Problem Set 7 Solutions

Problem 7.1 (State space sizes in trellises for RM codes)

Recall the |u|u+v| construction of a Reed-Muller code RM(r,m) with length $n=2^m$ and minimum distance $d=2^{m-r}$:

$$RM(r, m) = \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) \mid \mathbf{u} \in RM(r, m - 1), \mathbf{v} \in RM(r - 1, m - 1)\}.$$

Show that if the past \mathcal{P} is taken as the first half of the time axis and the future \mathcal{F} as the second half, then the subcodes $\mathcal{C}_{\mathcal{P}}$ and $\mathcal{C}_{\mathcal{F}}$ are both effectively equal to RM(r-1,m-1) (which has the same minimum distance $d=2^{m-r}$ as RM(r,m)), while the projections $\mathcal{C}_{|\mathcal{P}}$ and $\mathcal{C}_{|\mathcal{F}}$ are both equal to RM(r,m-1). Conclude that the dimension of the minimal central state space of RM(r,m) is

$$\dim \mathcal{S} = \dim RM(r, m-1) - \dim RM(r-1, m-1).$$

The subcode $C_{\mathcal{P}}$ is the set of all codewords with second half $\mathbf{u} + \mathbf{v} = \mathbf{0}$, which implies that $\mathbf{u} = \mathbf{v}$. Thus $C_{\mathcal{P}} = \{(\mathbf{v}, \mathbf{0}) \mid \mathbf{v} \in \text{RM}(r - 1, m - 1)\}$, which implies that $C_{\mathcal{P}}$ is effectively RM(r - 1, m - 1).

Similarly, the subcode $C_{\mathcal{F}}$ is the set of all codewords with first half $\mathbf{u} = \mathbf{0}$. Thus $C_{\mathcal{F}} = \{(\mathbf{0}, \mathbf{v}) \mid \mathbf{v} \in \text{RM}(r-1, m-1)\}$, which implies that $C_{\mathcal{F}}$ is also effectively RM(r-1, m-1).

The past projection $C_{|\mathcal{P}}$ is clearly $\{\mathbf{u} \mid \mathbf{u} \in RM(r, m-1)\} = RM(r, m-1)$. Similarly, since RM(r-1, m-1) is a subcode of RM(r, m-1), the future projection $C_{|\mathcal{F}}$ is RM(r, m-1).

Since $\dim \mathcal{S} = \dim \mathcal{C}_{|\mathcal{P}} - \dim \mathcal{C}_{\mathcal{P}} = \dim \mathcal{C}_{|\mathcal{F}} - \dim \mathcal{C}_{\mathcal{F}}$, it follows that

$$\dim \mathcal{S} = \dim RM(r, m-1) - \dim RM(r-1, m-1).$$

Evaluate dim S for all RM codes with length $n \leq 32$.

For repetition codes RM(0, m), $\dim \mathcal{S} = \dim RM(0, m-1) - \dim RM(-1, m-1) = 1 - 0 = 1$.

For SPC codes RM(m-1, m), $\dim S = \dim RM(m-1, m-1) - \dim RM(m-2, m-1) = 2^m - (2^m - 1) = 1$.

For the (8, 4, 4) code, we have $\dim S = \dim(4, 3, 2) - \dim(4, 1, 4) = 2$.

For the (16, 11, 4) code, we have $\dim S = \dim(8, 7, 2) - \dim(8, 4, 4) = 3$.

For the (16, 5, 8) code, we have $\dim S = \dim(8, 4, 4) - \dim(8, 1, 8) = 3$.

For the (32, 26, 4) code, we have $\dim S = \dim(16, 15, 2) - \dim(16, 11, 4) = 4$.

For the (32, 16, 8) code, we have dim $S = \dim(16, 11, 4) - \dim(16, 5, 8) = 6$.

For the (32, 6, 16) code, we have $\dim S = \dim(16, 5, 8) - \dim(16, 1, 16) = 4$.

Similarly, show that if the past \mathcal{P} is taken as the first quarter of the time axis and the future \mathcal{F} as the remaining three quarters, then the subcode $\mathcal{C}_{\mathcal{P}}$ is effectively equal to RM(r-2, m-2), while the projection $\mathcal{C}_{|\mathcal{P}}$ is equal to RM(r, m-2). Conclude that the dimension of the corresponding minimal state space of RM(r, m) is

$$\dim \mathcal{S} = \dim RM(r, m-2) - \dim RM(r-2, m-2).$$

Similarly, since

$$RM(r-1, m-1) = \{(\mathbf{u}', \mathbf{u}' + \mathbf{v}') \mid \mathbf{u}' \in RM(r-1, m-2), \mathbf{v}' \in RM(r-2, m-2)\},\$$

we now have that $C_{\mathcal{P}} = \{(\mathbf{v}', \mathbf{0}) \mid \mathbf{v}' \in \text{RM}(r-2, m-2)\}$, which implies that $C_{\mathcal{P}}$ is effectively RM(r-2, m-2). Also, since

$$RM(r, m-1) = \{(\mathbf{u}'', \mathbf{u}'' + \mathbf{v}'') \mid \mathbf{u}'' \in RM(r, m-2), \mathbf{v}'' \in RM(r-1, m-2)\},\$$

we now have that $C_{|\mathcal{P}} = \{\mathbf{u}'' \mid \mathbf{u}'' \in RM(r, m-2)\}$, which implies that $C_{|\mathcal{P}}$ is RM(r, m-2). Therefore

$$\dim \mathcal{S} = \dim \mathcal{C}_{|\mathcal{P}} - \dim \mathcal{C}_{\mathcal{P}} = \dim RM(r, m-2) - \dim RM(r-2, m-2).$$

Using the relation dim RM(r, m) = dim RM(r, m - 1) + dim RM(r - 1, m - 1), show that

$$\dim RM(r, m-2) - \dim RM(r-2, m-2) = \dim RM(r, m-1) - \dim RM(r-1, m-1).$$

This follows from dim $RM(r, m-1) = \dim RM(r, m-2) + \dim RM(r-1, m-2)$ and dim $RM(r-1, m-1) = \dim RM(r-1, m-2) + \dim RM(r-2, m-2)$.

Problem 7.2 (Projection/subcode duality and state space duality)

Recall that the dual code to an (n, k, d) binary linear block code C is defined as the orthogonal subspace C^{\perp} , consisting of all n-tuples that are orthogonal to all codewords in C, and that C^{\perp} is a binary linear block code whose dimension is dim $C^{\perp} = n - k$.

Show that for any partition of the time axis \mathcal{I} of \mathcal{C} into past \mathcal{P} and future \mathcal{F} , the subcode $(\mathcal{C}^{\perp})_{\mathcal{P}}$ is equal to the dual $(\mathcal{C}_{|\mathcal{P}})^{\perp}$ of the projection $\mathcal{C}_{|\mathcal{P}}$, and vice versa. [Hint: notice that $(\mathbf{a}, \mathbf{0})$ is orthogonal to (\mathbf{b}, \mathbf{c}) if and only if \mathbf{a} is orthogonal to \mathbf{b} .]

Following the hint, because inner products are defined componentwise, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}_{|\mathcal{P}}, \mathbf{y}_{|\mathcal{P}} \rangle + \langle \mathbf{x}_{|\mathcal{F}}, \mathbf{y}_{|\mathcal{F}} \rangle.$$

Moreover $\langle (\mathbf{a}, \mathbf{0}), (\mathbf{b}, \mathbf{c}) \rangle = 0$ if and only if $\langle \mathbf{a}, \mathbf{b} \rangle = 0$. We therefore have the following logical chain:

$$\mathbf{a} \in \mathcal{C}_{\mathcal{P}} \iff (\mathbf{a}, \mathbf{0}) \in C \iff (\mathbf{a}, \mathbf{0}) \perp C^{\perp} \iff \mathbf{a} \perp (C^{\perp})_{|\mathcal{P}},$$

where we have used the definitions of the subcode $\mathcal{C}_{\mathcal{P}}$, the fact that the dual code of \mathcal{C}^{\perp} is C, the fact that $(\mathbf{a}, \mathbf{0})$ is orthogonal to (\mathbf{b}, \mathbf{c}) if and only if \mathbf{a} is orthogonal to \mathbf{b} , and the definition of $(\mathcal{C}^{\perp})_{|\mathcal{P}}$, respectively.

Conclude that at any time the minimal state spaces of C and C^{\perp} have the same dimension.

The dimension $\dim \mathcal{S}$ of the minimal state space of \mathcal{C} for a given partition into past and future is $\dim \mathcal{C}_{|\mathcal{P}} - \dim \mathcal{C}_{\mathcal{P}}$. The dimension $\dim \mathcal{S}$ of the minimal state space of \mathcal{C}^{\perp} for a given partition into past and future is

$$\dim(\mathcal{C}^{\perp})_{|\mathcal{P}} - \dim(\mathcal{C}^{\perp})_{\mathcal{P}} = (n_{\mathcal{P}} - \dim\mathcal{C}_{\mathcal{P}}) - (n_{\mathcal{P}} - \dim\mathcal{C}_{|\mathcal{P}}) = \dim\mathcal{C}_{|\mathcal{P}} - \dim\mathcal{C}_{\mathcal{P}},$$

where $n_{\mathcal{P}} = |\mathcal{P}|$, and we have used projection/subcode duality and the fact that the dimension of the dual of a code of dimension k on a time axis of length $n_{\mathcal{P}}$ is $n_{\mathcal{P}} - k$.

The fact that the state spaces of a linear code and its dual have the same dimensions is called the *dual state space theorem*.

Problem 7.3 (Trellis-oriented generator matrix for (16, 5, 8) RM code)

Consider the following generator matrix for the (16,5,8) RM code, which follows directly from the |u|u+v| construction:

(a) Convert this generator matrix to a trellis-oriented generator matrix.

A trellis-oriented generator matrix is obtained by adding the first generator to each of the others:

(b) Determine the state complexity profile of a minimal trellis for this code.

The starting times of the generator spans are $\{1, 2, 3, 5, 9\}$, and the ending times are $\{8, 12, 14, 15, 16\}$. The state dimension profile (number of active generators at cut times) of a minimal trellis for this code is therefore

$$\{0, 1, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 2, 1, 0\}.$$

Note that the state-space dimensions at the center, one-quarter, and three-quarter points are equal to

$$\dim(8,4,4) - \dim(8,1,8) = \dim(4,3,2) - \dim(4,0,\infty) = 3,$$

in accord with Problem 7.1.

Note: this state dimension profile meets the Muder bound at all times (see Problem 7.6), and thus is the best possible for a (16, 5, 8) code.

(c) Determine the branch complexity profile of a minimal trellis for this code.

From the trellis-oriented generator matrix, the branch dimension profile (number of active generators at symbol times) of a minimal trellis for this code is therefore

$$\{1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 1\}.$$

Note: this branch dimension profile meets the Muder bound at all times, and thus is the best possible for a (16, 5, 8) code.

Problem 7.4 (Minimum-span generators for convolutional codes)

Let C be a rate-1/n binary linear convolutional code generated by a rational n-tuple $\mathbf{g}(D)$, and let $\mathbf{g}'(D)$ be the canonical polynomial n-tuple that generates C. Show that the generators $\{D^k\mathbf{g}'(D), k \in \mathbb{Z}\}$ are a set of minimum-span generators for C.

Since $\mathbf{g}'(D)$ is canonical, it is noncatastrophic; i.e., a code sequence $u(D)\mathbf{g}'(D)$ is finite only if u(D) is finite. Therefore if $u(D)\mathbf{g}'(D)$ is finite, then u(D) is finite and $\deg u(D)\mathbf{g}'(D) = \deg u(D) + \deg \mathbf{g}'(D)$, where the degree of an n-tuple of finite sequences is defined as the maximum degree of its components. Similarly, $\mathbf{g}'(D)$ is delay-free, so $\deg u(D)\mathbf{g}'(D) = \deg u(D) + \deg \mathbf{g}'(D)$, where the delay of an n-tuple of finite sequences is defined as the minimum delay of its components. Hence the shortest finite sequence in \mathcal{C} with delay k is $D^k\mathbf{g}'(D)$, for all $k \in \mathbb{Z}$. The set $\{D^k\mathbf{g}'(D)\}$ of shifted generators are thus a set of minimum-span generators for \mathcal{C} — i.e., a trellis-oriented generator matrix. We easily verify that all starting times are distinct, and so are all stopping times.