
MITOCW | 10ocw-6-451_4-261-07mar2005-220k_512kb-mp4

PROFESSOR: Welcome to class again. This time it's not Professor Forney it's me, so my name is

Ralf Koetter. You guys have some substantial chalk here at MIT. And I'm visiting

here from the University of Illinois, so Professor Forney thought I could teach this

class here. All right, let's see. So I understand that last time, last Wednesday, you

went through all the finite field stuff, meaning, so you know what that would mean,

the finite field. There's p elements, p to the m elements. Whatever q you have here,

is a power of a prime in order to be a field. So this one, as a notation, is a ring of

polynomials. You've seen that too.

So I assume you know everything about finite fields that you will need to know here,

at least, except for one more theorem which Professor Forney told me he did not

cover. And this is the fundamental theorem of algebra. I have to write a little bit

smaller with this thing here, otherwise I'll run out.

AUDIENCE: [UNINTELLIGIBLE PHRASE]

PROFESSOR: Oh, I know, that's probably better. Better. With the algebra, at least that's what it's

often called, and really, about 60 percent of all the proofs in algebra eventually boil

down to this here. And what it says is, polynomial of degree m, f beta equals zero,

at most, m of beta. At least, that's one way to formulate it. Let me see. So that's

fine. So what it says is a polynomial of degree m has at most m roots. Once you all

have seen that, probably one way or another, but because of its importance, I want

to emphasize it once more.

Do we need a proof of this? In true MIT spirit we do. And the proof would go

something like this. You look at problem number one in your homework assignment,

and from problem number one, I could prove that here, too, but since it's in the

homework, I won't.

You can write the following given any beta. Write f of x as f of x is equal to plus

alpha. Alphas are the field so that's by some sort of long division you get to that.

That's what I'm not going to prove. Then f of beta is equal zero is the same as

1



saying that alpha is equal to zero. So if either is a root of the polynomial, zero, it

follows that f of x has this thing here as a factor, this h of x, x minus beta, where

because of the degree properties of polynomials, h of x is m minus 1. And so the

rest follows by induction.

So basically, then we can prove that this polynomial has, at most, m minus 1 roots,

and so on. And you can descend this route, and so the rest follows by induction. In

particular we can say if f of x has m distinct roots beta one, beta m, then it factors

completely into the linear factors like this. So I just wanted to quickly state the

fundamental theorem of algebra, since we need it in a proof later on, and I think you

didn't go through it.

OK. So last time, you learned everything about fields, finite fields, extension fields,

so chapter eight is pretty much what we have to cover now. What is the whole idea

of chapter eight? It's linear codes, codes, MDS codes, and redundant codes. Oh, by

the way, do you have any questions about this here? That in any way? It's pretty

straight, right?

OK, so I understand in chapter six or so, you had already linear codes over the

binary fields. So let's just define codes over a larger field, formally, a linear code C

of length n. No subspace of Fn. So whatever the field is. So F could be any

extension field, could be the binary field, so it really generalizes a definition of code,

of what a linear code is.

OK, so it's a subspace. What can be derived from that? Since it's a subspace, it's a

group. And then we can derive minimum distance properties. So let's first define it

again, since it's slightly different than the definition for binary codes. Between Fn,

say Fqn. So I denote the vectors with an underscore. I think in the notes, it's

boldface notation, so translate that online as I go here. The distance between two

words x and y, given as dx, the number of positions that x_i is unequal to y_i.

AUDIENCE: What's the subscript?

PROFESSOR: There, a q. Oh, this is another thing I should warn you about. My handwriting is

2



bound to deteriorate during class. So I usually start out reasonably okay, towards

the end of the class it's -- I tell my students to throw little pieces of chalk at me when

it gets too bad and I'm not facing them, so please just say something if it gets too

bad.

So distance is defined as that, quickly. So it doesn't really matter what the values

are here. The x_i and the y_i could assume different values. It's a somewhat coarse

measure for the real, the difference between code words, or difference between

words. Why do you think I say it's coarse? In digital communications in particular?

Good question, right? In the end, we want to map that into a modulation scheme. In

the end, we want to map our codes that we are deriving here into modulation

schemes. In the end, we want to embed them into some Euclidean space. Now,

different elements of our alphabet we will map to different elements in Euclidean

space.

So basically, approximating their distance relation in Euclidean space, which we are

really interested in with the Hamming distance here is pretty coarse, but we can do,

so we do that. It's an approximation, at least. That clear? All set? All right.

AUDIENCE: [UNINTELLIGIBLE PHRASE] the Hamming distance [UNINTELLIGIBLE] the same

as the Euclidean distance?

PROFESSOR: Well, it depends on the modulation scheme. It very much depends on the

modulation scheme. If you have a 8-PSK scheme, where you would label, put in the

words, here, with three bit symbols, or with the symbol from F8, then it's definitely

different. It's definitely different. So if you do anti-polar signaling, then it's directly

reflected. OK, I'm starting to digress already.

So just for completeness, minimum distance, minimum Hamming, of a code subset

Fqn is d as a minimum code of dxy, and they have to be different, it's the same as

before. So now if I claim that -- so the minimum distance of a code is also given by

the minimum between 0 and x in the code 0 and x, and this is minimum of the

Hamming weight of x, and you could do 0 x in the code. So that's all old stuff. I just

write it down so we get started here.

3



Is that clear, from the group property, why this would be true? So if you just take

this, we can add basically x to both x and y, just translating the whole relation to

somewhere else. So in particular, we translate it here, once we have it here, than

the distance between 0 and x is just the weight.

OK. So far, so good. Now what is next? Generate a matrix. This is not really in the

notes, but I think it's important. So see, the code here is a subspace. It's a linear

space, so it has a generator, it has generators, k generators. So let g1 be k, write

this off the code. So as a basis of the vector space, that this would be a basis of the

vector space, any basis would be fine here. Then C may be defined as all the x in

Fqn such that x is sum over -- what do I call it -- fi gi, where fi is in Fq.

And the reason I introduce this, we can -- this is just the definition of a space, right?

That's clear. So if you have these generators, you find a generator matrix, uh-oh, it

already starts. Let me -- matrix g which contains, as a m matrix containing the rows

gi. So the i-th row in the generator matrix is just gi. Then you also can write as x is

equal to f times g, f element Fqk, or just the same statement as this one, so nothing

has happened.

So basically, the reason I did that, I wanted to introduce the term generator matrix,

which is sort of important. And one more property of this orthogonal complement of

C, of the code. So what does that mean? So the orthogonal complement of the

code you could write as Fqn such that sum of x_i y_i is equal to 0. The sum is

obviously over the field for all y in the code. What's the dimension of this, of the

orthogonal complement?

AUDIENCE: n minus k.

PROFESSOR: n minus k, clearly, because we have ambient space is n dimensional, we impose k

linear constraints on this, by the k generators, so the k dimensions of, take note, by

the generators drop out. So the dimension of the orthogonal complement is n minus

k.

So what else do we need to say about this? C is called the dual code for this

4



reason. C is called dual code. In particular, it's a code that's a linear space. It's a

subspace of Fqn again, it's a code. So it's just as nice a code as C at this point in

time at least. So it's called a dual code. To C, if it is a code, it has a generator

matrix.

Let h be a generator matrix for C dual. So in particular, we could define C dual now,

for example, by the equivalent of this relation here. But because it's a dual code, we

now also can define the original code in an equivalent way such that x times h

transpose is 0. We could define our original code C either as the image of a matrix

g, of a generator matrix g, or as a kernel of a parity-check matrix h. So h is a

...WRITING ON BOARD... for C. So that's all pretty much straight linear algebra, and

I'm sure you've seen that in many different places. Any questions about any of this?

AUDIENCE: So the addition of the dual [UNINTELLIGIBLE PHRASE] the summation

[UNINTELLIGIBLE PHRASE] equals 0 for all [INAUDIBLE] other than x, right?

[UNINTELLIGIBLE PHRASE]

PROFESSOR: Oh no, no, no, it doesn't have to be different from x. If y is in the code, if y is in C,

then x has to be orthogonal to it. They can be the same vector, in particular, if you

have binary vectors, an even made binary vector is orthogonal to itself. It's a little bit

odd, but that's the magic of finite fields. OK. Good. So these are codes, now we

could stop. We have defined the object, and obviously it exists, because we could

just write something down and it exists. So once we have defined it, the next

question is, what sort of codes do exist? So that's what we're going to do next.

First, question one. Codes do, what type of codes do exist? So which codes do you

know?

AUDIENCE: [INAUDIBLE]

PROFESSOR: You know Reed-Muller codes, you know probably sporadic binary codes that are

out there. These are all binary codes. So what type of codes exist over larger fields?

Many, many classes. There exists the equivalent of the Reed-Muller codes, there

exist QRE Reed-Muller codes, and there exist generalized Reed-Muller codes, and,

5



and, and, and, and. But we are interested in a very special class today, which is

MDS codes. It stands for Maximum Distance Separable. It's a strange name.

There's no particular reason for MDS. But, let's see what we can do with that.

What type of codes do exist? So we have parameters of codes -- oh, I think you

write the curly bracket, right -- n, k and d. So that would mean a code of length n,

dimension k, and distance d. And let me add something to it a q, if you want to

emphasize that this is a query field. So are all numbers possible here? What do we

have, a 20, 19, 17 code over, I don't know, over F8. Is this possible? What would

you think? No?

AUDIENCE: [INAUDIBLE]

PROFESSOR: It's not possible. It doesn't seem likely. What conflicts here, is the dimension and the

distance. If you get a large dimension, in particular, if we would make this 20, what

would that mean? It would mean we have to take the entire space. If you take the

entire space, then the minimum weight word is 1. So this is possible. You know this

is possible. If you drop this by 1, that seems very unlikely that we would get a 17

here.

But what do we get here? 2. You get a 2 because that's what we can achieve with a

single parity-check code. The parity-check code doesn't have to be restrained to

binary. Why? Why would it be restrained to binary? You could just, the set of all

vectors let's define the single parity-check codes s p c, q, as the set of all vectors

such that sum of the x_i is equal to 0. So could we have a word of weight 1 in here?

Obviously not, right? If it has a weight 1, how would it add up to 0? Because one

position would never cancel with any other position. So the minimum weight is 2

here, and we get a distance of 2.

So what's the next one? It's tempting to say 3, right? 3, but this is very much a

question, now. Because this is not as easy to come by as a single parity-check. And

that's what we're going to do next. We're going to define bounds on the maximum

distance that a code can have altogether.

6



OK, so let's do the following. Which parameter is possible? OK. So let's assume you

have a code, an n,k,d code, and now we want to find a relation, a bound between n,

k and d. How do we do this? Any ideas? Let a computer run for eternity and find all

possible codes? No, no, no, no. We don't do this. We wouldn't get far.

Let's assume we have an n,k,d code. What does that mean? Well, let's write the

code words all down in a huge matrix, so each row in this matrix corresponds to one

code word. So this has a length n, this is q to the k, q is whatever the alphabet is of

the code in question, and now we say it's an n,k,d code. What that means, it means,

among other things is, say we delete, just punch out, d minus 1 positions. We punch

out d minus 1 positions of all code words and we look at the code that remains. You

guys don't have colored chalk here, huh? We look at the code that remains, it

means we look at this part of the matrix. Is that clear, what I'm doing here?

So if the code indeed had distance d, can there be any two rows equal in this part?

Remember, we punch out all d minus 1. Can there be any rows in this part that are

equal? No, right? Couldn't be. They all have to be different. What does that mean?

They all have to be different, but how many different tuples can we have in this

part? Well, we have at most q to the n minus d minus 1. That's the length here. This

n minus d minus 1. Different tuples.

So how can we patch that together into a relation on the parameters? It basically

says, q, this is q to the k. q to the k is upper bounded by this. It's upper bounded by

this. And let me take the logarithm on here, and we get this relation.

That's a first incarnation of the tension that we get on code construction, on codes.

And bound on this, at least. If you choose d large, the distance large, then k has to

go. If you choose k large, the distance cannot be very large. So this is where we, for

the first time, see this tension. And it's also important, I'm sorry that I run around like

this here, n has to be at least k plus d, k plus d minus 1. So here, you see this 28 in

3, it would just satisfy this. It would just satisfy this.

So do we know it exists? No. No, why would it? So far, we only have looked at this

here, and so, if it would exist, it would have to satisfy that. But there's no reason to

7



assume it exists. At the moment, at least. OK. This is called the Singleton bound.

Any code over any field, phi n, this relationship on the parameters. Good. Any code

satisfying and bound with equality is called MDS. So we have an MDS code if and

only if it satisfies the Singleton bound with equality. That's the definition of MDS

codes. And now it makes maybe a little bit more sense to talk about Maximum

Distance Separable codes, well, in a sense, they have the maximum distance

among all codes. You find all codes with the given n and k, if they're MDS, they

have the maximum distance.

OK, let's think about this a little here.

AUDIENCE: [INAUDIBLE] dependence on q [UNINTELLIGIBLE]?

PROFESSOR: Yeah, there's a very strong dependence on q. The bound, not. The bound has no

dependence on q. If the guys exist or not, that's very much dependent on q. We'll

get to that.

AUDIENCE: [INAUDIBLE] when the q is large, we have more options to [UNINTELLIGIBLE]?

PROFESSOR: Absolutely. Absolutely. For binary, there's a very simple argument to show that

there are no binary MDS codes except for the parity-check codes and the repetition

codes and trivial code. So say we have a binary code, a binary n,k,d code with a

generator matrix. So what could the generator matrix be? There will be an identity

part, and then there will be the rest of the generator matrix, and how could we

possibly fill that in, in order to make it MDS? Because this is n, this is k, and we see

in order to make it MDS, every single row has to have all entries equal to 1.

Because if not all entries are equal to 1, here, then we immediately have exhibited a

code word with a weight less than n minus k plus 1.

So OK, we know the first row has to have all 1's. Because now, the weight of this

row is exactly on the MDS [INAUDIBLE]. What about the next one? The next one,

same thing. All entries have to be 1. But now we see the problem, right? Now we

add those two guys, it should again be a code word, and we have a grade two code

word.

8



So this is, in a nutshell, to prove that there are no binary MDS codes except the

trivial ones. So the trivial ones are n, n1, n, n minus 1, 2 and n1, n. These are the

trivial ones. The space itself, so it's in a parity-check code, and the repetition code.

These are the only binary MDS codes. And the argument is roughly there.

OK, where was I? Yeah, let's think about this a little bit more. And we are getting to

exactly your question about the [UNINTELLIGIBLE]. This here has to hold, this

argument has to hold regardless of which d minus 1 positions we punch out. This

argument has always to hold. Which means, think about it, it's an enormously strong

combinatorial condition on the code.

So you have a code, that means you have a code, you write it in a matrix like this,

all the code words. You punch out an arbitrary collection of d minus 1one positions,

and the rest, the remaining positions, have to make up the entire space here. The

entire space Fqn minus to that right exponent. This is a very -- think about it, I

mean, just writing down this is an enormously strong combinatorial condition. So

that will actually lead to the codes existing only for a very, very special, for a subset

of field sizes. In particular, like you said, we have to have enough freedom in the

field size to fill up this matrix to satisfy this.

OK, before we get to that, before I say a word about the field size, let me formalize

what I just said here, namely, that all of the other positions have to be exactly the q

to the n minus d minus 1, different tuples. And the definition, let the code with q to

the k, code words over alphabet Fq. Let subset of the positions in C, i is called an

information set if C constrained to i runs exactly through all the q to the k, runs

through all the q to the k. Fqk.

So what it means is, you have a code, and you have a subset of positions, maybe

this one, this one, this one, this one. This is a subset of positions if the code words.

So if the matrix that remains after you take out the punctured columns, runs through

all the q to the k elements of Fqk, then this is an information search.

AUDIENCE: [INAUDIBLE]

9



PROFESSOR: Constrained to i, because i has size k. i is just -- its just about enough to describe

every code word, if the restraint of C to the set would indeed be giving a unique

vector for each code word. The reason to call it -- so this is the definition of

information set. The reason to call it an information set, it's pretty straight, right?

Why is it called an information set? Because it's enough, right? Because it's enough.

If you know exactly the value of a code word in these positions, then it is enough to

recover the entire code word. When some genie tells you, gives you a code world

which was corrupted by noise or something, but tells you, these k positions are OK.

That's enough, that's all you need. That's an information set. You can recover the

information from them.

Actually, it is an application that pops up sometimes. That somehow, you get side

information about some positions in the code word indeed being correct, and others

not. And others you don't know about. So that's the information set, with respect to

our MDS code. So with respect to our MDS code, a corollary of the thing that

involved any k positions in an MDS code, an information set. So any k positions on

information set. It's a really strong property. Really strong combinatorial property.

OK, so far, so good.

This is so strong, this property, that we can say something about these codes even

without even knowing if they exist. So, so far, we have talked about these codes as

if we knew they existed. Well, it's not entirely trivial, since we know those guys here

exist. So it's not entirely empty, we're not out in cuckoo space, here. But do any

other one exist, except for those? That's the question. We don't know that yet. We

will show in a little while that they do, but we don't know that yet. But the interesting

part is that we can derive properties of those codes without even knowing they exist.

And how do we do that?

For example, we want to derive the following property, how many words of weight d

exists in linear MDS code? One could ask that, right? If they exist, they're nice, and

if they exist, we also want to know how many words do exist at minimum distance.

Because that translates, again, directly into union bound arguments later on, and

10



probability of error. So that's a good question. How many words of weight d exist in

a MDS code? Let's call this n d, and we want to know how many. So I'll let you think

about this for a sec while I erase the board, and then somebody will tell me the

answer.

So how can we think about this? Let's try to do a similar argument as this one. Let's

look at a single word, and let's assume that d positions, we ask the questions does

there exist a code word within the first d positions? It is equivalent to the question,

does there exist a code word that covers exactly all d positions? Any set of d

positions.

AUDIENCE: 0 everywhere else?

PROFESSOR: And 0 everywhere else. Why is that nice? If you could prove that, that there exists a

word for all d positions, because then, we pretty much know what happens. Then

we know that, well, if this is true, then there are n choose d ways to choose those d

positions. And then within those d positions, and since it's a linear code, we can

multiply with the q minus 1 on the repeated element. So if we can choose our d

positions arbitrarily, then this is the number over words at distance d.

So let's look at a word, and let's, without loss of generality, assume it's a first d

positions. So the first d positions. So in particular, these would be the first d minus 1

positions, which would mean that this have length k. So if we have an MDS code,

this is an information set. So if this is an information set, then we can fill up this thing

with just about anything we want. So we choose this information set to be equal to

1. This is how we choose this information set, and by the property of MDS code, we

are guaranteed that there exists a code word which is this part in the information

set.

But we also are guaranteed it's a weight d word, right? The minimum distance is d,

that means all of these m entries here, they must all be non-zero, in this part.

Otherwise, it wouldn't have weight d. OK? And there we have it. That was all we

needed to show. Right? Because now we have shown that there exists a word of

weight d in the first d positions. Is that clear?

11



Let's try again. I will say the same words. Maybe it becomes clearer by that. Let's

look at a code word. This is a generic code word, at first, and we want to answer the

question, does there exist a code word within, which has support only in the first d

positions? So does there exist a code word which is non-zero here, up to d, and

which is zero everywhere else? That's the question we want to answer.

OK. Now here's what we do. We look at this road and say, you know what? Let's

look at the last k positions, which have an overlap of 1 with this word here, because

it's an MDS property. So we have this relation between n, k, and d. And since any k

positions in the word are in information set, so we can choose whatever we want in

this part, and this is what we choose. By the property of MDS codes, this corollary,

we are guaranteed there exists the code word which in the second half of the code

word looks like this.

And in the first half, it looks different. There's something else here, and I say, well it

cannot have any 0 in here, because then it would have weighed less that d. So it

has non-zeros here. So indeed, we have shown the existence of a code word which

has non-zeroes in the first d positions. Very simple. And that was without loss of

generality. You could make the same argument for any d positions.

What have we shown? We have shown that indeed, we can choose any d positions

in the code to support the minimum weight code word of weight d. This is how many

ways we can choose this, then we have to multiply it with q minus 1. All non-zero

field elements. The reason is, we might have chosen this, or we might have chosen

omega or omega squared here, or just the multiples, the scalar multiples of it.

Interesting, right? This property, that any k positions on information set is really

strong enough to prove the -- actually, it's strong enough to prove the entire weight

distribution of an MDS code.

AUDIENCE: [INAUDIBLE] [UNINTELLIGIBLE]?

PROFESSOR: No, no, no, why no, no, no, no. So then you would get too much. If you write q

minus 1 to the d, then you would want to multiply each position with a different

12



value. That would imply that there's more than one code word in the first d

positions. More than one code word so that they are not scalar multiples of each

other. If that would be true, then you could find a linear combination which is still 0 in

this part, but has additional 0 here somewhere. But if that is true, then we don't

have enough distance anymore. Then it's not an MDS code.

All right, so it's indeed q minus 1. Within each d positions, we have one dimensional

space. It's just one dimension.

AUDIENCE: [INAUDIBLE] far off minimum weight code words?

PROFESSOR: Yeah, yeah, definitely. Any other code must have less, so it would have less. But

every other code would have a smaller minimum distance.

AUDIENCE: [INAUDIBLE]. Suppose we let the last k minus 1 position zero, and the one before

that, [UNINTELLIGIBLE PHRASE]. And you said that we can do it for any of

[UNINTELLIGIBLE] total field?

PROFESSOR: Sure.

AUDIENCE: Since it's a linear code, some of those code words should be in the linear code,

right?

PROFESSOR: Sure.

AUDIENCE: So because it's a field, also we are going to [INAUDIBLE] there exists an inverse

[UNINTELLIGIBLE]?

PROFESSOR: Absolutely.

AUDIENCE: So if we add those two code words, we should have all zero, [UNINTELLIGIBLE] k

minus 1, and have inverse at the one before. We get that code word which has a

minimum weight, which is less that the one we have here?

PROFESSOR: Good question. There is a trick out. There's a way out of this. Great argument. But

there's a trick out.

13



AUDIENCE: There's gotta be an upper bound

PROFESSOR: No, no, there is a trick, there is a way out here. Namely, so let's put it like this. Right

here we put in a 1, just for simplicity, let's assume all the other positions are also 1.

And then you say, this would be another code word, which has here an omega. I

say, you know what? What's going to happen? All the other positions are going to

be omega 2. There's no way to combine these two guys to get an additional 0,

unless you get all 0's. Unless you get to 0. That's what I said, it's a one-dimensional

space in these positions. When it's a soft code .

AUDIENCE: [UNINTELLIGIBLE PHRASE]

PROFESSOR: It tells you that if you write down the minimum weight code words in the q minus 1

times d matrix, that is, you have a Latin square, basically. That's what it tells you.

There's in no position, if you have anywhere in here an element alpha and element

omega, the same omega pops up nowhere else. There's ramifications of MDS

codes in combinatorics left and right, so this would be a Latin square. You know,

you can learn a lot a lot about MDS codes if you think a little bit about that, and

about combinatorics altogether. OK, where was I? So we know that's fun. And

actually, in the homework, you going to do n d plus 1. So the next one. But once you

do n d plus 1, do all of them. In a sense it's just inclusion and exclusion from then

on. The first one is sort of the toughest one, the rest is inclusion exclusion. And just

for the heck of it, when you go home and do the homework, write them all out. It's a

pretty looking formula, in the end.

OK, so far, so good. So we have still talked about MDS codes without knowing if

they exist. Except for the trivial ones here. And the existence of MDS codes is

actually not known for which parameters they exist. So I give you a research

problem. The research problem is the main conjecture on MDS codes. And it's

always sort of tricky. When a research problem has a name, then that signifies

danger. Then it means that it's not trivial.

The question is, for which k d and q, for which sets of parameters n k d q, do MDS

codes exist? And the conjecture this is that n k q, because in MDS code we can
14



actually get rid of the d here. e, the longest length of an MDS code. The longest

length of an MDS code, I mentioned k over an alphabet of size q. The conjecture is

that n, k, d is less than q plus 1 for k at least 2, unless -- I always have to look that

up -- I think 2q. And k plus 1 for k greater than q. We talk about it in a second,

except that n, there's a 3, 2 to the s. So if the alphabet is a power of 2, alphabet size

an extension field of 2, basically. q plus 2 and q minus 1 q to the s. q plus 2. OK, so

this is the main conjecture on MDS codes. Basically, it says that the length can

essentially be as large as the alphabet size, but not larger.

AUDIENCE: [INAUDIBLE]

PROFESSOR: This q, yeah? Oh, yeah, n k q, sorry. It doesn't make sense otherwise.

So the lengths can be in the same order of magnitude as the alphabet size. That

gives enough room, enough choices, to fill up this matrix with the information set,

with the MDS property on the information sets. This is the parity-check code, this

row is just taken out as a trivial code. And then, the demon of mathematics

conspired that this would also be true. So if you have an extension field of 2, and

you want to give it a dimension three, MDS code, they exist for q plus 2. Right.

There are, of course, reasons for this, but they go pretty deep, why they exist for

those parameters, and this is just mysterious. One can give reasons, so on another

hand, it's just so, right.

There are exceptionally enough that they have names. The first one is the

Hexacode, it's something with a generator matrix, and this goes over F4. So that's

an MDS code of length six, so this is a n6, 3, 4, MDS code over alphabet size 4.

That's the first one, in that sequence here. Anyway.

Otherwise, we have this conjecture. If you solve this, you are going to be rich and

famous, you're going to live in Hollywood, and maybe, maybe not. But you're going

to be probably not rich, you're going to be famous about a couple of hundred

people who know about this MDS conjecture, but very smart people have been

looking for this for a long, long time. OK.

15



All right, 20 minutes left. So it's better we define, we make sure those codes exist.

Do we have any question about this MDS conjecture? OK, last 20 minutes, let's at

least make sure those things exist. Reed-Solomon codes. So Reed-Solomon codes

cover this case. They are examples of codes which lie, which satisfy this equality.

OK, so how do we define Reed-Solomon codes? Now, just in a true mathematician

spirit, write down consider the following. Consider the following code. See? Beta 0

beta q minus 1. The beta i are the distinct field elements, the distinct elements in the

finite field. f is a polynomial. f is a polynomial, and the degree is less than k.

OK, good. So we have defined a code. So what that means is we start from

polynomials. The set of all polynomials of degree at most k. So what do we know

about that set? It's a vector space, right? The set of all polynomials of degree at

most k. We can add them to get a polynomial of degree at most k, we can multiply

them with a scalar to get a polynomial with degree at most k. It's a vector space.

So we take this vector space and evaluate for any element in that vector space.

This element in all non-zero elements of the field and we get a code. We get a set

of vectors, so we get a set of vectors, and that --

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yeah, I took all elements. Why not? Why not all elements? Strictly speaking, I

should have taken one more in order to get the one here. We can talk about that in

a sec. But this one more element would be -- so it's a code. First of all, it's a code.

Right? We all see it's a code.

And once you see it's a code, we ask, what are the parameters? The parameters.

So length, length is the easy one. Well, it's q. What is dimension? Dimension of C.

What's the dimension? It's a little bit tricky, that question. I actually, at Illinois, we

have to take a class on teaching. How to become an effective teacher. And one of

the things they told us is that if you ask a question, you have to wait for 12 seconds

to get an answer. So what's the dimension? There you go.

This mapping, this mapping from a vector space to a vector space. This mapping,

16



also called evaluation map, is a linear map. It's a linear map, meaning that, well,

let's start differently. Let's start differently. Do any two polynomials map to the same

code word? That you know. That you cannot. Are there any two codes, two

polynomials, so are there f of x, g of x, such that f of beta 0, so that they coincide in

all positions? No, then they would be the same, right?

And the reason is because if there would be something like that, then you could just

look at h is f of x minus g of x, which is just another polynomial of degree k. And this

would have to vanish in all positions. If k is less than q, it could not possibly vanish in

all positions, because then the polynomial of degree k would vanish in more than k

positions. Fundamental theorem of algebra. The very beginning.

So the dimension of C is indeed k, the same as the dimension of this vector space.

The dimension of the vector space of polynomials of the degree k minus 1. And the

distance, if k is less than q, the distance is equal to q. The distance, what is it?

Same argument, roughly the same argument. I think that's a linear code, so if it's a

linear code, the minimum distance of the code is the same as the minimum weight

of a non-zero word. What's the minimum weight of a non-zero word? These are

polynomials of degree k minus 1. What's the minimum weight of a non-zero word?

Well, we start out with the weight 1, and whenever the polynomial evaluates to 0,

one of the weights drops out. So I claim the minimum distance as the minimum

weight, weight of the non-zero word, and this is n minus, well, if any of these

polynomials vanishes in all, it vanishes in at most, k minus 1 positions. At most, k

minus 1 of these vectors here, of these entries, is equal to 0. So it drops by, at

most, k minus 1. Drops by at most, k minus 1.

And there we have it. There we have it. There we have, oh, this is q. There we have

it. There we have that the minimum distance of the code satisfies this equation.

AUDIENCE: [INAUDIBLE]

PROFESSOR: What?

AUDIENCE: The dimension?
17



PROFESSOR: The dimension. So, it's the same argument, roughly. So I say, the dimension, so

let's just say the size of the code is q to the k. When is the size of the q to the k, if no

two elements in the space evaluate to the same code word? But if two of them

would evaluate to the same code word, then we would less size than the vector

space had. But if two of them evaluate to the same code word, that means this is

true for all four positions. Then we could define a polynomial h of the degree k

minus 1. which disappears in more than k minus 1 positions. I mean, all positions.

Cannot be, hence the size of the code is q to the k, so this is a linear map,

dimension is k.

OK. So cool. So we have it, right? We have our MDS codes. They exist. Here they

are. They are Reed-Solomon codes. Not all MDS codes are Reed-Solomon codes,

but the ones we are interested in, they are.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, the distance is at least this, but the MDS bounds is at most this, so it's equal to

this. But the MDS bounds, so the MDS bound has this is. So with that. So it's

indeed, they lie exactly bang on to this. There are MDS codes, Reed-Solomon

codes. So that is good. So we know what they are.

So incidentally, where do you think this one more point is that you would evaluate

our polynomials in? You've heard about projective geometries? There's one more

point, it's infinity. You have, basically, if you look at the numbers, in order to close it

up, you want to add infinity to that, too. In order to get this one more, this one

addition in length, you want to evaluate this also at infinity. You will have opportunity

to do that in the homework. I looked at the homework and I was pleased to see this

problem there. I hope you will be pleased, too.

OK, all right. Any questions about this? Let's see what else I wanted to say.

Because it just gives me a few minutes to talk about a few properties of Reed-

Solomon codes, a few properties of Reed-Solomon codes. And what did I want to

say there? On nested codes, so an RS code with parameters n k, maybe we define

18



them [UNINTELLIGIBLE] like this. q is properly contained, k minus 1, minus 1. This

is pretty straight from the definition of RS codes. The set of polynomials of degree at

most k minus 1 contains the set of polynomials of degree at most k minus 1. So they

are nested codes, property one. You will see this is important, that they are nested

codes, for various constructions where Reed-Solomon codes take part in later on.

A punctured RS code is again an MDS code. Why is that so? Why is that so? Well,

you see it? Say if you puncture a Reed-Solomon code. That means we just choose

to not evaluate our code in this, this position. And this field element. Well, we just

drop that coordinate. Does anything change in the arguments we have made? Well,

the length is now 1 less, the dimension, well, the dimension is still the same, as long

as k is not larger than the length of the code. The distance, still the same as the

length, the distance is at least the length minus the number of 0's. So that equation

still holds.

Well, but that's all we needed. Still MDS code. So there was really no -- it was not

important. It was not important if you took all field elements, or a subset of the field

elements with MDS property. That has nothing to do with it. In particular, we often in

the end, we often will drop the 0 element. We often choose not to evaluate these

polynomials in the 0 of the field.

A punctured Reed-Solomon code is an MDS code. So what else did I want to say

about this? What else did I want to say about this? A generator matrix. How would a

generator matrix look like? Yeah, how would it look like? Basically, we can come

from here, right? We can take the generators of that space. So basically, we say

that one -- generate the set of polynomials, that vector space of polynomials with --

so this is the basis of that vector space. So if we map that basis, then we get a basis

of the image of the mapping. And the mapping of that basis would give this. So we

evaluate the function 1 in all field elements -- gives us 1.

We evaluate the function x in all field elements. This gives us the next generator of

the Reed-Solomon code. Well, 0 gives 0, 1 gives, oh, let's write like this. We

evaluate it in all field elements. These are all the field elements. The next one, and

19



this goes up to beta -- OK, so this would be a generator matrix. That's fine. So now,

in order to make things a bit more interesting, do you have to stop five minutes

early? We just started five minutes late? OK then, I think that's over. I think it's over.

One more thing for you guys to think about until you reach home, then the rest you

do next time. So let beta 0 be equal to 0 beta 1, or beta i equal to omega i minus 1

where omega is primitive in the field. Then we can write the matrix v of omega. I

tend to see that the first k columns, the first k rows of this matrix would be a

generator matrix of a Reed-Solomon code. Of course it's the same as

[UNINTELLIGIBLE].

If we now delete the first position, we erase the first, we puncture the first position all

out, and we look at the rest of the matrix. This factor of the matrix. Does this remind

anybody of anything? It's a DFT, it's a Fourier transform. And that's what we start

with next time. So think about why this is a Fourier transform. And maybe that's a

nice analogy. So we get the distance. The distance is at least something, which

means it's not impulsive. It's not a single 1 somewhere. The vector that we get is not

impulsive. Maybe it has something to do with the bandwidth constraint and the

frequency domain. That's what you have to think about on the way home, and that's

it. Thanks so much.

20


