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Problem Set 6 Solutions 

Problem 6.1 (rational realizations). 

(a) Generalize Figure 2 of Chapter 9 to realize any causal rational impulse response 
g(D) =  n(D)/d(D) with ν = max{deg n(D), deg d(D)} memory elements, where n(D) 
and d(D) are both polynomials in F2[D]. 

Since g(D) is causal, we may assume that D does not divide d(D). By multiplying the 
numerator and the denominator by the same scalar, we may further assume that d0 = 1.  

The desired realization is then as follows. Let v(D) denote a sequence that enters a 
shift register of length ν = max{deg n(D), deg d(D)}. From this shift register we can 
obtain the sequences Dv(D), D2v(D), . . .  , Dν v(D). By calculating an appropriate linear 
combination of these sequences, we can obtain the sequence f(D) = (d(D) − 1)v(D), 
which is fed back to the shift register input as shown in Figure 1 below. The shift register 
input is then 

v(D) =  u(D) − (d(D) − 1)v(D). 

Solving this equation, we obtain u(D) =  d(D)v(D), or 

u(D) 
v(D) =  . 

d(D) 

Now by calculating an appropriate linear combination of the shift-register contents 
Dv(D), D2v(D), . . .  , Dν v(D), we can obtain the output sequence 

n(D) 
y(D) =  n(D)v(D) =  u(D),

d(D) 

which is the desired input-output map. 

(d(D) − 1)v(D) 
linear combination 

6 6 6 6 

-u(D) n+ 
−? 

-v(D) 
D -Dv(D) 

D -D2v(D) . . .  -Dν−1v(D) 
D 

Dν v(D) 

? ? ? ? ? 
linear combination 

y(D) =  n(D)v(D) -

Figure 1. Realization of a linear system with impulse response g(D) =  n(D) (d0 = 1).  
d(D) 
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(b) By a further generalization, show how to realize a rate-1/n convolutional encoder with 
causal rational transfer function g(D) =  n(D)/d(D) with ν = max{deg n(D), deg d(D)}
memory elements, where n(D) and d(D) are polynomial. 

By calculating n appropriate linear combinations of the shift-register contents 
Dv(D), D2v(D), . . .  , Dν v(D), we can obtain each of the n output sequences 

nj (D) 
yj (D) =  nj (D)v(D) =  u(D), 1 ≤ j ≤ n,

d(D) 

which give the n desired input-output maps. This realization is illustrated in Figure 2. 

(d(D) − 1)v(D) 
linear combination 

6 6 6 6


u(D) ?
− v(D) Dv(D) D2v(D-) . . .D
ν−1v(D) Dν v(D)- n - - -+ D D D 

? ? ? ? ? 
n linear combinations 

y(D) =  n(D)v(D) -

Figure 2. Realization of a rate-1/n convolutional encoder with 
n(D)causal rational transfer function g(D) =  
d(D) (d0 = 1).  

Problem 6.2 (rational = eventually periodic). 

Show that a Laurent D-transform f(D) ∈ F2((D)) is rational if and only if the corre-
sponding Laurent sequence f is finite or eventually becomes periodic. 

[Hints: (a) show that if a sequence f is eventually periodic with period P , then its D-
transform f(D) can be written as f(D) =  g(D)/(1 − DP ), where g(D) is finite; (b) 
using the results of Problem 6.1(a), show that any causal rational Laurent D-transform 
f(D) =  n(D)/d(D) is the impulse response of a finite-state linear time-invariant system 
over F2, and therefore must be finite or eventually periodic.] 

(D

We first show that if f(D) is finite, then f(D) is rational. If f(D) is finite with delay 
del f(D) =  δ ≥ 0, then f(D) is rational because it is is polynomial. If f(D) is finite 
with delay del f(D) =  δ <  0, then f(D) is rational because it can be written as f(D) =  

−δ f(D))/(D−δ ), where both the numerator and denominator are polynomial. 

Next, following hint (a), we show that if f(D) is eventually periodic, then f(D) is rational. 
If f(D) is infinite and eventually periodic with period P starting at time γ, then  f(D) 
can be written as 

f(D) =  f0(D) +  Dγ p(D) +  DP p(D) +  D2P p(D) +  · · ·  , 

where f0(D) is finite with degree deg f0(D) < γ  and p(D) �= 0 is polynomial with degree 
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deg p(D) < P  . Since 1 + DP + D2P + · · ·  = 1/(1 − DP ), we can then write 

(1 − DP )f0(D) +  p(D)
f (D) =  . 

1 − DP 

Since this is a ratio of finite sequences, f (D) is rational.


Conversely, suppose that f (D) is rational; i.e., f (D) =  n(D)/d(D) for some polynomial

n(D) and  d(D) �


D

= 0. Then we can prove that f (D) is finite or eventually periodic by 
using hint (b). Using the result of Problem 6.1(a), we can realize a system with a causal 
rational impulse response f (D) =  n(D)/d(D) with  ν = max{deg n(D), deg d(D)} memory 
elements. (If f (D) is not causal, consider instead the causal rational sequence f ′(D) =  

−del f (D)f (D).) Since a realization with a finite number of memory elements has only 
a finite number of states, its impulse response must be finite or eventually periodic, 
because after the initial impulse, the system is autonomous (i.e., there is no input), and 
an autonomous finite-state system must eventually cycle through a periodic sequence of 
states. 

Problem 6.3 (input/output properties) 

(a) If y(D) =  u(D)g(D) where u(D) is Laurent and g(D) =  {nj (D)/dj (D)} is causal 
and rational, show that y(D) is an n-tuple of formal Laurent series, y(D) ∈ (F2((D)))n . 

Each rational function gj (D) may be identified with a formal Laurent series. Each yj (D) 
is then a convolution of two formal Laurent series, which is a well-defined formal Laurent 
series. 

(b) Show that y(D) is rational if and only if u(D) is rational; i.e., the rational subcode of 
C = {y(D) =  u(D)g(D) | u(D) ∈ F2((D))} is 

Cr = {y(D) =  u(D)g(D), u(D) ∈ F2(D)}. 

If u(D) is rational, then yj (D) =  u(D)gj (D) is the product of two rational functions and 
is thus rational. Conversely, if yj (D) =  u(D)gj (D) is rational, then u(D) =  yj (D)/gj (D) 
is the product of two rational functions and is thus rational. (We assume that at least 
one gj (D) is nonzero.) 

g

(c) Show that y(D) is finite if and only if u(D) =  a(D)lcm{dj (D)}/ gcd{nj (D)}, where 
a(D) is finite, lcm{dj (D)} is the least common multiple of the denominators dj (D) of the 

j (D), and gcd{nj (D)} is the greatest common divisor of their numerators. 

Since a finite sequence is rational, by part (b) we need consider only rational u(D). 

A rational function is finite if and only if when reduced to lowest terms its denominator

polynomial is Dk for some k.


Again, the generator n-tuple g(D) has rational elements gj (D) =  nj (D)/dj (D), which

we may assume to have been reduced to lowest terms. To cancel all the denominator 
terms, u(D) must be a multiple of all denominators, which means it must be a multiple 
m(D)d(D) of their least common multiple d(D) = lcm{dj (D)} for some finite m(D). 
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If u(D) has a nontrivial denominator term b(D) other than Dk , then  yj (D) can be finite 
only if b(D) divides nj (D). Thus y(D) is finite only if b(D) divides the greatest common 
divisor n(D) = gcd{nj (D)}; i.e., b(D) =  n(D)/c(D) for some finite c(D). 

Thus we conclude that y(D) is finite if and only if 

m(D)d(D) d(D) 
u(D) =  = m(D)c(D) 

n(D)/c(D) n(D) 

for some finite m(D), c(D), which proves the proposition. 

Problem 6.4 (SPC codes have a 2-state trellis diagram.) 

Show that if the (catastrophic) rate-1/1 binary linear convolutional code generated by 
g(D) = 1  +  D is terminated with deg u(D) < µ, then the resulting code is a (µ + 1, µ, 2) 
SPC code. Conclude that any binary linear SPC code may be represented by a 2-state 
trellis diagram. 

In this case the terminated code is Cµ = {u(D)g(D) | deg u(D) < µ}, namely the set 
of all polynomials y(D) =  u(D)(1 + D) where deg u(D) < µ. Thus the total number of 
possibly nonzero input bits uj is k = µ, and the total number of possibly nonzero output 
bits yj is n = µ + 1, since 

deg y(D) = deg  u(D) + 1  < µ + 1. 

Finally, it is easy to see that a binary polynomial y(D) has even Hamming weight if 
and only if y(1) = 0; i.e., if and only if y(D) is divisible by 1 + D. Therefore Cµ is the 
(µ + 1, µ, 2) even-weight code; i.e., the single-parity-check (SPC) code of length µ + 1.  

The rate-1/1 convolutional encoder with generator g(D) = 1  +  D may be realized by a 
binary shift register of length ν = 1, which has 2 states. The trellis diagram of Cµ is 
therefore a terminated 2-state trellis like this: 

*����

0 
1 

1n

Two-state trellis for a binary (µ + 1, µ, 2) single-parity-check code (µ = 6).  

Note that if this trellis were not terminated, then it would include an all-zero path in 
addition to the one associated with the all-zero state sequence, namely the path associated 
with the all-one state sequence. This proves that as a rate-1/1 convolutional encoder, the 
generator g(D) = 1  +  D is catastrophic. Indeed, the finite output sequence y(D) = 1  is  
generated by the infinite input sequence u(D) = 1/(1 + D) = 1  +  D + D2 + D3 + · · · . 

0


j
HHH-

*��
H

��
0n 0 

1 
1

1n j
HHH-

*��
H

��
0n 0 

1 
11n j

HHH-

*��
H

��
0n 0 

1 
11n j

HHH-

*��
H

��
0n 0 

1 
11n j

HHH-

*��
H

��
0n 0 

1 
11n

- - - - - - -0n 0n 0n

Hj 
HH1H

0 0 0 0 0 
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Problem 6.5 (The (7, 4, 3) Hamming code has an 8-state trellis diagram.) 

Show that if the (catastrophic) rate-1/1 binary linear convolutional code generated by 
g(D) = 1  +  D + D3 is terminated with µ = 4, then the resulting code is a (7, 4, 3) 
Hamming code. 

In this case the terminated code is C4 = {u(D)(1 + D + D3) | deg u(D) < 4}. Thus the 
total number of possibly nonzero input bits uj is k = 4, and the total number of possibly 
nonzero output bits yj is n = 7, since deg y(D) = deg  u(D) + 3  < 7. Thus C4 is a (7, 4) 
binary linear block code with 16 codewords, namely the set of all polynomials of the form 

u0(1 + D + D3) +  u1(D + D2 + D4) +  u2(D
2 + D3 + D5) +  u3(D

3 + D4 + D6). 

By simply writing down the 16 codewords, we can establish that the minimum nonzero 
weight is d = 3, and in fact that N3 = 7, N4 = 7  and  N7 = 1.  Thus  C4 is a (7, 4, 3) binary 
linear block code. Any code with these parameters is called a Hamming code. 

Problem 6.6 (Viterbi algorithm decoding of SPC codes) 

As shown in Problem 6.4, any (µ+1, µ, 2) binary linear SPC block code may be represented 
by a two-state trellis diagram. Let µ = 7, and let the received sequence from a discrete-time 
AWGN channel be given by r = (0.1,−1.0,−0.7, 0.8, 1.1, 0.3,−0.9, 0.5). Perform Viterbi 
algorithm decoding of this sequence, using the two-state trellis diagram of the (8, 7, 2) SPC 
code. 

We may first assign metrics to trellis branches so as to perform maximum-inner-product 
(MIP) detection: i.e., maximize j rj s(yj ). (Alternatively, we could minimize the 
squared distance ||r − s(y)||2 = j (rj − s(yj ))

2.) In other words, we assign the met
-
ric rj to branches corresponding to yj = 0,  and  −rj to branches corresponding to yj = 1. 


At time 1 the two survivors to state 0 and state 1 therefore have metrics +0.1 and  −0.1.


At time 2 we compare the two paths 00 and 11 to state 0, which have accumulated metrics

−0.9 and  +0.9, and choose the latter. Similarly we choose the path 01 to state 1, which

has accumulated metric 1.1.


At time 3 we choose the path 011 to state 0, which has metric 1.8, and the path 111 to

state 1, which has metric 1.6.


Time 4: path 0110 to state 0, metric 2.6; path 1110 to state 1, metric 2.4.


Time 5: path 01100 to state 0, metric 3.7; path 11100 to state 1, metric 3.5.


Time 6: path 011000 to state 0, metric 4.0; path 111000 to state 1, metric 3.8.


Time 7: path 1110001 to state 0, metric 4.7; path 0110001 to state 1, metric 4.9.


Time 8: path 11100010 to end state 0, metric 5.2.
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Compare and contrast the performance and complexity of VA decoding to that of “Wagner 
decoding” (Problem 4.6) for this example. 

For Wagner decoding, we first make hard decisions on every bit, yielding the word 
01100010. Since this word has odd weight, it is not a codeword. We then find the least 
reliable hard decision, i.e., the rj with least magnitude; this occurs in the first position. 
We flip this bit to obtain the even-weight codeword 11100010, which must be the ML = 
MD = MIP codeword, as shown in Problem 4.6. Indeed, this is the same codeword as is 
decoded by the VA in this case. 

Note that the two VA surviving paths at any time differ in precisely one position, the 
position of the least reliable hard decision up to that time. It can be seen that this will 
be true in general; this gives another proof of the optimality of Wagner decoding. 

Wagner decoding clearly requires fewer arithmetic operations than VA decoding, although 
its logical structure is somewhat less regular. 
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