 
2 3 3.01 

2.5 4 3.98 
e 4.3 4.34 
3 4.8 4.77 
π 5 4.97 
4 6 6.02 
5 7 6.99 
8 9 9.03 
10 10 10.00 

Problem 1.1 (Compound interest and dB) 

How long does it take to double your money at an interest rate of P%? The bankers’ “Rule 
of 72” estimates that it takes about 72/P years; e.g., at a 5% interest rate compounded 
annually, it takes about 14.4 years to double your money. 

(a) An engineer decides to interpolate the dB table above linearly for 1 ≤ 1 + p ≤ 1.25; 
i.e., 

ratio or multiplicative factor of 1 + p ↔ 4p dB. 

Show that this corresponds to a “Rule of 75;” e.g., at a 5% interest rate compounded 
annually, it takes 15 years to double your money. 

(b) A mathematician linearly approximates the dB table for p ≈ 0 by noting that as 
p → 0, ln(1 + p) → p, and translates this into a “Rule of N” for some real number 
N . What is N? Using this rule, how many years will it take to double your money 
at a 5% interest rate, compounded annually? What happens if interest is compounded 
continuously? 

(c) How many years will it actually take to double your money at a 5% interest rate, 
compounded annually? [Hint: 10 log10 7 = 8.45 dB.] Whose rule best predicts the correct 
result? 
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Problem 1.2 (Biorthogonal codes)


A 2m × 2m {±1}-valued Hadamard matrix H2m may be constructed recursively as the

m-fold tensor product of the 2 × 2 matrix


+1 +1 
H2 = 

+1 −1 
, 

as follows: 
� � 

+H2m−1 +H2m−1 

H2m = . 
+H2m−1 −H2m−1 

(a) Show by induction that: 

(i) (H2m )T = H2m , where T denotes the transpose; i.e., H2m is symmetric; 

(ii) The rows or columns of H2m form a set of mutually orthogonal vectors of length 2m; 

(iii) The first row and the first column of H2m consist of all +1s; 

(iv) There are an equal number of +1s and −1s in all other rows and columns of H2m ; 

(v) H2m H2m = 2mI2m ; i.e., (H2m )−1 = 2−mH2m , where −1 denotes the inverse. 

(b) A biorthogonal signal set is a set of real equal-energy orthogonal vectors and their 
negatives. Show how to construct a biorthogonal signal set of size 64 as a set of {±1}-
valued sequences of length 32. 

(c) A simplex signal set S is a set of real equal-energy vectors that are equidistant and 
that have zero mean m(S) under an equiprobable distribution. Show how to construct 
a simplex signal set of size 32 as a set of 32 {±1}-valued sequences of length 31. [Hint: 
The fluctuation O − m(O) of a set O of orthogonal real vectors is a simplex signal set.] 

(d) Let Y = X + N be the received sequence on a discrete-time AWGN channel, where 
the input sequence X is chosen equiprobably from a biorthogonal signal set B of size 2m+1 

constructed as in part (b). Show that the following algorithm implements a minimum-
distance decoder for B (i.e., given a real 2m-vector y, it finds the closest x ∈ B to y): 

(i) Compute z = H2m y, where y is regarded as a column vector; 

(ii) Find the component zj of z with largest magnitude zj ;| |

(iii) Decode to sgn(zj)xj, where sgn(zj) is the sign of the largest-magnitude component 
zj and xj is the corresponding column of H2m . 

(e) Show that a circuit similar to that shown in Figure 1 below for m = 2 can implement 
the 2m × 2m matrix multiplication z = H2m y with a total of only m addition × 2m 

and subtraction operations. (This is called the “fast Hadamard transform,” or “Walsh 
transform,” or “Green machine.”) 
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Figure 1. Fast 2m × 2m Hadamard transform for m = 2. 

Problem 1.3 (16-QAM signal sets)


Three 16-point 2-dimensional quadrature amplitude modulation (16-QAM) signal sets

are shown in Figure 2, below. The first is a standard 4 × 4 signal set; the second is the

V.29 signal set; the third is based on a hexagonal grid and is the most power-efficient 
16-QAM signal set known. The first two have 90◦ symmetry; the last, only 180◦ . All have 
a minimum squared distance between signal points of d2 = 4. min 
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Figure 2. 16-QAM signal sets. (a) (4 × 4)-QAM; (b) V.29; (c) hexagonal. 

(a) Compute the average energy (squared norm) of each signal set if all points are 
equiprobable. Compare the power efficiencies of the three signal sets in dB. 

(b) Sketch the decision regions of a minimum-distance detector for each signal set. 

(c) Show that with a phase rotation of ±10◦ the minimum distance from any rotated 
signal point to any decision region boundary is substantially greatest for the V.29 signal 
set. 

Problem 1.4 (Shaping gain of spherical signal sets)


In this exercise we compare the power efficiency of n-cube and n-sphere signal sets for

large n.


An n-cube signal set is the set of all odd-integer sequences of length n within an n-cube

of side 2M centered on the origin. For example, the signal set of Figure 2(a) is a 2-cube

signal set with M = 4.


An n-sphere signal set is the set of all odd-integer sequences of length n within an n-

sphere of squared radius r2 centered on the origin. For example, the signal set of Figure
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3(a) is also a 2-sphere signal set for any squared radius r2 in the range 18 ≤ r2 < 25. 
In particular, it is a 2-sphere signal set for r2 = 64/π = 20.37, where the area πr2 of 
the 2-sphere (circle) equals the area (2M)2 = 64 of the 2-cube (square) of the previous 
paragraph. 

Both n-cube and n-sphere signal sets therefore have minimum squared distance between 
signal points d2 = 4 (if they are nontrivial), and n-cube decision regions of side 2 and min 

thus volume 2n associated with each signal point. The point of the following exercise is 
to compare their average energy using the following large-signal-set approximations: 

•	 The number of signal points is approximately equal to the volume V (R) of the bound­
ing n-cube or n-sphere region R divided by 2n, the volume of the decision region 
associated with each signal point (an n-cube of side 2). 

•	 The average energy of the signal points under an equiprobable distribution is approx­
imately equal to the average energy E(R) of the bounding n-cube or n-sphere region 
R under a uniform continuous distribution. 

(a) Show that if R is an n-cube of side 2M for some integer M , then under the two above 
approximations the approximate number of signal points is Mn and the approximate 
average energy is nM2/3. Show that the first of these two approximations is exact. 

(b) For n even, if R is an n-sphere of radius r, compute the approximate number of signal 
points and the approximate average energy of an n-sphere signal set, using the following 
known expressions for the volume V⊗(n, r) and the average energy E⊗(n, r) of an n-sphere 
of radius r: 

(πr2)n/2 

V⊗(n, r) = ;
(n/2)! 

2nr
E⊗(n, r) = . 

n + 2 

(c) For n = 2, show that a large 2-sphere signal set has about 0.2 dB smaller average 
energy than a 2-cube signal set with the same number of signal points. 

(d) For n = 16, show that a large 16-sphere signal set has about 1 dB smaller average 
energy than a 16-cube signal set with the same number of signal points. [Hint: 8! = 40320 
(46.06 dB).] 

(e) Show that as n → ∞ a large n-sphere signal set has a factor of πe/6 (1.53 dB) smaller 
average energy than an n-cube signal set with the same number of signal points. [Hint: 
Use Stirling’s approximation, m! → (m/e)m .]as m → ∞
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