Wednesday, February 23, 2005 Handout #9 Due: Wednesday, March 2, 2005

Problem Set 4

Problem 4.1

Show that if \mathcal{C} is a binary linear block code, then in every coordinate position either all codeword components are 0 or half are 0 and half are 1. Show that a coordinate in which all codeword components are 0 may be deleted ("punctured") without any loss in performance, but with savings in energy and in dimension. Show that if \mathcal{C} has no such all-zero coordinates, then $s(\mathcal{C})$ has zero mean: $\mathbf{m}(s(\mathcal{C})) = \mathbf{0}$.

Problem 4.2 (RM code parameters)

Compute the parameters (k, d) of the RM codes of lengths n = 64 and n = 128.

Problem 4.3 (optimizing SPC and EH codes)

- (a) Using the rule of thumb that a factor of two increase in K_b costs 0.2 dB in effective coding gain, find the value of n for which an (n, n-1, 2) SPC code has maximum effective coding gain, and compute this maximum in dB.
- (b) Similarly, find the m such that the $(2^m, 2^m m 1, 4)$ extended Hamming code has maximum effective coding gain, using

$$N_4 = \frac{2^m (2^m - 1)(2^m - 2)}{24},$$

and compute this maximum in dB.

Problem 4.4 (biorthogonal codes)

We have shown that the first-order Reed-Muller codes RM(1, m) have parameters $(2^m, m+1, 2^{m-1})$, and that the $(2^m, 1, 2^m)$ repetition code RM(0, m) is a subcode.

- (a) Show that RM(1, m) has one word of weight 0, one word of weight 2^m , and $2^{m+1} 2$ words of weight 2^{m-1} . [Hint: first show that the RM(1, m) code consists of 2^m complementary codeword pairs $\{\mathbf{x}, \mathbf{x} + \mathbf{1}\}$.]
- (b) Show that the Euclidean image of an RM(1, m) code is an $M = 2^{m+1}$ biorthogonal signal set. [Hint: compute all inner products between code vectors.]
- (c) Show that the code C' consisting of all words in RM(1, m) with a 0 in any given coordinate position is a $(2^m, m, 2^{m-1})$ binary linear code, and that its Euclidean image is an $M = 2^m$ orthogonal signal set. [Same hint as in part (a).]
- (d) Show that the code C'' consisting of the code words of C' with the given coordinate deleted ("punctured") is a binary linear $(2^m 1, m, 2^{m-1})$ code, and that its Euclidean image is an $M = 2^m$ simplex signal set. [Hint: use Exercise 7 of Chapter 5.]

Problem 4.5 (generator matrices for RM codes)

Let square $2^m \times 2^m$ matrices U_m , $m \ge 1$, be specified recursively as follows. The matrix U_1 is the 2×2 matrix

$$U_1 = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right].$$

The matrix U_m is the $2^m \times 2^m$ matrix

$$U_m = \left[\begin{array}{cc} U_{m-1} & & 0 \\ U_{m-1} & & U_{m-1} \end{array} \right].$$

(In other words, U_m is the m-fold tensor product of U_1 with itself.)

- (a) Show that RM(r, m) is generated by the rows of U_m of Hamming weight 2^{m-r} or greater. [Hint: observe that this holds for m=1, and prove by recursion using the |u|u+v| construction.] For example, give a generator matrix for the (8,4,4) RM code.
- (b) Show that the number of rows of U_m of weight 2^{m-r} is $\binom{m}{r}$. [Hint: use the fact that $\binom{m}{r}$ is the coefficient of z^{m-r} in the integer polynomial $(1+z)^m$.]
- (c) Conclude that the dimension of RM(r, m) is $k(r, m) = \sum_{0 \le j \le r} {m \choose j}$.

Problem 4.6 ("Wagner decoding")

Let \mathcal{C} be an (n, n-1, 2) SPC code. The Wagner decoding rule is as follows. Make hard decisions on every symbol r_k , and check whether the resulting binary word is in \mathcal{C} . If so, accept it. If not, change the hard decision in the symbol r_k for which the reliability metric $|r_k|$ is minimum. Show that the Wagner decoding rule is an optimum decoding rule for SPC codes. [Hint: show that the Wagner rule finds the codeword $\mathbf{x} \in \mathcal{C}$ that maximizes $r(\mathbf{x} \mid \mathbf{r}).$

Problem 4.7 (small cyclic groups).

Write down the addition tables for \mathbb{Z}_2 , \mathbb{Z}_3 and \mathbb{Z}_4 . Verify that each group element appears precisely once in each row and column of each table.

Problem 4.8 (subgroups of cyclic groups are cyclic).

Show that every subgroup of \mathbb{Z}_n is cyclic. [Hint: Let s be the smallest nonzero element in a subgroup $S \subseteq \mathbb{Z}_n$, and compare S to the subgroup generated by s.