
Chapter 6


Introduction to binary block codes


In this chapter we begin to study binary signal constellations, which are the Euclidean-space 
images of binary block codes. Such constellations have bit rate (nominal spectral efficiency) 
ρ ≤ 2 b/2D, and are thus suitable only for the power-limited regime. 

We will focus mainly on binary linear block codes, which have a certain useful algebraic 
structure. Specifically, they are vector spaces over the binary field F2. A useful infinite family 
of such codes is the set of Reed-Muller codes. 

We discuss the penalty incurred by making hard decisions and then performing classical error-
correction, and show how the penalty may be partially mitigated by using erasures, or rather 
completely by using generalized minimum distance (GMD) decoding. 

6.1 Binary signal constellations 

In this chapter we will consider constellations that are the Euclidean-space images of binary codes 
via a coordinatewise 2-PAM map. Such constellations will be called binary signal constellations. 

A binary block code of length n is any subset C ⊆  {0, 1}n of the set of all binary n-tuples 
of length n. We will usually identify the binary alphabet {0, 1} with the finite field F2 with 
two elements, whose arithmetic rules are those of mod-2 arithmetic. Moreover, we will usually 
impose the requirement that C be linear ; i.e., that C be a subspace of the n-dimensional vector 
space (F2)n of all binary n-tuples. We will shortly begin to discuss such algebraic properties. 

Each component xk ∈ {0, 1} of a codeword x ∈ C  will be mapped to one of the two points ±α 
of a 2-PAM signal set A = {±α} ⊂ R according to a 2-PAM map s: {0, 1} → A. Explicitly, two 
standard ways of specifying such a 2-PAM map are 

s(x) =  α(−1)x; 
s(x) =  α(1 − 2x). 

The first map is more algebraic in that, ignoring scaling, it is an isomorphism from the additive 
binary group Z2 = {0, 1} to the multiplicative binary group {±1}, since  s(x)·s(x′) = (−1)x+x′ 

= 
s(x + x′). The second map is more geometric, in that it is the composition of a map from 
{0, 1} ∈  F2 to {0, 1} ∈  R, followed by a linear transformation and a translation. However, 
ultimately both formulas specify the same map: 

{s(0) = α, s(1) = −α}. 
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Under the 2-PAM map, the set (F2)n of all binary n-tuples maps to the set of all real n-tuples 
of the form (±α, ±α,  . . . ,  ±α). Geometrically, this is the set of all 2n vertices of an n-cube of 
side 2α centered on the origin. It follows that a binary signal constellation A′ = s(C) based on 
a binary code C ⊆  (F2)n maps to a subset of the vertices of this n-cube. 

The size of an N -dimensional binary constellation A′ is thus bounded by |A′| ≤  2n , and its bit 
rate ρ = (2/n) log2 |A′| is bounded by ρ ≤ 2 b/2D. Thus binary constellations can be used only 
in the power-limited regime. 

Since the n-cube constellation An = s((F2)n) = (s(F2))n is simply the n-fold Cartesian product 
An of the 2-PAM constellation A = s(F2) =  {±α}, its normalized parameters are the same as 
those of 2-PAM, and it achieves no coding gain. Our hope is that by restricting to a subset 
A′ ⊂ An , a distance gain can be achieved that will more than offset the rate loss, thus yielding 
a coding gain. 

Example 1. Consider the binary code C = {000, 011, 110, 101}, whose four codewords are 
binary 3-tuples. The bit rate of C is thus ρ = 4/3 b/2D. Its Euclidean-space image s(C) is a set 
of four vertices of a 3-cube that form a regular tetrahedron, as shown in Figure 1. The minimum 
squared Euclidean distance of s(C) is  d2 = 8α2 , and every signal point in s(C) has 3min(s(C)) 
nearest neighbors. The average energy of s(C) is  E(s(C)) = 3α2 , so its average energy per bit is 
Eb = (3/2)α2 , and its nominal coding gain is 

d2 4 
γc(s(C)) = min(s(C)) 

= (1.25 dB).
4Eb 3 
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Figure 1. The Euclidean image of the binary code C = {000, 011, 110, 101}
is a regular tetrahedron in R3 . 

It might at first appear that the restriction of constellation points to vertices of an n-cube 
might force binary signal constellations to be seriously suboptimal. However, it turns out that 
when ρ is small, this apparently drastic restriction does not hurt potential performance very 
much. A capacity calculation using a random code ensemble with binary alphabet A = {±α}
rather than R shows that the Shannon limit on Eb/N0 at ρ = 1 b/2D is 0.2 dB rather than 0 
dB; i.e., the loss is only 0.2  dB. As  ρ → 0, the loss becomes negligible. Therefore at spectral 
efficiencies ρ ≤ 1 b/2D, binary signal constellations are good enough. 
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6.2 Binary linear block codes as binary vector spaces 

Practically all of the binary block codes that we consider will be linear. A binary linear block 
code is a set of n-tuples of elements of the binary finite field F2 = {0, 1} that form a vector space 
over the field F2. As we will see in a moment, this means simply that C must have the group 
property under n-tuple addition. 

We therefore begin by studying the algebraic structure of the binary finite field F2 = {0, 1}
and of vector spaces over F2. In later chapters we will study codes over general finite fields. 

In general, a field F is a set of elements with two operations, addition and multiplication, which 
satisfy the usual rules of ordinary arithmetic (i.e., commutativity, associativity, distributivity). 
A field contains an additive identity 0 such that a + 0  =  a for all field elements a ∈ F, and  
every field element a has an additive inverse −a such that a + (−a) = 0. A field contains a 
multiplicative identity 1 such that a · 1 =  a for all field elements a ∈ F, and every nonzero field 
element a has a multiplicative inverse a−1 such that a · a−1 = 1.  

The binary field F2 (sometimes called a Galois field, and denoted by GF(2)) is the finite field 
with only two elements, namely 0 and 1, which may be thought of as representatives of the even 
and odd integers, modulo 2. Its addition and multiplication tables are given by the rules of 
mod 2 (even/odd) arithmetic, with 0 acting as the additive identity and 1 as the multiplicative 
identity: 

0 + 0  =  0  0  · 0 = 0  
0 + 1  =  1  0  · 1 = 0  
1 + 0  =  1  1  · 0 = 0  
1 + 1  =  0  1  · 1 = 1  

In fact these rules are determined by the general properties of 0 and 1 in any field. Notice that 
the additive  inverse of 1 is 1, so  −a = a for both field elements. 

In general, a vector space V over a field F is a set of vectors v including 0 such that addition 
of vectors and multiplication by scalars in F is well defined, and such that various other vector 
space axioms are satisfied. 

For a vector space over F2, multiplication by scalars is trivially well defined, since 0v = 0 and 
1v = v are automatically in V . Therefore all that really needs to be checked is additive closure, 
or the group property of V under vector addition; i.e., for all v, v′ ∈ V , v + v′ is in V . Finally, 
every vector is its own additive inverse, −v = v, since  

v + v = 1v + 1v = (1  +  1)v = 0v = 0. 

In summary, over a binary field, subtraction is the same as addition. 

A vector space over F2 is called a binary vector space. The set (F2)n of all binary n-tuples 
v = (v1, . . . , vn) under componentwise binary addition is an elementary example of a binary 
vector space. Here we consider only binary vector spaces which are subspaces C ⊆ (F2)n, which  
are called binary linear block codes of length n. 

If G = {g1, . . . ,gk } is a set of vectors in a binary vector space V , then the set C(G) of all  
binary linear combinations 

C(G) =  { aj gj , aj ∈ F2, 1 ≤ j ≤ k}
j 
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is a subspace of V , since  C(G) evidently has the group property. The set G is called linearly 
independent if these 2k binary linear combinations are all distinct, so that the size of C(G) is  
|C(G)| = 2k . A set G of linearly independent vectors such that C(G) =  V is called a basis for 
V , and  the  elements  {gj , 1 ≤ j ≤ k} of the basis are called generators. The set G = {g1, . . . ,gk}
may be arranged as a k × n matrix over F2, called a generator matrix for C(G). 

The dimension of a binary vector space V is the number k of generators in any basis for V . 
As with any vector space, the dimension k and a basis G for V may be found by the following 
greedy algorithm: 

Initialization: set k = 0 and G = ∅ (the empty set); 
Do loop: if C(G) =  V we are done, and dim V = k; 

otherwise, increase k by 1 and  take  any  v ∈ V − C(G) as  gk. 

Thus the size of V is always |V | = 2k for some integer k = dim  V ; conversely, dim V = log2 |V |. 
An (n, k) binary linear code C is any subspace of the vector space (F2)n with dimension k, or  

equivalently size 2k . In other words, an (n, k) binary linear code is any set of 2k binary n-tuples 
including 0 that has the group property under componentwise binary addition. 

Example 2 (simple binary linear codes). The (n, n) binary linear code is the set (F2)n of all 
binary n-tuples, sometimes called the universe code of length n. The  (n, 0) binary linear code 
is {0}, the set containing only the all-zero n-tuple, sometimes called the trivial code of length 
n. The code consisting of 0 and the all-one n-tuple 1 is an (n, 1) binary linear code, called the 
repetition code of length n. The code consisting of all n-tuples with an even number of ones 
is an (n, n − 1) binary linear code, called the even-weight or single-parity-check (SPC) code of 
length n. 

6.2.1 The Hamming metric 

The geometry of (F2)n is defined by the Hamming metric: 

wH (x) = number of ones in x. 

The Hamming metric satisfies the axioms of a metric: 

(a) Strict positivity: wH (x) ≥ 0, with equality if and only if x = 0; 

(b) Symmetry: wH (−x) =  wH (x) (since  −x = x); 

(c) Triangle inequality: wH (x + y) ≤ wH (x) +  wH (y). 

Therefore the Hamming distance, 

dH (x,y) =  wH (x − y) =  wH (x + y), 

may be used to define (F2)n as a metric space, called a Hamming space. 

We now show that the group property of a binary linear block code C leads to a remarkable 
symmetry in the distance distributions from each of the codewords of C to all other codewords. 

Let x ∈ C be a given codeword of C, and consider the set {x + y | y ∈ C} = x + C as y 
runs through the codewords in C. By the group property of C, x + y must be a codeword in C. 
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Moreover, since x + y = x + y′ if and only if y = y′, all of these codewords must be distinct. 
But since the size of the set x + C is |C|, this implies that x + C = C; i.e., x + y runs through 
all codewords in C as y runs through C. Since  dH (x, y) =  wH (x + y), this implies the following 
symmetry: 

Theorem 6.1 (Distance invariance) The set of Hamming distances dH (x, y) from any code-
word x ∈ C  to all codewords y ∈ C  is independent of x, and is equal to the set of distances from 
0 ∈ C, namely the set of Hamming weights wH (y) of all codewords y ∈ C. 

An (n, k) binary linear block code C is said to have minimum Hamming distance d, and  is  
denoted as an (n, k, d) code,  if  

d = min  dH (x, y). 
x�=y∈C 

Theorem 6.1 then has the immediate corollary: 

Corollary 6.2 (Minimum distance = minimum nonzero weight) The minimum Ham-
ming distance of C is equal to the minimum Hamming weight of any nonzero codeword of C. 
More generally, the number of codewords y ∈ C  at distance d from any codeword x ∈ C  is equal 
to the number Nd of weight-d codewords in C, independent of x. 

Example 2 (cont.) The (n, n) universe code has minimum Hamming distance d = 1,  and  the  
number of words at distance 1 from any codeword is N1 = n. The  (n, n − 1) SPC code has 
minimum weight and distance d = 2,  and  N2 = n(n −1)/2. The (n, 1) repetition code has d = n 
and Nn = 1. By convention, the trivial (n, 0) code {0} is said to have d = ∞. 

6.2.2 Inner products and orthogonality 

A symmetric, bilinear inner product on the vector space (F2)n is defined by the F2-valued dot 
product 

〈x, y〉 = x · y = xyT = xiyi, 
i 

where n-tuples are regarded as row vectors and “T ” denotes “transpose.” Two vectors are said 
to be orthogonal if 〈x, y〉 = 0.  

However, this F2 inner product does not have a property analogous to strict positivity: 〈x, x〉 = 
0 does not imply that x = 0, but only that x has an even number of ones. Thus it is perfectly 
possible for a nonzero vector to be orthogonal to itself. Hence 〈x, x〉 does not have a key 
property of the Euclidean squared norm and cannot be used to define a metric space analogous 
to Euclidean space. The Hamming geometry of (F2)n is very different from Euclidean geometry. 

In particular, the projection theorem does not hold, and it is therefore not possible in general 
to find an orthogonal basis G for a binary vector space C. 

Example 3. The  (3, 2) SPC code consists of the four 3-tuples C = {000, 011, 101, 110}. Any  
two nonzero codewords form a basis for C, but no two such codewords are orthogonal. 

The orthogonal code (dual code) C⊥ to an (n, k) code  C is defined as the set of all n-tuples 
that are orthogonal to all elements of C: 

C⊥ = {y ∈ (F2)n | 〈x, y〉 = 0  for  all  x ∈ C}. 
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Here are some elementary facts about C⊥: 
1(a) C⊥ is an (n, n − k) binary linear code, and thus has a basis H of size n − k. 

(b) If G is a basis for C, then a set H of n − k linearly independent n-tuples in C⊥ is a basis 
for C⊥ if and only if every vector in H is orthogonal to every vector in G. 

(c) (C⊥)⊥ = C. 

A basis  G for C consists of k linearly independent n-tuples in C, and is usually written as a 
k × n generator matrix G of rank k. The code C then consists of all binary linear combinations 

⊥C = {aG, a ∈ (F2)k}. A  basis  H for C⊥ consists of n − k linearly independent n-tuples in C , 
and is usually written as an (n − k) × n matrix H; then  C⊥ = {bH, b ∈ (F2)n−k }. According 
to property (b) above, C and C⊥ are dual codes if and only if their generator matrices satisfy 
GHT = 0. The transpose HT of a generator matrix H for C⊥ is called a parity-check matrix for 
C; it has the property that a vector x ∈ (F2)n is in C if and only if xHT = 0, since  x is in the 

⊥dual code to C⊥ if and only if it is orthogonal to all generators of C . 

Example 2 (cont.; duals of simple codes). In general, the (n, n) universe code and the (n, 0) 
trivial code are dual codes. The (n, 1) repetition code and the (n, n − 1) SPC code are dual 
codes. Note that the (2, 1) code {00, 11} is both a repetition code and an SPC code, and is its 
own dual; such a code is called self-dual. (Self-duality cannot occur in real or complex vector 
spaces.) 

6.3 Euclidean-space images of binary linear block codes 

In this section we derive the principal parameters of a binary signal constellation s(C) from  
the parameters of the binary linear block code C on which it is based, namely the parameters 
(n, k, d) and the number Nd of weight-d codewords in C. 

The dimension of s(C) is  N = n, and its size is M = 2k . It thus supports k bits per block. 
The bit rate (nominal spectral efficiency) is ρ = 2k/n b/2D. Since k ≤ n, ρ ≤ 2 b/2D, and we 
are in the power-limited regime. 

Every point in s(C) is of the form (±α, ±α, . . . ,  ±α), and therefore every point has energy nα2; 
i.e., the signal points all lie on an n-sphere of squared radius nα2 . The average energy per block 
is thus E(s(C)) = nα2, and the average energy per bit is Eb = nα2/k. 

If two codewords x, y ∈ C have Hamming distance dH (x, y), then their Euclidean images 
s(x), s(y) will be the same in n − dH (x, y) places, and will differ by 2α in dH (x, y) places, so 

1The standard proof of this fact involves finding a systematic generator matrix G = [Ik | P ] for  C, where Ik 

is the k × k identity matrix and P is a k × (n − k) check matrix. Then C = {(u, uP ), u ∈ (F2)
k }, where u is a 

free information k-tuple and uP is a check (n − k)-tuple. The dual code C⊥ is then evidently the code generated 
by H = [−P T | In−k ], where P T is the transpose of P ; i.e., C⊥ = {(−vP T , v), v ∈ (F2)

n−k }, whose dimension is 
n − k. 

A more elegant proof based on the fundamental theorem of group homomorphisms (which the reader is not 
expected to know at this point) is as follows. Let M be the |C⊥| ×n matrix whose rows are the codewords of C⊥ . 

→ (F2)
|C⊥ |Consider the homomorphism M T : (F2)

n defined by y �→ yM T ; i.e., yM T is the set of inner products 
of an n-tuple y ∈ (F2)

n with all codewords x ∈ C⊥ . The kernel of this homomorphism is evidently C. By  the  
fundamental theorem of homomorphisms, the image of M T (the row space of M T ) is isomorphic to the quotient 
space (F2)

n/C, which is isomorphic to (F2)
n−k . Thus the column rank of M is n − k. But the column rank is 

equal to the row rank, which is the dimension of the row space C⊥ of M . 
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their squared Euclidean distance will be2 

‖s(x) − s(y)‖2 = 4α2dH (x, y). 

Therefore 
d2 

min(s(C)) = 4α2dH (C) = 4α2d, 

where d = dH (C) is the minimum Hamming distance of C. 

It follows that the nominal coding gain of s(C) is  

d2 kd 
γc(s(C)) = min(s(C)) 

= . (6.1)
4Eb n 

Thus the parameters (n, k, d) directly determine γc(s(C)) in this very simple way. (This gives 
another reason to prefer Eb/N0 to SNRnorm in the power-limited regime.) 

Moreover, every vector s(x) ∈ s(C) has the same number of nearest neighbors Kmin(s(x)), 
namely the number Nd of nearest neighbors to x ∈ C. Thus  Kmin(s(C)) = Nd, and  Kb(s(C)) = 
Nd/k. 

Consequently the union bound estimate of Pb(E) is  
√ 

Pb(E) ≈ Kb(s(C))Q (γc(s(C))(2Eb/N0)) 
Nd √ dk 

= Q 2Eb/N0 . (6.2)
k n 

In summary, the parameters and performance of the binary signal constellation s(C) may  be  
simply determined from the parameters (n, k, d) and  Nd of C. 

Exercise 1. Let  C be an (n, k, d) binary linear code with d odd. Show that if we append an 
overall parity check p = i xi to each codeword x, then we obtain an (n + 1, k, d  + 1) binary 
linear code C with d even. Show that the nominal coding gain γc(C′) is always greater than 
γc(C) if  k >  1. Conclude that we can focus primarily on linear codes with d even. 

Exercise 2. Show that if C is a binary linear block code, then in every coordinate position 
either all codeword components are 0 or half are 0 and half are 1. Show that a coordinate 
in which all codeword components are 0 may be deleted (“punctured”) without any loss in 
performance, but with savings in energy and in dimension. Show that if C has no such all-zero 
coordinates, then s(C) has zero mean: m(s(C)) = 0. 

6.4 Reed-Muller codes 

The Reed-Muller (RM) codes are an infinite family of binary linear codes that were among the 
first to be discovered (1954). For block lengths n ≤ 32, they are the best codes known with 
minimum distances d equal to powers of 2. For greater block lengths, they are not in general 
the best codes known, but in terms of performance vs. decoding complexity they are still quite 
good, since they admit relatively simple ML decoding algorithms. 

2Moreover, the Eudlidean-space inner product of s(x) and  s(y) is  

2 2〈s(x), s(y)〉 = (n − dH (x, y))α2 + dH (x, y)(−α ) = (n − 2dH (x, y))α . 

Therefore s(x) and  s(y) are orthogonal if and only if dH (x, y) =  n/2. Also, s(x) and  s(y) are  antipodal (s(x) =  
−s(y)) if and only if dH (x, y) =  n. 



� � 

� � 

66 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES 

For any integers m ≥ 0 and  0  ≤ r ≤ m, there exists an RM code, denoted by RM(r,m), that 
has length n = 2m and minimum Hamming distance d = 2m−r , 0  ≤ r ≤ m. 

For r = m, RM(m, m) is defined as the universe (2m , 2m , 1) code. It is helpful also to define 
RM codes for r = −1 by RM(−1, m) = (2m , 0,∞), the trivial code of length 2m. Thus  for  
m = 0, the two RM codes of length 1 are the (1, 1, 1) universe code RM(0, 0) and the (1, 0,∞) 
trivial code RM(−1, 0). 

The remaining RM codes for m ≥ 1 and  0  ≤ r <  m  may be constructed from these elementary 
codes by the following length-doubling construction, called the |u|u+ v| construction (originally 
due to Plotkin). RM(r,m) is constructed from RM(r − 1, m − 1) and RM(r,m − 1) as 

RM(r,m) =  {(u,u + v) | u ∈ RM(r,m − 1),v ∈ RM(r − 1, m − 1)}. (6.3) 

From this construction, it is easy to prove the following facts by recursion: 

(a) RM(r,m) is a binary linear block code with length n = 2m and dimension 

k(r,m) =  k(r,m − 1) + k(r − 1, m − 1). 

(b) The codes are nested, in the sense that RM(r − 1, m) ⊆ RM(r,m). 

(c) The minimum distance of RM(r,m) is  d = 2m−r if r ≥ 0 (if  r = −1, then d = ∞). 

We verify that these assertions hold for RM(0, 0) and RM(−1, 0). 

For m ≥ 1, the linearity and length of RM(r,m) are obvious from the construction. The 
dimension (size) follows from the fact that (u,u + v) =  0 if and only if u = v = 0. 

Exercise 5 below shows that the recursion for k(r,m) leads to the explicit formula 

� m 
k(r,m) =  , (6.4)

j
0≤j≤r 

m m!where denotes the combinatorial coefficient j!(m−j)! .j 

The nesting property for m follows from the nesting property for m − 1. 

Finally, we verify that the minimum nonzero weight of RM(r,m) is 2m−r as follows: 

(a) if u = 0, then  wH ((0,v)) = wH (v) ≥ 2m−r if v 
= 0, since  v ∈ RM(r − 1, m − 1). 

(b) if u + v = 0, then  u = v ∈ RM(r − 1, m − 1) and wH ((v,0)) ≥ 2m−r if v 
= 0. 

= 0 and u + v 
(c) if u 
 = 0, then both u and u + v are in RM(r,m− 1) (since RM(r− 1, m− 1) 
is a subcode of RM(r,m − 1)), so 

wH ((u,u + v)) = wH (u) +  wH (u + v) ≥ 2 · 2m−r−1 = 2m−r . 

Equality clearly holds for (0,v), (v,0) or (u,u) if we choose  v or u as a minimum-weight 
codeword from their respective codes. 
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The |u|u + v| construction suggests the following tableau of RM codes:


r = m, d = 1; 

*� universe codes ���(32, 32, 1)����

(16, 16, 1) r = m − 1, d  = 2;  ��� *� SPC codes � �� �� �(8, 8, 1) (32, 31, 2)� �� �� �
�� �� r = m − 2, d  = 4;  

� � *�(4, 4, 1) �(16, 15, 2) � ext. Hamming codes � � �� � �� � �(2, 2, 1) (8, 7, 2) (32, 26, 4)� � �� � �� � �� � �� � �(1, 1, 1) (4, 3, 2) (16, 11, 4)� � �� �� �� �� �� � -(2, 1, 2) (8, 4, 4) (32, 16, 8) k = n/2; 
�� self-dual codes 

�

HHHHHHHHHHHHHHHHHHHHHHHHH

�(1, 0,∞) (4, 1, 4) (16, 5, 8)�


HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH


(2, 0,∞) (8, 1, 8) (32, 6, 16) 

(4, 0,∞) (16, 1, 16) j 
r = 1, d  = n/2; 
biorthogonal codes 

(8, 0,∞) (32, 1, 32) 

(16, 0,∞) j 
r = 0, d  = n; 
repetition codes 

(32, 0,∞) 

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHj 
r = −1, d  = ∞; 
trivial codes 

Figure 2. Tableau of Reed-Muller codes. 

In this tableau each RM code lies halfway between the two codes of half the length that are 
used to construct it in the |u|u + v| construction, from which we can immediately deduce its 
dimension k. 

Exercise 3. Compute the parameters (k, d) of the RM codes of lengths n = 64 and 128. 

There is a known closed-form formula for the number Nd of codewords of minimum weight 
d = 2m−r in RM(r,m): � 2m−i − 1 

Nd = 2r 

2m−r−i − 1 
. (6.5) 

0≤i≤m−r−1 

Example 4. The number of weight-8 words in the (32, 16, 8) code RM(2, 5) is 

31 · 15 · 7 
N8 = 4  = 620.

7 · 3 · 1 

The nominal coding gain of RM(2, 5) is γc(C) = 4 (6.02 dB); however, since Kb = N8/k = 38.75, 
the effective coding gain by our rule of thumb is only about γeff (C) ≈ 5.0 dB.  
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The codes with r = m − 1 are  single-parity-check (SPC) codes with d = 2. These codes 
have nominal coding gain 2(k/n), which goes to 2 (3.01 dB) as n → ∞; however, since Nd = 
2m(2m − 1)/2, we have Kb = 2m−1 → ∞, which ultimately limits the effective coding gain. 

The codes with r = m − 2 are  extended Hamming (EH) codes with d = 4. These codes 
have nominal coding gain 4(k/n), which goes to 4 (6.02 dB) as n → ∞; however, since Nd = 
2m(2m − 1)(2m − 2)/24, we again have Kb → ∞. 

Exercise 4 (optimizing SPC and EH codes). Using the rule of thumb that a factor of two 
increase in Kb costs 0.2 dB in effective coding gain, find the value of n for which an (n, n − 1, 2) 
SPC code has maximum effective coding gain, and compute this maximum in dB. Similarly, find 
m such that a (2m , 2m −m − 1, 4) extended Hamming code has maximum effective coding gain, 
using Nd = 2m(2m − 1)(2m − 2)/24, and compute this maximum in dB. 

The codes with r = 1  (first-order Reed-Muller codes) are interesting, because as shown in 
Exercise 5 they generate biorthogonal signal sets of dimension n = 2m and size 2m+1, with  
nominal coding gain (m + 1)/2 → ∞. It is known that as n → ∞ this sequence of codes can 
achieve arbitrarily small Pr(E) for any Eb/N0 greater than the ultimate Shannon limit, namely 
Eb/N0 > ln 2 (-1.59 dB). 

Exercise 5 (biorthogonal codes). We have shown that the first-order Reed-Muller codes 
RM(1, m) have parameters (2m, m+1, 2m−1), and that the (2m , 1, 2m) repetition code RM(0, m) 
is a subcode. 

(a) Show that RM(1, m) has one word of weight 0, one word of weight 2m, and  2m+1 − 2 
words of weight 2m−1 . [Hint: first show that the RM(1, m) code consists of 2m complementary 
codeword pairs {x, x + 1}.] 

(b) Show that the Euclidean image of an RM(1, m) code is an  M = 2m+1 biorthogonal signal 
set. [Hint: compute all inner products between code vectors.] 

(c) Show that the code C′ consisting of all words in RM(1, m) with a 0 in any  given coordinate  
position is a (2m, m,  2m−1) binary linear code, and that its Euclidean image is an M = 2m 

orthogonal signal set. [Same hint as in part (a).] 

(d) Show that the code C′′ consisting of the code words of C′ with the given coordinate deleted 
(“punctured”) is a binary linear (2m − 1, m,  2m−1) code, and that its Euclidean image is an 
M = 2m simplex signal set. [Hint: use Exercise 7 of Chapter 5.] 

In Exercise 2 of Chapter 1, it was shown how a 2m-orthogonal signal set A can be constructed 
as the image of a 2m × 2m binary Hadamard matrix. The corresponding 2m+1-biorthogonal 
signal set ±A is identical to that constructed above from the (2m, m  + 1, 2m−1) first-order RM 
code. 

The code dual to RM(r, m) is RM(m − r − 1, m); this can be shown by recursion from the 
facts that the (1, 1) and (1, 0) codes are duals and that by bilinearity 

〈(u, u + v), (u , u′ + v′)〉 = 〈u, u′〉 + 〈u + v, u′ + v′〉 = 〈u, v′〉 + 〈v, u′〉 + 〈v, v′〉, 
since 〈u, u′〉 + 〈u, u′〉 = 0. In particular, this confirms that the repetition and SPC codes are 
duals, and shows that the biorthogonal and extended Hamming codes are duals. 

This also shows that RM codes with k/n = 1/2 are self-dual. The nominal coding gain of a 
rate-1/2 RM code of length 2m (m odd) is 2(m−1)/2, which goes to infinity as m → ∞. It seems 
likely that as n → ∞ this sequence of codes can achieve arbitrarily small Pr(E) for any Eb/N0 

greater than the Shannon limit for ρ = 1 b/2D, namely Eb/N0 > 1 (0 dB).  
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Exercise 6 (generator matrices for RM codes). Let square 2m × 2m matrices Um, m ≥ 1, be 
specified recursively as follows. The matrix U1 is the 2 × 2 matrix 

1 0 
U1 = 1 

.
1 

The matrix Um is the 2m × 2m matrix 

Um−1 0 
Um = . 

Um−1 Um−1 

(In other words, Um is the m-fold tensor product of U1 with itself.) 

(a) Show that RM(r, m) is generated by the rows of Um of Hamming weight 2m−r or greater. 
[Hint: observe that this holds for m = 1, and prove by recursion using the |u|u+ v| construction.] 
For example, give a generator matrix for the (8, 4, 4) RM code. 

m m(b) Show that the number of rows of Um of weight 2m−r is r . [Hint: use the fact that r 
is the coefficient of zm−r in the integer polynomial (1 + z)m.] 

m(c) Conclude that the dimension of RM(r, m) is  k(r, m) =  0≤j≤r j . 

6.4.1 Effective coding gains of RM codes 

We provide below a table of the nominal spectral efficiency ρ, nominal coding gain γc, number  
of nearest neighbors Nd, error coefficient per bit Kb, and estimated effective coding gain γeff at 
Pb(E) ≈ 10−5 for various Reed-Muller codes, so that the student can consider these codes as 
components in system design exercises. 

In later lectures, we will consider trellis representations and trellis decoding of RM codes. We 
give here two complexity parameters of the minimal trellises for these codes: the state complexity 
s (the binary logarithm of the maximum number of states in a minimal trellis), and the branch 
complexity t (the binary logarithm of the maximum number of branches per section in a minimal 
trellis). The latter parameter gives a more accurate estimate of decoding complexity. 

code ρ γc (dB) Nd Kb γeff (dB) s t 
(8,7,2) 1.75 7/4 2.43 28 4 2.0 1 2 
(8,4,4) 1.00 2 3.01 14 4 2.6 2 3 

(16,15,2) 1.88 15/8 2.73 120 8 2.1 1 2 
(16,11,4) 1.38 11/4 4.39 140 13 3.7 3 5 
(16, 5,8) 0.63 5/2 3.98 30 6 3.5 3 4 
(32,31, 2) 1.94 31/16 2.87 496 16 2.1 1 2 
(32,26, 4) 1.63 13/4 5.12 1240 48 4.0 4 7 
(32,16, 8) 1.00 4 6.02 620 39 4.9 6 9 
(32, 6,16) 0.37 3 4.77 62 10 4.2 4 5 
(64,63, 2) 1.97 63/32 2.94 2016 32 1.9 1 2 
(64,57, 4) 1.78 57/16 5.52 10416 183 4.0 5 9 
(64,42, 8) 1.31 21/4 7.20 11160 266 5.6 10 16 
(64,22,16) 0.69 11/2 7.40 2604 118 6.0 10 14 
(64, 7,32) 0.22 7/2 5.44 126 18 4.6 5 6 

Table 1. Parameters of RM codes with lengths n ≤ 64.
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6.5 Decoding of binary block codes 

In this section we will first show that with binary codes MD decoding reduces to “maximum-
reliability decoding.” We will then discuss the penalty incurred by making hard decisions and 
then performing classical error-correction. We show how the penalty may be partially mitigated 
by using erasures, or rather completely by using generalized minimum distance (GMD) decoding. 

6.5.1 Maximum-reliability decoding 

All of our performance estimates assume minimum-distance (MD) decoding. In other words, 
given a received sequence r ∈ R

n, the receiver must find the signal s(x) for  x ∈ C  such that the 
squared distance ‖r − s(x)‖2 is minimum. We will show that in the case of binary codes, MD 
decoding reduces to maximum-reliability (MR) decoding. 

Since ‖s(x)‖2 = nα2 is independent of x with binary constellations s(C), MD decoding is 
equivalent to maximum-inner-product decoding : find the signal s(x) for  x ∈ C  such that the 
inner product 

〈r, s(x)〉 = rk s(xk ) 
k 

is maximum. Since s(xk ) = (−1)xk α, the inner product may be expressed as 

〈r, s(x)〉 = α rk (−1)xk = α |rk| sgn(rk )(−1)xk 

k k 

The sign sgn(rk ) ∈ {±1} is often regarded as a “hard decision” based on rk , indicating which of 
the two possible signals {±α} is more likely in that coordinate without taking into account the 
remaining coordinates. The magnitude |rk | may be viewed as the reliability of the hard decision. 
This rule may thus be expressed as: find the codeword x ∈ C  that maximizes the reliability 

r(x | r) =  |rk |(−1)e(xk ,rk ), 
k 

where the “error” e(xk , rk ) is 0 if the signs of s(xk ) and  rk agree, or 1 if they disagree. We call 
this rule maximum-reliability decoding. 

Any of these optimum decision rules is easy to implement for small constellations s(C). How-
ever, without special tricks they require at least one computation for every codeword x ∈ C, and  
therefore become impractical when the number 2k of codewords becomes large. Finding simpler 
decoding algorithms that give a good tradeoff of performance vs. complexity, perhaps only for 
special classes of codes, has therefore been the major theme of practical coding research. 

For example, the Wagner decoding rule, the earliest “soft-decision” decoding algorithm (circa 
1955), is an optimum decoding rule for the special class of (n, n− 1, 2) SPC codes that requires 
many fewer than 2n−1 computations. 

Exercise 7 (“Wagner decoding”). Let C be an (n, n − 1, 2) SPC code. The Wagner decoding 
rule is as follows. Make hard decisions on every symbol rk , and check whether the resulting 
binary word is in C. If so, accept it. If not, change the hard decision in the symbol rk for which 
the reliability metric |rk | is minimum. Show that the Wagner decoding rule is an optimum 
decoding rule for SPC codes. [Hint: show that the Wagner rule finds the codeword x ∈ C  that 
maximizes r(x | r).] 
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6.5.2 Hard decisions and error-correction 

Early work on decoding of binary block codes assumed hard decisions on every symbol, yielding 
a hard-decision n-tuple y ∈ (F2)n . The main decoding step is then to find the codeword x ∈ C  
that is closest to y in Hamming space. This is called error-correction. 

If C is a linear (n, k, d) code, then, since the Hamming metric is a true metric, no error can 
occur when a codeword x is sent unless the number of hard decision errors t = dH (x,y) is at  
least as great as half the minimum Hamming distance, t ≥ d/2. For many classes of binary 
block codes, efficient algebraic error-correction algorithms exist that are guaranteed to decode 
correctly provided that 2t < d. This is called bounded-distance error-correction. 

Example 5 (Hamming codes). The first binary error-correction codes were the Hamming 
codes (mentioned in Shannon’s original paper). A Hamming code C is a (2m − 1, 2m −m− 1, 3) 
code that may be found by puncturing a (2m , 2m −m− 1, 4) extended Hamming RM(m− 2, m) 
code in any coordinate. Its dual C⊥ is a (2m − 1, m, 2m−1) code whose Euclidean image is a 
2m-simplex constellation. For example, the simplest Hamming code is the (3, 1, 3) repetition 
code; its dual is the (3, 2, 2) SPC code, whose image is the 4-simplex constellation of Figure 1. 

The generator matrix of C⊥ is an m × (2m − 1) matrix H whose 2m − 1 columns must run 
through the set of all nonzero binary m-tuples in some order (else C would not be guaranteed 
to correct any single error; see next paragraph). 

Since d = 3, a Hamming code should be able to correct any single error. A simple method for 
doing so is to compute the “syndrome” 

yHT = (x + e)HT = eHT , 

where e = x + y. If  yHT = 0, then  y ∈ C  and y is assumed to be correct. If yHT 
= 0, then  
the syndrome yHT is equal to one of the rows in HT ,  and  a single error is assumed to have  
occurred in the corresponding position. Thus it is always possible to change any y ∈ (F2)n into 
a codeword by changing at most one bit. 

This implies that the 2n−m “Hamming spheres” of radius 1 and size 2m centered on the 2n−m 

codewords x, which consist of x and the n = 2m − 1 n-tuples y within Hamming distance 1 of 
x, form an exhaustive partition of the set of 2n n-tuples that comprise Hamming n-space (F2)n . 

In summary, Hamming codes form a “perfect” Hamming sphere-packing of (F2)n, and have a 
simple single-error-correction algorithm. 

We now show that even if an error-correcting decoder does optimal MD decoding in Hamming 
space, there is a loss in coding gain of the order of 3 dB relative to MD Euclidean-space decoding. 

Assume an (n, k, d) binary linear code C with d odd (the situation is worse when d is even). 
Let x be the transmitted codeword; then there is at least one codeword at Hamming distance 
d from x, and thus at least one real n-tuple in s(C) at Euclidean distance 4α2d from s(x). For 
any ε >  0, a hard-decision decoding error will occur if the noise exceeds α + ε in any (d + 1)/2 
of the places in which that word differs from x. Thus with hard decisions the minimum squared 
distance to the decision boundary in Euclidean space is α2(d + 1)/2. (For d even, it is α2d/2.) 

On the other hand, with “soft decisions” (reliability weights) and MD decoding, the minimum 
squared distance to any decision boundary in Euclidean space is α2d. To the accuracy of √ 
the union bound estimate, the argument of the Q function thus decreases with hard-decision 
decoding by a factor of (d + 1)/2d, or approximately 1/2 (−3 dB)  when  d is large. (When d is 
even, this factor is exactly 1/2.) 
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Example 6 (Hard and soft decoding of antipodal codes). Let C be the (2, 1, 2) binary code; 
then the two signal points in s(C) are antipodal, as shown in Figure 3(a) below. With hard 
decisions, real 2-space R2 is partitioned into four quadrants, which must then be assigned to one 
or the other of the two signal points. Of course, two of the quadrants are assigned to the signal 
points that they contain. However, no matter how the other two quadrants are assigned, there 
will be at least one decision boundary at squared distance α2 from a signal point, whereas with 
MD decoding the decision boundary is at distance 2α2 from both signal points. The loss in the 
error exponent of Pb(E) is therefore  a factor of 2 (3 dB).  

� �� R0 ���R0 �� �� � �� �� R1 ���R0 �� �� � � R0� α 
t ���R0α ��? �R0 R1 R0 R0�? �

6 6 �� R1 �? �R1 √ R1 R1α α �2α ��
t - t ��α α �

(a) (b) 

Figure 3. Decision regions in Rn with hard decisions. (a) (2, 1, 2) code; (b) (3, 1, 3) code. 

Similarly, if C is the (3, 1, 3) code, then R3 is partitioned by hard decisions into 8 octants, as 
shown in Figure 3(b). In this case (the simplest example of a Hamming code), it is clear how 
best to assign four octants to each signal point. The squared distance from each signal point 
to the nearest decision boundary is now 2α2, compared  to  3α2 with “soft decisions” and MD 
decoding in Euclidean space, for a loss of 2/3 (1.76 dB) in the error exponent. 

6.5.3 Erasure-and-error-correction 

A decoding method halfway between hard-decision and “soft-decision” (reliability-based) tech-
niques involves the use of “erasures.” With this method, the first step of the receiver is to map 
each received signal rk into one of three values, say {0, 1, ?}, where for some threshold T , 

rk → 0  if  rk > T ; 
rk → 1  if  rk < −T ; 
rk → ?  if  −T ≤ rk ≤ T.  

The decoder subsequently tries to map the ternary-valued n-tuple into the closest codeword 
x ∈ C in Hamming space, where the erased positions are ignored in measuring Hamming distance. 

If there are s erased positions, then the minimum distance between codewords is at least 
d−s in the unerased positions, so correct decoding is guaranteed if the number t of errors in the 
unerased positions satisfies t < (d−s)/2, or equivalently if 2t+ s < d. For many classes of binary 
block codes, efficient algebraic erasure-and-error-correcting algorithms exist that are guaranteed 
to decode correctly if 2t + s < d. This is called bounded-distance erasure-and-error-correction. 
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Erasure-and-error-correction may be viewed as a form of MR decoding in which all reliabilities 
|rk | are made equal in the unerased positions, and are set to 0 in the erased positions. 

The ternary-valued output allows a closer approximation to the optimum decision regions in 
Euclidean space than with hard decisions, and therefore reduces the loss. With an optimized 
threshold T , the loss is typically only about half as much (in dB). 

� b t 
� 

? �a b 
�	 

6 ? ? 

b � 
�� a ? 

t -
b 

Figure 4. Decision regions with hard decisions and erasures for the (2, 1, 2) code. 

Example 6 (cont.). Figure 4 shows the 9 decision regions for the (2, 1, 2) code that result from 
hard decisions and/or erasures on each symbol. Three of the resulting regions are ambiguous. 
The minimum squared distances to these regions are 

2 a = 2(α − T )2 

b2 = (α + T )2 . 

√ 
To maximize the minimum of a2 and b2, we make a2 = b2 by choosing T = √2−1 α, which yields 

2+1 

8 
a 2 = b2 √ α2 = 1.372α2 . 

( 2 + 1)2 

This is about 1.38 dB better than the squared Euclidean distance α2 achieved with hard decisions 
only, but is still 1.63 dB worse than the 2α2 achieved with MD decoding. 

Exercise 8 (Optimum threshold T ). Let C be a binary code with minimum distance d, and  
let received symbols be mapped into hard decisions or erasures as above. Show that: 

(a) For any integers t and s such that 2t + s ≥ d and for any decoding rule, there exists some 
pattern of t errors and s erasures that will cause a decoding error; 

(b) The minimum squared distance from any signal point to its decoding decision boundary is 
equal to at least min2t+s≥d {s(α − T )2 + t(α + T )2}; 

√ 
(c) The value of T that maximizes this minimum squared distance is T = √2−1 α, in  which  

2+1 

case the minimum squared distance is equal to 
( 
√ 4 α2d = 0.686 α2d. Again, this is a loss of 

2+1)2 

1.63 dB relative to the squared distance α2d that is achieved with MD decoding. 
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6.5.4 Generalized minimum distance decoding 

A further step in this direction that achieves almost the same performance as MD decoding, 
to the accuracy of the union bound estimate, yet still permits algebraic decoding algorithms, is 
generalized minimum distance (GMD) decoding. 

In GMD decoding, the decoder keeps both the hard decision sgn(rk ) and the reliability |rk | of 
each received symbol, and orders them in order of their reliability. 

The GMD decoder then performs a series of erasure-and-error decoding trials in which the 
s = d− 1, d− 3, . . .  least reliable symbols are erased. (The intermediate trials are not necessary 
because if d− s is even and 2t < d− s, then also 2t < d− s− 1, so the trial with one additional 
erasure will find the same codeword.) The number of such trials is d/2 if  d is even, or (d + 1)/2 
if d is odd; i.e., the number of trials needed is �d/2�. 

Each trial may produce a candidate codeword. The set of �d/2� trials may thus produce up 
to �d/2� distinct candidate codewords. These words may finally be compared according to their 
reliability r(x | r) (or any equivalent optimum metric), and the best candidate chosen. 

Example 7. For an (n, n − 1, 2) SPC code, GMD decoding performs just one trial with 
the least reliable symbol erased; the resulting candidate codeword is the unique codeword that 
agrees with all unerased symbols. Therefore in this case the GMD decoding rule is equivalent 
to the Wagner decoding rule (Exercise 7), which implies that it is optimum. 

It can be shown that no error can occur with a GMD decoder provided that the squared norm 
||n||2 of the noise vector is less than α2d; i.e., the squared distance from any signal point to its 
decision boundary is α2d, just as for MD decoding. Thus there is no loss in coding gain or error 
exponent compared to MD decoding. 

It has been shown that for the most important classes of algebraic block codes, GMD decoding 
can be performed with little more complexity than ordinary hard-decision or erasures-and-errors 
decoding. Furthermore, it has been shown that not only is the error exponent of GMD decod-
ing equal to that of optimum MD decoding, but also the error coefficient and thus the union 
bound estimate are the same, provided that GMD decoding is augmented to include a d-erasure-
correction trial (a purely algebraic solution of the n − k linear parity-check equations for the d 
unknown erased symbols). 

However, GMD decoding is a bounded-distance decoding algorithm, so its decision regions are 
like spheres of squared radius α2d that lie within the MD decision regions Rj . For this reason 
GMD decoding is inferior to MD decoding, typically improving over erasure-and-error-correction 
by 1 dB or less. GMD decoding has rarely been used in practice. 

6.5.5 Summary 

In conclusion, hard decisions allow the use of efficient algebraic decoding algorithms, but incur 
a significant SNR penalty, of the order of 3 dB. By using erasures, about half of this penalty 
can be avoided. With GMD decoding, efficient algebraic decoding algorithms can in principle 
be used with no loss in performance, at least as estimated by the the union bound estimate. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice




