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Introduction

In today’s lecture we will continue—and complete—our analysis of spontaneous para-
metric downconversion (SPDC) by converting the classical treatment from Lecture 20
into a continuous-time field operator theory. As was done in Lecture 20, we shall as-
sume continuous-wave (cw) pumping with no pump depletion, and a collinear type-II
configuration in which the signal and idler fields are +z-going plane waves that are
orthogonally polarized. Moreover, we shall assume that the signal and idler center
frequencies are both ωP/2, i.e., half the pump frequency.1 This frequency degeneracy

1Whereas the analysis in Lecture 20 assumed single-frequency signal and idler beams, the quan-
tum theory requires that we include all frequencies, hence our identification of center frequencies
for these beams.
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of the signal and idler is not required for some nonclassical effects that can be ob-
tained from SPDC, but is necessary for others, e.g., quadrature-noise squeezing. Thus
it is worthwhile imposing this condition at the outset. Once we have established the
quantum theory for SPDC, we will add cavity enhancement to convert the downcon-
verter into an optical parametric amplifier (OPA). The OPA analysis that we shall
perform will employ a simpler, lumped-element theory for the nonlinear interaction
in the χ(2) material that will quickly lead to a Gaussian-state characterization which
gives rise to quadrature-noise squeezing. In Lecture 22, we shall finish our survey
of the nonclassical signatures produced by χ(2) interactions. There we shall consider
Hong-Ou-Mandel interferometry and the generation of polarization-entangled photon
pairs from SPDC, along with the photon-twins behavior of the signal and idler beams
from an OPA.

Classical Theory of Spontaneous Parametric Downconversion

Slide 3 reprises our conceptual picture of spontaneous parametric downconversion. A
strong, linearly-polarized (along ~iP ) cw laser-beam pump at frequency ωP is applied
to the entrance facet (at z = 0) of a length-l crystalline material that possesses a
χ(2) nonlinearity. The action of the pump beam in conjunction with the crystal’s
nonlinearity couples lower-frequency—signal and idler—beams that we shall assume
to be linearly polarized along orthogonal directions ~i = ~i (signal) and ~ ~

S x iI = iy
(idler), respectively, with common center frequency ωP/2. In Lecture 20 we treated
the signal, idler, and (non-depleting) pump inside the crystal as monochromatic plane
waves, with positive-frequency, photon-units fields given by

(+)
ES (z, t) = A (z)e−j(ωP t/2−kSz)

S (1)

(+)
E (z, t) = A (z)e−j(ωP t/2 I

I
−k z)

I (2)

(+)
EP (z, t) = AP e

−j(ωP t−kP z). (3)

respectively, for the polarization components of interest. In this representation,
~ωP |AS(z)|2/2 and ~ωP |AI(z)|2/2 are the signal and idler powers flowing across the
z plane, for 0 ≤ z ≤ l. For z > l, free-space propagation applies, i.e., the positive-
frequency, photon-units signal, idler, pump fields in that region are

(+)
E (z, t) = A (l)e−j(ωP (t
S S

−(z−l)/c)/2−kS l) (4)

(+)
EI (z, t) = AI(l)e

−j(ωP (t−(z−l)/c)/2−kI l) (5)

(+)
EP (z, t) = AP e

−j(ωP (t−(z−l)/c)−kP l). (6)

The coupled-mode equations that the signal and idler satisfy inside the nonlinear

2



crystal were shown last time to be

dAS(z)
= jκA∗

dz I(z)ej∆kz (7)

dAI(z)
= jκA∗ z

z S( )ej∆kz, (8)
d

for 0 ≤ z ≤ l. Here: ∆k ≡ kP (ωP ) − kS(ωP/2) − kI(ωP/2) quantifies the phase-
mismatch between the signal, idler, and pump beams in terms of their respective
dispersion relations, { kj(ω) ≡ ωnj(ω)/c : j = S, I, P } with {nj(ω) : j = S, I, P }
denoting the refractive indices for the relevant polarization components; and

κ ≡

√
~ωSωIωP

χ(2)AP (9)
2c3ε0nS(ωS)nI(ωI)nP (ωP )A

is a complex-valued coupling constant that is proportional to the pump’s complex
envelope and the crystal’s second-order nonlinear susceptibility. The general solution
to these equations is

l
AS(l =

[(
j∆k

) cosh(pl)− sinh(pl)

2

sinh(
A

pl

)
pl)

S(0) + jκl A∗
pl I(0)

]
ej∆kl/2 (10)

AI(l) =

[(
j∆kl

cosh(pl)− sinh(pl)

2

sinh(
A

pl

)
pl)

I(0) + jκl A∗
pl S(0)

]
ej∆kl/2, (11)

where
p ≡

√
|κ|2 − (∆k/2)2. (12)

However, to get the most efficient interaction, we need phase-matched operation, i.e.,
∆k = 0, in which case the solution to Eqs. (7) and (8) reduces to

κ
AS(l) = cosh(|κ|l)AS(0) + j sinh(

|κ
|κ|l)A∗

| I(0) (13)

κ
AI(l) = cosh(|κ|l)AI(0) + j sinh( )

κ
|κ|l A∗

| | S(0), (14)

indicating increasing amounts of signal-idler coupling with increasing |κ|l, i.e., with
increasing pump power or crystal length.

Quantum Theory of Spontaneous Parametric Downconversion

At the end of Lecture 20 we noted that the SPDC’s frequency-sum condition, ωP =
ωS+ωI , and its phase-matching condition, kP = kS+kI , could be interpreted as energy
conservation and momentum conservation, respectively, for a photon fission process in
which a single pump photon divides into a signal photon and an idler photon. We also
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noted, in that lecture, that the solutions to the coupled-mode equations, which we
reprised in the previous section, are a two-mode Bogoluibov transformation, similar
to what we saw earlier in the semester for our two-mode optical parametric amplifier.
It is now time for us to go beyond these precursors and establish the quantum field-
operator theory for cw collinear SPDC at frequency degeneracy.2

ˆ(+) ˆ(+)
Suppose that ES (z, t) and EI (z, t) for 0 ≤ z ≤ l are the positive-frequency,

photon-units +z-going plane-wave field operators for the ~ix and ~iy polarization com-
ponents of the signal and idler, respectively.3 Because we must preserve δ-function
commutators for the signal and idler field operators leaving the nonlinear crystal, we

ˆ(+) ˆ(+)
must include all frequencies in them. Hence we shall take ES (z, t) and EI (z, t) to
have the following Fourier decompositions:

ˆ(+) ω
ES ( , t) =

∫
d

z Â (z, ω)e−j[(ωP /2+ω)t−kS(ωP /2+ω)z]
S , (15)

2π

(+) ω
ÊI (z t) =

∫
d

, Â (z, ω)e−j[(ωP /2 ω
I

− )t−kI(ωP /2−ω)z]. (16)
2π

ˆIn these expressions, AS(z, ω) is the plane-wave field-component annihilation operator
ˆfor the signal beam at frequency shift ω from frequency degeneracy, and AI(z, ω) is

the plane-wave field-component annihilation operator for the idler beam at frequency
shift −ω from frequency degeneracy.4 At the crystal’s entrance and exit facets, the
signal and idler fields operators must have the following non-zero commutators that
apply for free-space fields,

ˆ(+) ˆ(+) ˆ(+) ˆ(+)
[ES (z, t), E

†
S (z, u)] = [E

†
I (z, t), EI (z, u)] = δ(t− u), for z = 0, l, (17)

which imply that

ˆ ˆ† ′ ˆ ˆ[AS(z, ω), AS(z, ω )] = [AI(z, ω), A†I(z, ω
′)] = 2πδ(ω − ω′), for z = 0, l, (18)

are the only non-zero frequency-domain commutators at the crystal’s input and out-
put. Any proper quantized form of the coupled-mode equations and their solutions
must preserve these commutator brackets.

2The basic concepts we shall develop can be extended to non-degenerate, non-collinear operation,
but we shall not do so.

3A full field-operator treatment should include all spatial modes, not just the +z-going plane-
wave modes, and both polarizations for all such modes. However, we shall limit our consideration
to these polarizations of the +z-going signal and idler plane waves. For coherent (homodyne or
heterodyne) detection measurements, spatial and polarization mode selection automatically occurs
by choice of the local oscillator, so our assumption is easily enforced in such measurement scenarios.
For direct detection, however, other spatial modes and polarizations may have to be included,
depending on the SPDC and measurement configuration.

4This sign convention is convenient because the coupled-mode equations for classical versions of
these Fourier decompositions link AS(z, ω) to A∗I(z, ω) and vice versa.
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We shall assume that the downconverter is phase-matched at frequency degener-
acy, viz.,

∆k(ω) ≡ kP (ωP )− kS(ωP/2 + ω)− kI(ωP/2− ω), (19)

satisifes ∆k(0) = 0, and that group-velocity dispersion can be neglected, so that

∆k(ω) ≈ ω∆k′ (20)

holds, where

d∆k
∆k′ ≡ d

=
dω

∣∣∣ k∣
ω=0

− S(ωP/2 + ω) d

dω

∣∣∣ k∣
ω=0

− I(ωP/2− ω)
.

dω

∣
(21)

ω=0

Emboldened by last lecture’s comment about Bogoliubov transformations,

∣∣
as well

as our earlier quantization of the classical harmonic oscillator, we shall

∣
assume that

ˆ ˆAS(z, ω) and AI(z, ω) obey the following coupled-mode equations:

ˆ∂AS(z, ω) ˆ= jκA†
∂z I(z, ω)ejω∆k′z (22)

ˆ∂AI(z, ω) ˆ= jκA† (z, ω)ejω∆k′z, (23)
∂z S

for 0 ≤ z ≤ l, where κ is the same coupling constant from the classical theory, i.e.,
Eq. (9).5 These equations have the following solution, cf. Eqs. (10) and (11):

ÂS(l[(, ω) =

jω∆k′l
cosh(pl)− sinh(pl)

2

sinh(ˆ
pl

)
pl)

AS(0, ω) + jκl Â†
pl I(0, ω)

]
ejω∆k′l/2 (24)

ÂI(l[(, ω) =

jω∆k′l
cosh(pl)− sinh(pl)

2

sinh(ˆ
pl

)
pl)

AI(0, ω) + jκl Â†
pl S(0, ω)

]
ejω∆k′l/2,(25)

where
p ≡

√
|κ|2 − (ω∆k′/2)2. (26)

To verify that these solution preserve free-space commutator brackets, let us define

l
µ(ω) =

(
jω∆k′

cosh(pl)− sinh(pl)

2

′
e

pl

)
jω∆k l/2 (27)

sinh(pl)
ν(ω) = jκl

′
ejω∆k l/2, (28)

pl

5We have assumed that the strong, non-depleting pump is in a coherent state such that—as in
the case of the local oscillator beam for homodyne and heterodyne detection—it acts classically in
SPDC.
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so that Eqs. (24) and (25) become

ˆ ˆ ˆAS(l, ω) = µ(ω)AS(0, ω) + ν(ω)A†I(0, ω) (29)

ˆ ˆ ˆAI(l, ω) = µ(ω)AI(0, ω) + ν(ω)A†S(0, ω). (30)

Now, because

|µ(ω)|2
′

− |ν(ω)|2 =

[
cosh2 pl) +

(
ω∆k

(
2

2p

)
sinh2(pl)

]
−
(
|κ|
p

)2

sinh2(pl) (31)

= cosh2(pl)− sinh2(pl) = 1, (32)

Eqs. (29) and (30) are a two-mode Bogoliubov transformation that ensures proper
commutator preservation.6

Gaussian-State Characterization of SPDC

Equations (29) and (30) allow us an immediate insight into the joint state of the signal
and idler produced by spontaneous parametric downconversion, i.e., the joint state
of the signal and idler beams emerging from the crystal at z = l when the signal and
idler inputs at z = 0 are in their vacuum states. In particular, the linearity of these
equations, combined with the fact that the vacuum state is zero-mean and Gaussian,
tells us that the signal and idler outputs will be in a zero-mean jointly Gaussian
state. Hence they are completely characterized by their phase-insensitive and phase-

〈 ˆ† ˆsensitive correlation functions, of which the only non-zero ones are AS(l, ω)AS(l, ω′)〉,
〈Â†I ˆ(l, ω)AI(l, ω

′ ˆ ˆ)〉, and 〈AS(l, ω)AI(l, ω
′)〉. These correlations are easily computed,

e.g., for the signal’s phase-insensitive correlation function we have that

〈Â† ˆ
S(l, ω)AS(l, ω′)〉

= 〈 ˆ ˆ ˆ ˆ[µ∗(ω)A†S(0, ω) + ν∗(ω)AI(0, ω)][µ(ω′)AS(0, ω′) + ν(ω′)A†I(0, ω
′)]〉 (33)

= µ∗(ω)µ(ω′ ˆ ˆ ˆ)〈A†S(0, ω)AS(0, ω′)〉+ µ∗(ω)ν(ω′)〈A†S ˆ(0, ω)A†I(0, ω
′)〉

∗ ′ 〈 ˆ ˆ ˆ ˆ+ ν (ω)µ(ω ) AI(0, ω)AS(0, ω′)〉+ ν∗(ω)ν(ω′)〈AI(0, ω)A†I(0, ω
′)〉. (34)

Now, because the input fields are in their vacuum states, all their normally-ordered
correlation functions vanish, so, using the commutator (18), we get

〈 ˆ ˆAI(0, ω)A†I(0, ω
′)〉 = 2πδ(ω − ω′), (35)

6Our proof has assumed that p is real valued, i.e., it applies for frequencies low enough to give
|ω∆k′/2| ≤ |κ|. At higher frequencies, where |ω∆k′/2| > |κ| prevails, p becomes imaginary, but a
similar calculation—left to the reader—will show that Eqs. (29) and (30) still constitute a two-mode
Bogoliubov transformation and hence commutator preserving.
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whence
〈Â† ˆ

S(l, ω)AS(l, ω′)〉 = 2π|ν(ω)|2δ(ω − ω′). (36)

Similar calculations yield

〈Â† ˆ
I(l, ω)AI(l, ω

′)〉 = 2π|ν(ω)|2δ(ω − ω′), (37)

and
〈 ˆ ˆAS(l, ω)AI(l, ω

′)〉 = 2πµ(ω)ν(ω)δ(ω − ω′), (38)

for the other correlation functions that we need.
For future use it will be valuable to find the phase-insensitive and phase-sensitive

correlation functions for the baseband signal and idler field operators defined by

ˆ(+) ˆES (l, t) = ES(t)e−j(ωP t/2−kS(ωP /2)l) ˆ(+) ˆand E (l, t) = E (t)e−j(ωP t/2
I I

−kI(ωP /2)l).
(39)

Using the Fourier relations

ω
Ê (t) =

∫
d

S
ˆ k′AS(l, ω)e−jω(t− l)S , (40)∫ 2π

dω
ÊI(t) = Â l)

I(l, ω)ejω(t+kI
′
, (41)

2π

where
dk

kS
′ ≡ S(ωP/2 + ω) d

and
dω

∣∣∣ k∣ kI
′

ω=0

≡ I(ωP/2− ω)
,

dω

∣
(42)

ω=0

together with the frequency-domain correlation functions derived ab

∣∣
ove, we find that

the non-zero correlations of the baseband field operators are stationary—dep

∣
endent

on time-difference only—and given by

(n)

∫
dωˆ) ≡ 〈 ˆKSS (τ ES

† (t+ τ)ES(t)〉 = ω

2
|ν(ω) j

π
|2e τ (43)

(n) dω≡ 〈 ˆ† ˆKII (τ) EI(t+ τ)EI(t)〉 =

∫
ν

2π
| (−ω)|2ejωτ (44)

(p) dω≡ 〈 ˆ ˆKSI (τ) ES(t+ τ)EI(t)〉 =

∫
′

µ( ω)ν( ω)ejω(τ+∆k l), (45)
2π

− −

with (n) denoting the phase-insensitive (normally-ordered) auto-correlation functions
and (p) denoting the phase-sensitive cross-correlation function. We have made all of
these expressions employ ejωτ inverse Fourier kernels so that—in keeping with our
definition of noise spectral densities for real-valued classical random processes—we
can say that

S(n) (n)
SS (ω) = |ν(ω)|2, SII (ω) = | (

ν(−ω)|2, and S p) ′

SI (ω) = µ(−ω)ν(−ω)ejω∆k l, (46)
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are their corresponding spectral densities.
Physically, S(n)

SS (ω)/2π is the average photon-flux per unit bilateral bandwidth (in
(n)

rad/s) in the signal beam at frequency ωP/2+ω, and SII (ω)/2π is the average photon-
flux per unit bilateral bandwidth (in rad/s) in the idler beam at frequency ωP/2−ω.
These functions are usually referred to as the fluorescence spectra of the signal and
idler, respectively. SPDC is usually performed in the regime wherein |κ|l� 1 so that
we can employ p ≈ jω|∆k′|/2 at all relevant detunings from degeneracy, i.e., for all ω
values of interest. This low-gain condition leads to the following approximations for
the Bogoliubov functions in the vicinity of frequency degeneracy7

sin(ω∆k′l/2)
µ(ω) ≈ 1 and ν(ω) ≈ jκl ejω∆k′l/2. (47)

ω∆k′l/2

It follows that the signal and idler fluorescence spectra are equal, and given by

sin(ω∆k′l/2)S(n) (n)
SS (ω) = S ( ) ≈ |κ|2l2II ω

(
.

ω

)2

(48)
∆k′l/2

Thus, they peak at ω = 0, i.e., frequency degeneracy, where the phase-matching
condition is satisfied. More importantly, we see that these fluorescence spectra are
consistent with the photon fission interpretation of SPDC, in that the signal beam’s
fluorescence spectrum at ωP/2 + ω equals the idler beam’s fluorescence spectrum at

ωP/2− (p)
ω. The phase-sensitive cross-spectral density, SSI (ω), in the low-gain regime,

is

S(p) sin(ω∆k′l/2)
SI (ω) ≈ jκl j ′

e ω∆k l/2. (49)
ω∆k′l/2

We shall work further with these low-gain spectra, and their associated correlation
functions, in Lecture 22, when we study the Hong-Ou-Mandel dip and SPDC genera-
tion of polarization-entangled photon pairs. For the rest of today’s lecture, however,
we will turn our attention to cavity-enhanced SPDC, i.e., the optical parametric am-
plifier.

The Doubly-Resonant Optical Parametric Amplifier

To go beyond the low-gain regime in cw SPDC we need the optical parametric ampli-
fier (OPA), shown schematically on slide 10 as a χ(2) crystal inside an optical cavity
formed by two mirrors. These mirrors are anti-reflection coated for the pump fre-
quency ωP , so the pump makes a single pass, from left to right, through through
the crystal. We will assume that the mirror on the left is a perfect reflector at the
frequency ωP/2, while the mirror on the right is lossless and highly reflecting at

7These approximations violate strict commutator preservation, i.e., |µ(ω)|2 − |ν(ω)|2 = 1 is only
satisfied to first order in |κ|.
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this frequency. As a result, the spontaneously generated signal and idler photons—
resulting from frequency-degenerate downconversion in the χ(2) crystal—bounce back
and forth between the mirrors many times before exiting through the highly-reflecting
mirror. This optical feedback process greatly enhances the nonlinear interaction by
making the crystal act as though it was much longer than it is. Of course, this feed-
back is only effective when it is positive feedback, which in this case means that ωP/2
must be a resonant frequency of the cavity, i.e., the roundtrip phase delay inside
the cavity at frequency ωP/2 must be an integer multiple of 2π. In what follows we
shall assume that the cavity is resonant for both the signal and idler polarizations at
frequency ωP/2.

Although it is possible to analyze this OPA arrangement by imposing cavity mir-
rors around the SPDC analysis we’ve given earlier in this lecture, a much simpler
route to getting to the essential physics employs a lumped-element treatment for in-
tracavity modes that are resonant at frequency ωP/2 for both the signal and idler

ˆ ˆ(~ix and ~iy) polarizations. We shall use Ein
S (t) and Ein

I (t) to denote the vacuum-state,
baseband field operators of the relevant signal and idler polarizations that are inci-
dent on the cavity in slide 10 from the right, while âS(t) and âI(t) will be the photon
annihilation operators for the associated intracavity modes.8 The equations of motion
for the OPA system then( turn out to be

d
+ Γ

dt

)
âS(t) = GΓâ†I(t) +

√
2ΓÊin

S (t) (50)(
d

+ Γ
dt

)
âI(t) = GΓâ†S(t) +

√
ˆ2ΓEin
I (t), (51)

where 0 < G < 1 is the normalized OPA gain9 and Γ > 0 is the linewidth of the
signal and idler intracavity modes. Once Eqs. (50) and (51) have been solved for
the intracavity modes as functions of the input field operators, the baseband field
operators for the signal and idler outputs follow from

Êout
S (t) =

√
ˆ2ΓâS(t)− Ein ˆ
S (t) and Eout

I (t) =
√

ˆ2ΓâI(t)− Ein
I (t). (52)

Frequency-domain techniques—as we used above to obtain our SPDC input-
output relations—can be used to derive the following two-mode Bogoliubov relation
between the Fourier transforms10 of the input and output field operators,

Êout ˆ
S (Ω) = µ(Ω)E in ˆ

S (Ω) + ν(Ω)E in
I
†(Ω) (53)

Êout
I (Ω) = µ∗ ˆ(Ω)E in

I (Ω) + ν∗ ˆ(Ω)E in
S
†(Ω), (54)

8 ˆThe field operators Ein
m(t) for m = S, I have the usual δ-function commutator with their adjoints,

ˆ[Ein ˆ
m(t), Ein

m
†(u)] = δ(t − u) for m = S, I, while the intracavity annihilation operators âm(t) for

m = S, I have the canonical commutation relation, [âm(t), â†m(t)] = 1 for m = S, I, with their
adjoints.

9Here, G2 = PP /PT , where PP is the pump power and PT is the threshold power, i.e., the pump
power value for which the OPA breaks into oscillation and∫ becomes an optical parametric oscillator.

10 ˆOur sign convention for these transforms is E ˆ ˆ ˆ
S(Ω) = dt ES(t)ejΩt and EI(Ω) =

∫
dt EI(t)e−jΩt.
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where

1 +G2 + Ω2/Γ2

µ(Ω) ≡ (55)
1−G2 − Ω2/Γ2 − 2jΩ/Γ

2G
ν(Ω) ≡ . (56)

1−G2 − Ω2/Γ2 − 2jΩ/Γ

It easily shown that |µ(Ω)|2 − |ν(Ω)|2 = 1 and that Eqs. (53) and (54) give rise to
the proper commutator brackets. More importantly, Eqs. (53) and (54) are linear

ˆand their driving terms are vacuum-state field operators. It follows that Eout
S (t) and

Êout
I (t) will be in a zero-mean jointly Gaussian state. Paralleling the approach used

to find the correlation functions for spontaneous parametric downconversion, we can
show that this jointly Gaussian state is completely characterized by the following
spectral densities and stationary correlation functions:

S(n)
mm(Ω) =

∫
dτ K(n)

mm(τ)e−jΩτ = |ν(Ω)|2 (57)

4G2

= , for m = S, I, (58)∫(1−G2 − Ω2/Γ2)2 + 4Ω2/Γ2

S(p) (p)
SI (Ω) = dτ KSI (τ)e−jΩτ = µ∗(Ω)ν(Ω) (59)

2G(1 +G2 + Ω2/Γ2)
= , (60)

(1−G2 − Ω2/Γ2)2 + 4Ω2/Γ2

and

K(n) GΓˆ ˆ
mm(τ) = 〈Eout

m
†(t+ τ)Eout

m (t)〉 =
e

2

[ −(1−G)Γ|τ | e−(1+G)Γ|τ |

1−G
−

+

]
, for m = S, I,(61)

1 G

(p) out GΓ〈 ˆ ˆK ) out
SI (τ = ES (t+ τ)EI (t)〉 =

2

[
e−(1−G)Γ|τ |

1−G
+
e−(1+G)Γ|τ |

1

]
. (62)

+G

In the next section, we will show how the preceding spectra lead to quadrature-noise
squeezing.

Quadrature-Noise Squeezing from an OPA

From our previous work on two-mode parametric amplifiers, we expect that the ±45◦

polarizations at the output of our continuous-time OPA should exhibit quadrature-
noise squeezing. Let’s show that this is so for the +45◦ case. The baseband field
operator for this polarization is

ˆ
Êout Eout ˆ) +

t) ≡ S (t Eout
I (t)

+45( √ . (63)
2
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This field operator is in a zero-mean Gaussian state whose phase-insensitive and
phase-sensitive correlation functions are

(n) (n)

K(n) ˆ) ≡ 〈Eout† ˆ(τ (t+ τ)Eout K
+45 +45( = SS (τ) +K

t)〉 II (τ)
(64)

2

GΓ
=

2

[
e−(1−G)Γ|τ | e−(1+G)Γ|τ |

1−G
− ,

1 +G

]
(65)

and

(p) (p)

K(p)(τ) ≡ 〈Êout ˆ(t+ τ)Eout K
+45 +45( = SI (τ) +K

t)〉 SI (−τ)
(66)

2

GΓ
=

e

2

[ −(1−G)Γ|τ | e−(1+G)Γ|τ |
+

1−G
,

1

]
(67)

+G

respectively. The spectral densities associated with these correlation functions are

S(n)(Ω) ≡
∫

dτ K(n)(τ)e−jΩτ = |ν(Ω)|2 (68)

S(p)(Ω) ≡
∫

dτ K(p)(τ)e−jΩτ = µ∗(Ω)ν(Ω). (69)

Now, consider the balanced homodyne measurement system—shown on slide 11–
ˆfor detecting the θ-quadrature of Eout

+45(t). Here we have assumed unity quantum
efficiency photodetectors, and omitted the low-pass filter. From our continuous-time
theory of homodyne detection we know that the photocurrent difference ∆i(t) has
statistics that are equivalent to those of the operator

∆î(t) = 2q

√
PLO ˆRe[Eout (t
ωP/2

+45 )e−jθ]. (70)
~

ˆBecause Eout
+45(t) is in a zero-mean, statistically-stationary Gaussian state, the homo-

dyne measurement will yield a zero-mean, stationary Gaussian random process whose
covariance function is

K∆i∆i(τ) ≡ 〈∆i(t+ τ)∆i(t)〉 (71)

= q2 PLO {δ(τ) +K(n)(τ) +K(n)(−τ) + 2Re[K(p)(τ)e−2jθ]
~ωP/2

}. (72)

The photocurrent-noise spectral density that will be observed using a spectrum ana-
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lyzer at the homodyne system’s output is thus

S∆i∆i(Ω) =

∫
dτ K∆i∆i(τ)e−jΩτ (73)

= q2 PLO
[1 + 2

~ωP/2
|ν(Ω)|2 + 2Re(µ∗(Ω)ν(Ω)e−2jθ)] (74)

= q2 PLO 2

ω
|µ(Ω) + ν(Ω)e−2jθ

~ P/2
| . (75)

ˆWere Eout
+45(t) in a coherent state, this homodyne receiver’s photocurrent-noise spectral

density would be

S LO
∆i∆i |CS = q2 P

(Ω) , (76)
~ωP/2

representing the shot-noise limit of semiclassical theory. The normalized photocurrent-
noise spectral density,

S∆i∆i(Ω)
= |µ(Ω) + ν(Ω)e−2jθ

∆i∆i(Ω) CS

|2, (77)
S |

contains contains phase-sensitive noise that, as shown in the left panel on slide 12,
goes well below the shot-noise level at θ = ±π/2 for Ω = 0. As shown in the right
panel on slide 12, the strongest quadrature-noise squeezing is limited to frequencies
below the cavity linewidth.

The Road Ahead

In the next lecture we shall use the results developed today for SPDC and the OPA
to study additional signatures of nonclassical light that can be obtained from these
nonlinear optical systems. Of particular interest will be Hong-Ou-Mandel interferom-
etry, as it relates to the important notion of distinguishability. We will also connect
our treatment of SPDC with the concept of a biphoton.
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