
6.451 Principles of Digital Communication II Wednesday,
MIT, Spring 2005 Handout #20R

Problem Set 8 Solutions (revised)

Problem 8.1 (Realizations of repetition and SPC codes)

Show that a reduced Hadamard transform realization of a repetition code RM(0, m) or
a single-parity-check code RM(m − 1, m) is a cycle-free tree-structured realization with
a minimum number of (3, 1, 3) repetition constraints or (3, 2, 2) parity-check constraints,
respectively, and furthermore with minimum diameter (distance between any two code
symbols in the tree).

A Hadamard transform (HT) realization of a repetition code RM(0, m) of length 2m

is y = uUm, where all components of u are zero except the last one, u2m−1, which
multiplies the all-one (last) row of the universal generator matrix Um. For example, the
HT realization of the (8, 1, 8) repetition code is shown below.

y0 + + + 0

y1 =
@ �

=
@ ��

= 0

�@ @ �
y2 + � @ +

A �
�@ + 0

A �
y3 = =

B �
�A
A �

= 0

�B �A
y4 + + �

�
�B

B
A + 0

� B
y5 =

@ �
= �

�
B
B

= 0

�@ � B
y6 + � @ + � BB + 0

y7 = = = u7

HT realization of (8, 1, 8) RM code.

This realization may be simplified by the following two types of reductions:

+ 0 0 0+
⇒ ⇒

= = =0 0

This yields the reduced realization shown below.

1

April 27, 2005

y0

y1 =
@

@
y2 @

y3 = =
B
B

y4 B
B
B

y5 =
@

B
B

@ B
y6 @ BB

y7 = =

Reduced HT realization of (8, 1, 8) repetition code.

The reduced realization in this case is a binary tree-structured realization with 6 (3, 1, 3)

repetition constraints. In general, it is a binary tree-structured realization with 2m − 2

(3, 1, 3) repetition constraints.

It is not hard to see that in general, an (n, 1, n) repetition code may be realized by

connecting n − 2 (3, 1, 3) repetition constraints together in any cycle-free manner. There

will then be n external variables of degree 1 and n− 3 internal variables of degree 2, with

total degree equalling the total degree 3(n − 2) of the repetition constraints.

Since n − δ nodes require at least n − δ − 1 edges to form a connected graph, and

3(n − δ) − n < 2(n − δ − 1) if δ > 2, the minimum possible number of (3, 1, 3) repetition

constraints is n − 2.

The diameter of this graph is 3 (not counting half-edges). More generally, the diameter

of a binary tree-structured graph like this with 2m − 2 nodes is 2m − 3. It is not hard to

see that any different method of interconnecting 2m − 2 nodes will increase the diameter.

Similarly, for a HT realization of a single-parity-check code RM(m−1, m) of length 2m, all

components of u are free except the first one, u0, which multiplies the weight-one (first)

row of the universal generator matrix Um. For example, the HT realization of the (8, 1, 8)

repetition code is shown below.

2

� @

@ �

� @

@ �

�

�
�

�

0+ + +y0

= = = freey1 @ ��
@� @ �

�@ free+ + +y2 A �
A �
�A= = = freey3 B � A �

� �B A
� B � A free+ + +y4 �B
� B

� B= = = freey5 B
@� � B

� BB free+ + +y6

= = = freey7

HT realization of (8, 7, 2) RM code.

This realization may be simplified by the following two types of reductions:

free free+ + +
⇒ ⇒

= =free free free

For example, a reduced HT realization of the (8, 7, 2) single-parity-check code is shown
below.

+ +y0

y1 � ��
� �

� �+y2 �
�

�y3 �
�

�+ +y4

y5

+y6

y7

Reduced HT realization of (8, 7, 2) single-parity-check code.

3

This realization evidently has the same number of constraints and the same diameter as
the reduced realization of the (8, 1, 8) code above, and minimality is shown by the same
arguments.

Show that these two realizations are duals; i.e., one is obtained from the other via inter
-
change of (3, 2, 2) constraints and (3, 1, 3) constraints.

Obvious.

Problem 8.2 (Dual realizations of RM codes)

Show that in general a Hadamard transform (HT) realization of any Reed-Muller code
RM(r, m) is the dual of the HT realization of the dual code RM(m − r − 1, m); i.e., one
is obtained from the other via interchange of (3, 2, 2) constraints and (3, 1, 3) constraints.

As announced in class, you do not have to do this problem because the problem statement
is incomplete, and you do not have all the background that you need to complete the proof.
Nonetheless, let us sketch the proof.

The problem statement is incomplete in that in the dual realization, we must also exchange
zero variables and free variables (which may be considered to be dual (1, 0,∞) and (1, 1, 1)
constraints, respectively). Also, we must invert the graph (take the top to bottom mirror
image). Note that inversion of the graph replaces all constraints by their dual constraints,
and complements the binary expansion of the indices of the components of y and u.

The code RM(r, m) has the HT realization y = uUm, where the components of u are free
in the k(r, m) positions corresponding to rows of Um of weight 2m−r or greater, and zero
in the remaining positions. It is easy to see that these are the positions whose indices
have m-bit binary expansions of weight m − r or greater. For example, for the (8, 1, 8)
code RM(0, 3), only u7 is free; for the (8, 4, 4) code RM(1, 3), u3, u5, u6 and u7 are free;
and for the (8, 7, 2) code RM(2, 3), all but u0 are free.

The indices of the rows of Um of weight less than 2m−r are thus the 2m − k(r, m) indices
whose m-bit binary expansions have weight less than m − r. The complements of these
m-bit indices thus are the indices whose m-bit expansions have weight greater than r, or
equivalently weight at least r + 1. These are precisely the indices of the free components
of u for the code RM(m− r− 1, m). Thus the zero components of u for the HT realization
of RM(r, m) transform under the graph inversion into the free components of u for the
HT realization of RM(m − r − 1, m), and vice versa.

Since dual normal graphs realize dual codes, this argument proves that RM(r, m) and
RM(m − r − 1, m) are dual codes, with k(m − r − 1, m) = 2m − k(r, m).

4

σ

Problem 8.3 (revised) (BCJR (sum-product) decoding of SPC codes)

As shown in Problem 6.4 or Figure 1 of Chapter 10, any (n, n − 1, 2) single-parity-check
code has a two-state trellis diagram. Consider the (8, 7, 2) code, and let the received
sequence from a discrete-time AWGN channel with input alphabet {±1} and noise variance

2 = 1 be given by r = (0.1,−1.0,−0.7, 0.8, 1.1, 0.3,−0.9, 0.5). Perform BCJR (sum-
product) decoding of this sequence to determine the APP vector for each symbol Yk. [Hint:
the special algorithm given in Section 13.5.2 (see Problem 9.5) to implement the sum-
product update rule for zero-sum nodes may be helpful here.]

First, let us draw the normal graph of a minimal trellis realization of the (8, 7, 2) code.
This graph is shown abstractly below:

Σ

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7B0 B1 B2 B3 B4 B5 B6 B7

(2, 1) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (2, 1)

Moreover, it is easy to see that the (3, 2) branch constraint codes are all (3, 2, 2) zero-sum
codes, and the (2, 1) codes are simple repetition codes that need not actually be shown.
Therefore the trellis realization may be drawn simply as follows:

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

+ + + + + +

Note that this trellis realization of the (8, 7, 2) code is another cycle-free realization that
uses 6 (3, 2, 2) zero-sum constraints, as in the reduced HT realization of Problem 8.1;
however, the diameter of this realization is 5 (which is as large as it could possibly be).

For a binary-input Gaussian-noise channel with inputs {±1} and Gaussian conditional
probability density p(r | y) = (2πσ)−1/2 exp −(r − y)2/2σ2 , the a posteriori probability
(APP) of y ∈ {±1} given a received value r is, by Bayes’ rule,

p(r | y) ery/σ2

=
er/σ2 −r/σ2 .p(y | r) =

p(r | 1) + p(r | −1) + e

Here σ2 = 1 (so SNR = 1 (0 dB); i.e., the channel is very noisy).

The two values p(±1 | rk) form the “intrinsic information” message ιk = {p0k, p1k} derived
from each received symbol rk , 0 ≤ k ≤ 7. These values are computed from the received
vector r = (0.1,−1.0,−0.7, 0.8, 1.1, 0.3,−0.9, 0.5) in the following table. (Note that it
would have sufficed to use the unnormalized pair {erk /σ2

, e−rk /σ2 }.) We also compute the
Hadamard transform {p0k + p1k = 1, p0k − p1k = Ik } of each pair of values for later use.

5

rk p0k p1k Ik

r0 = +0.1 0.55 0.45 1 +0.10
r1 = −1.0 0.12 0.88 1 −0.76
r2 = −0.7 0.20 0.80 1 −0.60
r3 = +0.8 0.83 0.17 1 +0.66
r4 = +1.1 0.90 0.10 1 +0.80
r5 = +0.3 0.65 0.35 1 +0.30
r6 = −0.9 0.14 0.86 1 −0.72
r7 = +0.5 0.73 0.37 1 +0.46

Note that Ik = tanh rk /σ
2, so Ik ≈ rk/σ

2 for small rk . The sign of Ik represents a “hard

ε

decision,” whereas the magnitude 0 ≤ |Ik | ≤ 1 represents the reliability of that decision.

We then propagate the APP messages through the graph below, using the BCJR (sum-
product) algorithm. Note that in the forward direction α1 = ι0, αk is the sum-product
update of αk−1 and ιk−1 for 2 ≤ k ≤ 7, and finally ε7 = α7. Similarly, in the backward
direction, β7 = ι7, βk is the sum-product update of βk+1 and ιk for 6 ≥ k ≥ 1, and finally
0 = β1. Then εk is the sum-product update of αk and βk+1 for 1 ≤ k ≤ 6.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7ι0 ?6 α1

ι1 ?6 α2
ι2 ?6 α3

ι3 ?6 α4
ι4 ?6 α5

ι5 ?6 α6
ι6 ?6 α7

ι7 ?6- - - - - - -
+ + + + + +� � � � � � �

β1 β2 β3 β4 β5 β6 β7

For a (3, 2, 2) constraint code Ck, the set of past 2-tuples consistent with a 0 value for
any incident variable is Ck (0) = {00, 11}, and similarly Ck (1) = {01, 10}. Therefore the
sum-product update rule is

p(0 | r|P) = p(0 | r|Pj�)p(0 | r|Pj��) + p(1 | r|Pj�)p(1 | r|Pj��);

β

p(1 | r|P) = p(0 | r|Pj�)p(1 | r|Pj��) + p(0 | r|Pj�)p(1 | r|Pj��),

where Pj� and Pj�� are the two “pasts” upstream of P .

Alternatively, following the hint, we may use the special rule for zero-sum nodes to obtain

the Hadamard transform of (p(0 | r|P), p(1 | r|P)) simply by componentwise multiplication

of the Hadamard transforms of (p(0 | r|Pj�), p(1 | r|Pj�)) and (p(0 | r|Pj��), p(1 | r|Pj��)).

By either method, we obtain the following values for the forward messages αk = {α0k , α1k }

and their Hadamard transforms {α0k + α1k = 1, α0k − α1k = Ak }, the backward messages

k = {β0k , β1k} and their Hadamard transforms {1, Bk }, and the extrinsic information

messages εk = {ε0k , ε1k} and their Hadamard transforms {1, Ek}.

αk

α
Ak

1 = ι0

α0k α1k

0.55 0.45
α

1 +0.10
2 0.46 0.54

α
1 −0.08

3 0.525 0.475
α

1 +0.05
4 0.515 0.485

α
1 +0.03

5 0.51 0.49
α

1 +0.02
6 0.5035 0.4965

α
1 +0.007

7 0.4975 0.5025 1 −0.005

6

βk β0k β1k Bk

β7 = ι7 0.73 0.27 1 +0.46
β6 0.335 0.665 1 −0.33
β5 0.45 0.55 1 −0.10
β4 0.46 0.54 1 −0.08
β3 0.475 0.525 1 −0.05
β2 0.515 0.485 1 +0.03
β1 0.49 0.51 1 −0.02

εk ε0k ε1k Ek

ε0 = β1 0.49 0.51 1 −0.02
ε1 0.5015 0.4985 1 +0.003
ε2 0.5015 0.4985 1 +0.003
ε3 0.498 0.502 1 −0.004
ε4 0.4985 0.5015 1 −0.003
ε5 0.4965 0.5035 1 −0.007
ε6 0.5015 0.4985 1 +0.003
ε7 = α7 0.4975 0.5025 1 −0.005

Notice how the reliability of the forward and backward APP messages αk and βk degen-
erates as more and more intrinsic information messages ιk are incorporated into them.

The APP vectors {p(Yk = 0 | r), p(Yk = 1 | r)} for the symbol variables Yk are ultimately
obtained by componentwise multiplication of ιk and εk , normalized. We note that for
all k, since ε0k ≈ ε1k ≈ 1

2 , we have {p(Yk = 0 | r), p(Yk = 1 | r)} ≈ {ι0k , ι1k }; i.e., the
intrinsic information ιk dominates. Thus if hard decisions are made on each symbol, the
result is the same as if hard decisions had been made symbol-by-symbol based solely on
the channel outputs rk , and the resulting sequence of hard decisions is not a code sequence
in the (8, 7, 2) code.

In contrast, suppose that we perform the max-product (equivalent to the min-sum) algo-
rithm with this received sequence. We obtain the following values:

αk α0k α1k

α1 = ι0 0.55 0.45
α2 0.45 0.55
α3 0.55 0.45
α4 0.55 0.45
α5 0.55 0.45
α6 0.55 0.45
α7 0.45 0.55

7

βk β0k β1k

β7 = ι7 0.73 0.27
β6 0.27 0.73
β5 0.35 0.65
β4 0.35 0.65
β3 0.35 0.65
β2 0.65 0.35
β1 0.35 0.65

εk ε0k ε1k

ε0 = β1 0.35 0.65
ε1 0.55 0.45
ε2 0.55 0.45
ε3 0.45 0.55
ε4 0.45 0.55
ε5 0.45 0.55
ε6 0.55 0.45
ε7 = α7 0.45 0.55

In this case, the reliability of a forward or backward message is the minimum reliability
of any intrinsic information that is incorporated into it. Eventually, this means that the
extrinsic information ε0 dominates the intrinsic information ι0 for the least reliable symbol
Y0, so the original “hard decision” is “corrected” in this case. The same “correction” would
be performed by the Viterbi algorithm or by Wagner decoding.

The max-product (min-sum) algorithm finds the maximum-likelihood code sequence,
whereas the BCJR (sum-product) algorithm computes the APP vector of each bit. A
bit decision based on the maximum APP minimizes the bit error probability, so the bit
error probability could be (slightly) lower with the BCJR algorithm. ML sequence de-
tection minimizes the probability of decoding to the wrong codeword. The sequence of
maximum-APP bits from the BCJR algorithm may not be a codeword, as we have just
seen.

Compare the complexity of BCJR decoding to Viterbi algorithm decoding (Problem 6.6).

The BCJR algorithm is considerably more complex. For each trellis segment, it has to
compute the sum-product update rule three times. The straightforward sum-product
update rule involves four multiplications and two additions; the simplified rule requires a
single multiplication. By contrast, the VA requires four additions and two comparisons
per trellis segment. Computation of the intrinsic APP vector is also more complex, and
requires estimation of the noise variance σ2, which could be a problem. Finally, the logic
of the BCJR algorithm is more complex, since it is two-way rather than one-way.

In short, the VA is significantly simpler than the BCJR algorithm. For this reason, the VA
was preferred for trellis decoding for many years. The BCJR algorithm was resurrected
with the advent of turbo codes, where the fact that it produces “soft” (APP) outputs is
essential to its role as a part of iterative decoding algorithms.

(For this scenario, Wagner decoding is even simpler; see the solution to Problem 6.6.)

8

