Problem Set 2

Problem 2.1 (Cartesian-product constellations)

(a) Show that if $\mathcal{A}' = \mathcal{A}^K$, then the parameters N, $\log_2 M$, $E(\mathcal{A}')$ and $K_{\min}(\mathcal{A}')$ of \mathcal{A}' are K times as large as the corresponding parameters of \mathcal{A} , whereas the normalized parameters ρ , E_s , E_b and $d^2_{\min}(\mathcal{A})$ are the same as those of \mathcal{A} . Verify that these relations hold for $(M \times M)$ -QAM constellations.

(b) Show that if the signal constellation is a Cartesian product \mathcal{A}^{K} , then MD detection can be performed by performing independent MD detection on each of the K components of the received KN-tuple $\mathbf{y} = (y_1, y_2, \ldots, y_K)$. Using this result, sketch the decision regions of a (4×4) -QAM signal set.

(c) Show that if Pr(E) is the probability of error for MD detection of \mathcal{A} , then the probability of error for MD detection of \mathcal{A}' is

$$\Pr(E)' = 1 - (1 - \Pr(E))^K$$
,

Show that $Pr(E)' \approx K Pr(E)$ if Pr(E) is small.

Problem 2.2 (Pr(E) invariance to translation, orthogonal transformations, or scaling)

Let $\Pr(E \mid \mathbf{a}_j)$ be the probability of error when a signal \mathbf{a}_j is selected equiprobably from an *N*-dimensional signal set \mathcal{A} and transmitted over a discrete-time AWGN channel, and the channel output $\mathbf{Y} = \mathbf{a}_j + \mathbf{N}$ is mapped to a signal $\hat{\mathbf{a}}_j \in \mathcal{A}$ by a minimum-distance decision rule. An error event E occurs if $\hat{\mathbf{a}}_j \neq \mathbf{a}_j$. $\Pr(E)$ denotes the average error probability.

(a) Show that the probabilities of error $\Pr(E \mid \mathbf{a}_j)$ are unchanged if \mathcal{A} is translated by any vector \mathbf{v} ; *i.e.*, the constellation $\mathcal{A}' = \mathcal{A} + \mathbf{v}$ has the same $\Pr(E)$ as \mathcal{A} .

(b) Show that Pr(E) is invariant under orthogonal transformations; *i.e.*, $\mathcal{A}' = U\mathcal{A}$ has the same Pr(E) as \mathcal{A} when U is any orthogonal $N \times N$ matrix (*i.e.*, $U^{-1} = U^T$).

(c) Show that Pr(E) is unchanged if both \mathcal{A} and \mathbf{N} are scaled by $\alpha > 0$.

Problem 2.3 (optimality of zero-mean constellations)

Consider an arbitrary signal set $\mathcal{A} = \{\mathbf{a}_j, 1 \leq j \leq M\}$. Assume that all signals are equiprobable. Let $\mathbf{m}(\mathcal{A}) = \frac{1}{M} \sum_j \mathbf{a}_j$ be the average signal, and let \mathcal{A}' be \mathcal{A} translated by $\mathbf{m}(\mathcal{A})$ so that the mean of \mathcal{A}' is zero: $\mathcal{A}' = \mathcal{A} - \mathbf{m}(\mathcal{A}) = \{\mathbf{a}_j - \mathbf{m}(\mathcal{A}), 1 \leq j \leq M\}$. Let $E(\mathcal{A})$ and $E(\mathcal{A}')$ denote the average energies of \mathcal{A} and \mathcal{A}' , respectively.

(a) Show that the error probability of an MD detector is the same for \mathcal{A}' as it is for \mathcal{A} .

(b) Show that $E(\mathcal{A}') = E(\mathcal{A}) - ||\mathbf{m}(\mathcal{A})||^2$. Conclude that removing the mean $\mathbf{m}(\mathcal{A})$ is always a good idea.

(c) Show that a binary antipodal signal set $\mathcal{A} = \{\pm \mathbf{a}\}$ is always optimal for M = 2.

Problem 2.4 (Non-equiprobable signals).

Let \mathbf{a}_j and $\mathbf{a}_{j'}$ be two signals that are not equiprobable. Find the optimum (MPE) pairwise decision rule and pairwise error probability $\Pr{\{\mathbf{a}_j \to \mathbf{a}_{j'}\}}$.

Problem 2.5 (UBE for *M*-PAM constellations).

For an *M*-PAM constellation \mathcal{A} , show that $K_{\min}(\mathcal{A}) = 2(M-1)/M$. Conclude that the union bound estimate of $\Pr(E)$ is

$$\Pr(E) \approx 2\left(\frac{M-1}{M}\right)Q\left(\frac{d}{2\sigma}\right).$$

Observe that in this case the union bound estimate is exact. Explain why.