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Problem Set 7 Solutions

Problem 7.1 (State space sizes in trellises for RM codes)

Recall the |u|u + v| construction of a Reed-Muller code RM(r, m) with length n = 2™ and
manimum distance d = 2™ :

RM(r,m) = {(u,u+v) |ue RM(r,m —1),v € RM(r — 1,m — 1)}.

Show that if the past P is taken as the first half of the time axis and the future F as the
second half, then the subcodes Cp and Cx are both effectively equal to RM(r — 1,m — 1)
(which has the same minimum distance d = 2™ " as RM(r,m)), while the projections
Cip and Cr are both equal to RM(r,m — 1). Conclude that the dimension of the minimal
central state space of RM(r,m) is

dimS = dim RM(r,m — 1) — dimRM(r — 1,m — 1).

The subcode Cp is the set of all codewords with second half u+v = 0, which implies that
u=v. Thus Cp = {(v,0) | v.€ RM(r — 1,m — 1)}, which implies that Cp is effectively
RM(r —1,m —1).

Similarly, the subcode Cr is the set of all codewords with first half u = 0. Thus Cr =
{(0,v) | v.€ RM(r—1,m—1)}, which implies that Cr is also effectively RM(r—1,m—1).

The past projection Cjp is clearly {u | u € RM(r,m—1)} = RM(r, m—1). Similarly, since
RM(r —1,m — 1) is a subcode of RM(r, m — 1), the future projection C# is RM(r,m —1).

Since dim S = dim Cjp — dim Cp = dim Cjx — dim Cy, it follows that
dimS = dimRM(r,m — 1) — dim RM(r — 1,m — 1).

FEvaluate diim S for all RM codes with length n < 32.

For repetition codes RM(0,m), dimS = dim RM(0,m—1) —dim RM(—1,m—1) =1-0 =
1.

For SPC codes RM(m —1,m), dimS = dimRM(m —1,m—1) —dimRM(m —2,m—1) =
om _(9m — 1) = 1.

For the (8,4,4) code, we have dim S = dim(4,3,2) — dim(4,1,4) = 2.

For the (16,11, 4) code, we have dim S = dim(8,7,2) — dim(8,4,4) = 3.

For the (16,5, 8) code, we have dim S = dim(8,4,4) — dim(8, 1,8) = 3.

For the (32,26, 4) code, we have dim S = dim(16, 15,2) — dim(16, 11,4) = 4.
For the (32,16, 8) code, we have dim S = dim(16,11,4) — dim(16, 5,8) = 6.
For the (32,6, 16) code, we have dimS = dim(16,5,8) — dim(16, 1, 16) = 4.



Similarly, show that if the past P is taken as the first quarter of the time axis and the
future F as the remaining three quarters, then the subcode Cp is effectively equal to RM(r—
2,m — 2), while the projection Cp is equal to RM(r,m —2). Conclude that the dimension
of the corresponding minimal state space of RM(r, m) is

dim S = dim RM(r,m — 2) — dim RM(r — 2, m — 2).

Similarly, since
RM(r—1,m—1)={(u,u'+v') |u" € RM(r —1,m —2),v' € RM(r — 2,m — 2)},

we now have that Cp = {(v/,0) | v/ € RM(r — 2,m — 2)}, which implies that Cp is
effectively RM(r — 2, m — 2). Also, since

RM(r,m —1) = {(u",u”" +v") |u” € RM(r,m — 2),v" € RM(r — 1,m — 2)},

we now have that Cjp = {u” | u” € RM(r,m—2)}, which implies that Cp is RM(r, m —2).
Therefore

dimS = dim Cjp — dimCp = dim RM(r,m — 2) — dimRM(r — 2,m — 2).
Using the relation dim RM(r, m) = dim RM(r,m — 1) + dim RM(r — 1,m — 1), show that
dim RM(r,m — 2) — dim RM(r — 2,m — 2) = dim RM(r,m — 1) — dim RM(r — 1, m — 1).

This follows from dim RM(r,m — 1) = dimRM(r,m — 2) + dimRM(r — 1,m — 2) and
dimRM(r —1,m — 1) = dimRM(r — 1,m — 2) + dim RM(r — 2, m — 2).

Problem 7.2 (Projection/subcode duality and state space duality)

Recall that the dual code to an (n,k,d) binary linear block code C is defined as the orthog-
onal subspace C*, consisting of all n-tuples that are orthogonal to all codewords in C, and
that C* is a binary linear block code whose dimension is dimC+ =n — k.

Show that for any partition of the time axis T of C into past P and future F, the subcode
(CH)p is equal to the dual (Cip)* of the projection Cip, and vice versa. [Hint: notice that
(a,0) is orthogonal to (b,c) if and only if a is orthogonal to b.]

Following the hint, because inner products are defined componentwise, we have

<Xa y> = <X\737 Y|73> + <X|.7-'7 Y|]-‘>
Moreover ((a,0),(b,c)) = 0 if and only if (a,b) = 0. We therefore have the following
logical chain:

aclp = (a,0)€C < (a,0) LC" < a L (C)pp,

where we have used the definitions of the subcode Cp, the fact that the dual code of C*
is C, the fact that (a,0) is orthogonal to (b, c) if and only if a is orthogonal to b, and
the definition of (CL)W;, respectively.



Conclude that at any time the minimal state spaces of C and C*+ have the same dimension.

The dimension dim S of the minimal state space of C for a given partition into past and
future is dimCjp — dimCp. The dimension dim S of the minimal state space of Ct for a
given partition into past and future is

dim(CL)‘p — dim(C)p = (np — dimCp) — (np — dimCjp) = dim Cjp — dim Cp,

where np = |P|, and we have used projection/subcode duality and the fact that the
dimension of the dual of a code of dimension k£ on a time axis of length np is np — k.

The fact that the state spaces of a linear code and its dual have the same dimensions is
called the dual state space theorem.

Problem 7.3 (Trellis-oriented generator matrix for (16,5,8) RM code)

Consider the following generator matrixz for the (16,5,8) RM code, which follows directly
from the |ulu + v| construction:

1111111100000000
1111000011110000
1100110011001100
1010101010101010
1111111111111111

(a) Convert this generator matrixz to a trellis-oriented generator matriz.

A trellis-oriented generator matrix is obtained by adding the first generator to each of the

others:
1111111100000000

0000111111110000
0011001111001100
0101010110101010
0000000011111111

(b) Determine the state complexity profile of a minimal trellis for this code.

The starting times of the generator spans are {1,2,3,5,9}, and the ending times are
{8,12,14,15,16}. The state dimension profile (number of active generators at cut times)
of a minimal trellis for this code is therefore

{0,1,2,3,3,4,4,4,3,4,4,4,3,3,2,1,0}.

Note that the state-space dimensions at the center, one-quarter, and three-quarter points
are equal to

dim(8,4,4) — dim(8, 1,8) = dim(4, 3,2) — dim(4, 0, 00) = 3,

in accord with Problem 7.1.

Note: this state dimension profile meets the Muder bound at all times (see Problem 7.6),
and thus is the best possible for a (16,5, 8) code.
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(¢) Determine the branch complexity profile of a minimal trellis for this code.

From the trellis-oriented generator matrix, the branch dimension profile (number of active
generators at symbol times) of a minimal trellis for this code is therefore

{1,2,3,3,4,4,4,4,4,4,4,4,3,3,2,1}.

Note: this branch dimension profile meets the Muder bound at all times, and thus is the
best possible for a (16, 5,8) code.

Problem 7.4 (Minimum-span generators for convolutional codes)

Let C be a rate-1/n binary linear convolutional code generated by a rational n-tuple g(D),
and let g'(D) be the canonical polynomial n-tuple that generates C. Show that the gener-
ators {D*g'(D),k € Z} are a set of minimum-span generators for C.

Since g'(D) is canonical, it is noncatastrophic; i.e., a code sequence u(D)g'(D) is
finite only if u(D) is finite. Therefore if u(D)g'(D) is finite, then w(D) is finite and
degu(D)g' (D) = degu(D) + deg g'(D), where the degree of an n-tuple of finite sequences
is defined as the maximum degree of its components. Similarly, g'(D) is delay-free, so
del u(D)g/'(D) = del u(D) + del g'(D), where the delay of an n-tuple of finite sequences
is defined as the minimum delay of its components. Hence the shortest finite sequence in
C with delay k is D*g/(D), for all k € Z. The set {D*g/(D)} of shifted generators are
thus a set of minimum-span generators for C— i.e., a trellis-oriented generator matrix.
We easily verify that all starting times are distinct, and so are all stopping times.



