Problem Set 7

Problem 7.1 (State space sizes in trellises for RM codes)

Recall the |u|u+v| construction of a Reed-Muller code RM(r, m) with length $n = 2^m$ and minimum distance $d = 2^{m-r}$:

$$\operatorname{RM}(r,m) = \{ (\mathbf{u}, \mathbf{u} + \mathbf{v}) \mid \mathbf{u} \in \operatorname{RM}(r, m-1), \mathbf{v} \in \operatorname{RM}(r-1, m-1) \}.$$

Show that if the past \mathcal{P} is taken as the first half of the time axis and the future \mathcal{F} as the second half, then the subcodes $\mathcal{C}_{\mathcal{P}}$ and $\mathcal{C}_{\mathcal{F}}$ are both effectively equal to $\operatorname{RM}(r-1,m-1)$ (which has the same minimum distance $d = 2^{m-r}$ as $\operatorname{RM}(r,m)$), while the projections $\mathcal{C}_{|\mathcal{P}}$ and $\mathcal{C}_{|\mathcal{F}}$ are both equal to $\operatorname{RM}(r,m-1)$. Conclude that the dimension of the minimal central state space of $\operatorname{RM}(r,m)$ is

$$\dim \mathcal{S} = \dim \mathrm{RM}(r, m-1) - \dim \mathrm{RM}(r-1, m-1).$$

Evaluate dim \mathcal{S} for all RM codes with length $n \leq 32$.

Similarly, show that if the past \mathcal{P} is taken as the first quarter of the time axis and the future \mathcal{F} as the remaining three quarters, then the subcode $\mathcal{C}_{\mathcal{P}}$ is effectively equal to $\operatorname{RM}(r-2, m-2)$, while the projection $\mathcal{C}_{|\mathcal{P}}$ is equal to $\operatorname{RM}(r, m-2)$. Conclude that the dimension of the corresponding minimal state space of $\operatorname{RM}(r, m)$ is

$$\dim \mathcal{S} = \dim \mathrm{RM}(r, m-2) - \dim \mathrm{RM}(r-2, m-2).$$

Using the relation dim RM(r, m) = dim RM(r, m-1) + dim RM(r-1, m-1), show that

 $\dim RM(r, m-2) - \dim RM(r-2, m-2) = \dim RM(r, m-1) - \dim RM(r-1, m-1).$

Problem 7.2 (Projection/subcode duality and state space duality)

Recall that the dual code to an (n, k, d) binary linear block code C is defined as the orthogonal subspace C^{\perp} , consisting of all *n*-tuples that are orthogonal to all codewords in C, and that C^{\perp} is a binary linear block code whose dimension is dim $C^{\perp} = n - k$.

Show that for any partition of the time axis \mathcal{I} of \mathcal{C} into past \mathcal{P} and future \mathcal{F} , the subcode $(\mathcal{C}^{\perp})_{\mathcal{P}}$ is equal to the dual $(\mathcal{C}_{|\mathcal{P}})^{\perp}$ of the projection $\mathcal{C}_{|\mathcal{P}}$, and vice versa. [Hint: notice that $(\mathbf{a}, \mathbf{0})$ is orthogonal to (\mathbf{b}, \mathbf{c}) if and only if \mathbf{a} is orthogonal to \mathbf{b} .]

Conclude that at any time the minimal state spaces of \mathcal{C} and \mathcal{C}^{\perp} have the same dimension.

Problem 7.3 (Trellis-oriented generator matrix for (16, 5, 8) RM code)

Consider the following generator matrix for the (16, 5, 8) RM code, which follows directly from the |u|u + v| construction:

[1111111100000000]	1
1111000011110000	
1100110011001100	
1010101010101010	
111111111111111111	

- (a) Convert this generator matrix to a trellis-oriented generator matrix.
- (b) Determine the state complexity profile of a minimal trellis for this code.
- (c) Determine the branch complexity profile of a minimal trellis for this code.

Problem 7.4 (Minimum-span generators for convolutional codes)

Let \mathcal{C} be a rate-1/*n* binary linear convolutional code generated by a rational *n*-tuple $\mathbf{g}(D)$, and let $\mathbf{g}'(D)$ be the canonical polynomial *n*-tuple that generates \mathcal{C} . Show that the generators $\{D^k \mathbf{g}'(D), k \in \mathbb{Z}\}$ are a set of minimum-span generators for \mathcal{C} .

Problem 7.5 (Trellis complexity of MDS codes, and the Wolf bound)

Let \mathcal{C} be a linear (n, k, d = n - k + 1) MDS code over a finite field \mathbb{F}_q . Using the property that in an MDS code there exist q-1 weight-d codewords with support \mathcal{J} for every subset $\mathcal{J} \subseteq \mathcal{I}$ of size $|\mathcal{J}| = d$, show that a trellis-oriented generator matrix for \mathcal{C} must have the following form:

$$\begin{bmatrix} xxxx0000\\ 0xxxx000\\ 00xxxx00\\ 000xxxx0\\ 0000xxxxx \end{bmatrix},$$

where xxxx denotes a span of length d = n - k + 1, which shifts right by one position for each of the k generators (*i.e.*, from the interval [1, n - k + 1] to [k, n]).

For example, show that binary linear (n, n - 1, 2) and (n, 1, n) block codes have trellisoriented generator matrices of this form.

Conclude that the state complexity profile of any (n, k, d = n - k + 1) MDS code is

$$\{1, q, q^2, \ldots, |\mathcal{S}|_{\max}, |\mathcal{S}|_{\max}, \ldots, q^2, q, 1\},\$$

where $|\mathcal{S}|_{\max} = q^{\min(k, n-k)}$.

Using the state space theorem and Problem 7.2, show that this is the worst possible state complexity profile for a (n, k) linear code over \mathbb{F}_q . This is called the Wolf bound.

Problem 7.6 (Muder bounds on state and branch complexity profiles of (24, 12, 8) code) The maximum possible dimension of an $(n, k, d \ge 8)$ binary linear block code is known to be

 $k_{\max} = \{0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12\}$

for $n = \{1, 2, \ldots, 24\}$, respectively. [These bounds are achieved by (8, 1, 8), (12, 2, 8), (16, 5, 8) and (24, 12, 8) codes and shortened codes thereof.]

Show that the best possible state complexity profile of any (24, 12, 8) code (known as a binary Golay code) is

 $\{1, 2, 4, 8, 16, 32, 64, 128, 64, 128, 256, 512, 256, 512, 256, 128, 64, 128, 64, 32, 16, 8, 4, 2, 1\}.$

Show that the best possible branch complexity profile is

 $\{2, 4, 8, 16, 32, 64, 128, 128, 128, 256, 512, 512, 512, 512, 256, 128, 128, 128, 64, 32, 16, 8, 4, 2\}.$

[Note: there exists a standard coordinate ordering for the Golay code that achieves both of these bounds.]