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Problem Set 7 Solutions 

Problem 7.1 (State space sizes in trellises for RM codes)


Recall the |u|u + v| construction of a Reed-Muller code RM(r, m) with length n = 2m and

minimum distance d = 2m−r :


RM(r, m) =  {(u,u + v) | u ∈ RM(r, m − 1),v ∈ RM(r − 1, m − 1)}. 

C

Show that if the past P is taken as the first half of the time axis and the future F as the 
second half, then the subcodes CP and CF are both effectively equal to RM(r − 1, m  − 1) 
(which has the same minimum distance d = 2m−r as RM(r, m)), while the projections 
|P and C|F are both equal to RM(r, m− 1). Conclude that the dimension of the minimal 

central state space of RM(r, m) is 

dim S = dim RM(r, m − 1) − dim RM(r − 1, m − 1). 

The subcode CP is the set of all codewords with second half u + v = 0, which implies that 
u = v. Thus  CP = {(v,0) | v ∈ RM(r − 1, m − 1)}, which implies that CP is effectively 
RM(r − 1, m − 1). 

Similarly, the subcode CF is the set of all codewords with first half u = 0. Thus  CF = 
{(0,v) | v ∈ RM(r− 1, m− 1)}, which implies that CF is also effectively RM(r− 1, m− 1). 

The past projection C|P is clearly {u | u ∈ RM(r, m− 1)} = RM(r, m− 1). Similarly, since 
RM(r− 1, m− 1) is a subcode of RM(r, m− 1), the future projection C|F is RM(r, m− 1). 

Since dim S = dim C|P − dim CP = dim C|F − dim CF , it follows that 

dim S = dim RM(r, m − 1) − dim RM(r − 1, m − 1). 

Evaluate dim S for all RM codes with length n ≤ 32.


For repetition codes RM(0, m), dim S = dim RM(0, m−1)−dim RM(−1, m−1) = 1−0 = 

1.
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For SPC codes RM(m− 1, m), dim S = dim RM(m− 1, m− 1) − dim RM(m− 2, m− 1) =


m − (2m − 1) = 1.


For the (8, 4, 4) code, we have dim S = dim(4, 3, 2) − dim(4, 1, 4) = 2.


For the (16, 11, 4) code, we have dim S = dim(8, 7, 2) − dim(8, 4, 4) = 3.


For the (16, 5, 8) code, we have dim S = dim(8, 4, 4) − dim(8, 1, 8) = 3.


For the (32, 26, 4) code, we have dim S = dim(16, 15, 2) − dim(16, 11, 4) = 4.


For the (32, 16, 8) code, we have dim S = dim(16, 11, 4) − dim(16, 5, 8) = 6.


For the (32, 6, 16) code, we have dim S = dim(16, 5, 8) − dim(16, 1, 16) = 4.
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Similarly, show that if the past P is taken as the first quarter of the time axis and the 
future F as the remaining three quarters, then the subcode C P is effectively equal to RM(r− 
2, m− 2), while the projection C |P is equal to RM(r, m− 2). Conclude that the dimension 
of the corresponding minimal state space of RM(r, m) is 

dim S = dim RM(r, m − 2) − dim RM(r − 2, m − 2). 

Similarly, since 

RM(r − 1, m − 1) = { (u ′ ,u + v ) | u ′ ∈ RM(r − 1, m − 2),v ′ ∈ RM(r − 2, m − 2)} , 

we  now have that  C P = { (v′ ,0) | v ∈ RM(r − 2, m  − 2)} , which implies that C P is 
effectively RM(r − 2, m − 2). Also, since 

RM(r, m − 1) = { (u ′′ ,u + v ) | u ′′ ∈ RM(r, m − 2),v ′′ ∈ RM(r − 1, m − 2)} , 

we now have that C |P = { u′′ | u′′ ∈ RM(r, m− 2)} , which implies that C |P is RM(r, m− 2). 
Therefore 

dim S = dim C |P − dim C P = dim RM(r, m − 2) − dim RM(r − 2, m − 2). 

Using the relation dim RM(r, m) = dim RM(r, m− 1) + dim RM(r− 1, m− 1), show that 

dim RM(r, m − 2) − dim RM(r − 2, m − 2) = dim RM(r, m − 1) − dim RM(r − 1, m − 1). 

This follows from dim RM(r, m − 1) = dim RM(r, m − 2) + dim RM(r − 1, m  − 2) and 
dim RM(r − 1, m − 1) = dim RM(r − 1, m − 2) + dim RM(r − 2, m − 2). 

Problem 7.2 (Projection/subcode duality and state space duality)


Recall that the dual code to an (n, k, d) binary linear block code C is defined as the orthog
-
onal subspace C ⊥, consisting of all n-tuples that are orthogonal to all codewords in C , and

that C ⊥ is a binary linear block code whose dimension is dim C ⊥ = n − k.


Show that for any partition of the time axis I of C into past P and future F , the subcode

(C ⊥)P is equal to the dual (C |P )

⊥ of the projection C |P , and vice versa. [Hint: notice that

(a,0) is orthogonal to (b, c) if and only if a is orthogonal to b.]


Following the hint, because inner products are defined componentwise, we have


〈 x,y〉 = 〈 x|P ,y|P 〉 + 〈 x|F ,y|F 〉 . 
Moreover 〈 (a,0), (b, c)〉 = 0 if and only if 〈 a,b〉 = 0. We therefore have the following 
logical chain: 

a ∈ C  P ⇐⇒ (a,0) ∈ C ⇐⇒ (a,0) ⊥ C⊥ ⇐⇒ a ⊥ (C⊥)|P , 

where we have used the definitions of the subcode C P , the fact that the dual code of C ⊥ 

is C, the fact that (a,0) is orthogonal to (b, c) if and only if a is orthogonal to b, and  
the definition of (C ⊥)|P , respectively. 
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Conclude that at any time the minimal state spaces of C and C⊥ have the same dimension. 

The dimension dim S of the minimal state space of C for a given partition into past and 
future is dim C|P − dim CP . The dimension dim S of the minimal state space of C⊥ for a 
given partition into past and future is 

dim(C⊥)|P − dim(C⊥)P = (nP − dim CP ) − (nP − dim C|P ) = dim C|P − dim CP , 

where nP = |P|, and we have used projection/subcode duality and the fact that the 
dimension of the dual of a code of dimension k on a time axis of length nP is nP − k. 

The fact that the state spaces of a linear code and its dual have the same dimensions is 
called the dual state space theorem. 

Problem 7.3 (Trellis-oriented generator matrix for (16, 5, 8) RM code) 

Consider the following generator matrix for the (16, 5, 8) RM code, which follows directly 
from the |u|u + v| construction: 

⎡	 ⎤ 
1111111100000000 

⎥⎢ 1111000011110000 ⎢	 ⎥ ⎥⎢ 1100110011001100 . ⎢	 ⎥ ⎦⎣	 1010101010101010 
1111111111111111 

(a) Convert this generator matrix to a trellis-oriented generator matrix. 

A trellis-oriented generator matrix is obtained by adding the first generator to each of the 
others: ⎡ ⎤ 

1111111100000000 
⎥⎢ 0000111111110000 ⎢	 ⎥ ⎥⎢ 0011001111001100 . ⎢	 ⎥ ⎦⎣	 0101010110101010 

0000000011111111 

(b) Determine the state complexity profile of a minimal trellis for this code. 

The starting times of the generator spans are {1, 2, 3, 5, 9}, and the ending times are 
{8, 12, 14, 15, 16}. The state dimension profile (number of active generators at cut times) 
of a minimal trellis for this code is therefore 

{0, 1, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 2, 1, 0}. 
Note that the state-space dimensions at the center, one-quarter, and three-quarter points 
are equal to 

dim(8, 4, 4) − dim(8, 1, 8) = dim(4, 3, 2) − dim(4, 0, ∞) = 3, 

in accord with Problem 7.1. 

Note: this state dimension profile meets the Muder bound at all times (see Problem 7.6), 
and thus is the best possible for a (16, 5, 8) code. 
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(c) Determine the branch complexity profile of a minimal trellis for this code. 

From the trellis-oriented generator matrix, the branch dimension profile (number of active 
generators at symbol times) of a minimal trellis for this code is therefore 

{1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 1}. 

Note: this branch dimension profile meets the Muder bound at all times, and thus is the 
best possible for a (16, 5, 8) code. 

Problem 7.4 (Minimum-span generators for convolutional codes)


Let C be a rate-1/n binary linear convolutional code generated by a rational n-tuple g(D),

and let g′(D) be the canonical polynomial n-tuple that generates C. Show that the gener
-
ators {Dk g′(D), k  ∈ Z} are a set of minimum-span generators for C.


Since g′(D) is canonical, it is noncatastrophic; i.e., a code sequence u(D)g′(D) is 

finite only if u(D) is finite. Therefore if u(D)g′(D) is finite, then u(D) is finite and 
deg u(D)g′(D) = deg  u(D)+deg  g′(D), where the degree of an n-tuple of finite sequences 
is defined as the maximum degree of its components. Similarly, g′(D) is delay-free, so 
del u(D)g′(D) = del  u(D) + del  g′(D), where the delay of an n-tuple of finite sequences 
is defined as the minimum delay of its components. Hence the shortest finite sequence in 
C with delay k is Dk g′(D), for all k ∈ Z. The  set  {Dk g′(D)} of shifted generators are 
thus a set of minimum-span generators for C— i.e., a trellis-oriented generator matrix. 
We easily verify that all starting times are distinct, and so are all stopping times. 
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