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Dirac-notation Quantum Mechanics.

Introduction

Last time you were introduced to—teased with, really—three examples of how quan-
tum optical communication has distinctly non-classical features: quadrature noise
squeezing, polarization entanglement, and teleportation. In this lecture, we begin
laying the foundation for understanding all three of these phenomena, and more.
Our task is to present the essentials of Dirac-notation quantum mechanics. No prior
acquaintance with this material is assumed. There are three fundamental notions that
we must establish: state, time evolution of the state, and measurements. The first
two will be completed in this lecture; the last will spill over into Lecture 3. Moreover,
although these three concepts are easily stated, they will be accompanied by a variety
of notational and mathematical details that will comprise most of today’s lecture.

Quantum Systems and Quantum States

Slide 3 defines a quantum system and the state of a quantum system. The first
definition—that of a quantum system—requires no explanation. There are several
points to be made, however, about the definition of the state of a quantum system.
First, let us remember what it means to be the state of a classical system. We’ll do so
by means of two examples from classical physics, one from mechanics, and one from
circuit theory. After that, we’ll review—and perhaps extend—what you know about
vector spaces and linear operations on vectors. Here we will use the Dirac notation,
but we also exhibit two special cases that will help illustrate the points being made.

The State of a Point Mass

The state, at time t0, of an m-kg point mass that is moving in three-dimensional
space under the influence of an applied force is its position, ~r(t0), and its momentum,
p~(t0). The state contains all information about the behavior of the mass prior to time
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t0 that is relevant to predicting its behavior for t > t0. In particular, if the applied
~force, F (t), is known for t0 ≤ t ≤ t1, then ~x(t1) and p~(t1) can be found by solving

dp~(t)

dt
= ~F (t) and m

d~r(t)
= p~(t), for t0 1

t
≤ t ≤ t , (1)

d

subject to the initial conditions that the position and momentum at time t0 be ~x(t0)
and p~(t0), respectively.

The State of an RLC Circuit

Consider the parallel RLC circuit shown in Fig. 1. The state of this circuit at time
t = t0 can be taken to be the charge on its capacitor, Q(t0) = Cv(t0), and the flux
through its inductor, Φ(t0) = LiL(t0).
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Figure 1: The state of this parallel RLC circuit at time t can be taken to be the charge
on its capacitor, Q(t) = Cv(t), and the flux through its inductor, Φ(t) = LiL(t).

To find the state at some later time, we can use Kirchhoff’s current law and
Kirchhoff’s voltage law—plus the v-i relations for the three circuit elements—to show
that

d2v(t)
RLC

dt2
+ L

dv(t)

dt
+Rv(t) = RL

di(t)
, for t

dt
≥ t0, (2)

which can be solved, given i(t) for t0 ≤ t ≤ t1 and the initial conditions

Q(t0)
v(t0) =

C
and

dv(t) i
=

dt

∣∣∣ (t∣ 0)

t=t0
C
− v(t0) Φ(t

RC
− 0)

, (3)
LC

to obtain v(t1) and dv(t)/dt|t=t1 . These, in turn, allow us to find

v(t1)
Q(t1) = Cv(t1) and Φ(t1) = LiL(t1) = Li(t1)− L

R
− LC dv(t)

,
dt

∣∣
(4)

t=t1

proving that knowledge of {Q(t0),Φ(t0)} and {i(t) : t0

∣
≤ t ≤ t1} is sufficie

∣
nt to

determine {Q(t1),Φ(t1)}.
1Because C and L are known constants, it is equivalent to say that v(t0) and iL(t0) comprise the

state at time t0. Alternatively, we can take v(t0) and dv(t)/dt|t=t0 to be the state.
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Vector Spaces

A vector space is a set of elements (vectors), which we’ll denote {|·〉}, and complex
numbers (scalars) with vector addition and scalar multiplication defined and obeying:

• Vector addition is closed . If |x〉 and |y〉 are elements of a vector space, then so
too is |x+ y〉 ≡ |x〉+ |y〉.

• Vector addition is commutative: |x〉+ |y〉 = |y〉+ |x〉.

• Vector addition is associative: (|x〉+ |y〉) + |z〉 = |x〉+ (|y〉+ |z〉).

• There exists an identity element, |0a〉, such that |x〉+ |0a〉 = |x〉.

• There exists an additive inverse element, |–x〉, such that |x〉+ |–x〉 = |0a〉.

• Scalar multiplication is closed . If |x〉 is a vector and c is a scalar, then |cx〉 ≡ c|x〉
is also a vector.

• Scalar multiplication is distributive: (c1+c2)|x〉 = c1|x〉+c2|x〉, and c(|x〉+|y〉) =
c|x〉+ c|y〉.

• There is an identity scalar, 1, such that 1|x〉 = |x〉.

• There is a zero scalar, 0, such that 0|x〉 = |0a〉.
As we progress through this lecture’s general mathematical development, we shall
carry along the two running examples that we now introduce.

Example 1: N-D Real Euclidean Space
The elements of N -D real Euclidean space, RN , are conveniently represented as col-
umn vectors,

x1
x

| 〉 ≡

 2
x = x  ..


.
xN

 , (5)

where the {xn} and the scalars are real numbers. That the preceding vector space
properties are satisfied by RN should be familiar to you from your linear algebra
prerequisite for 6.453.

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ]
The complex-valued, square-integrable time functions, |x〉 = {x(t) : 0 ≤ t ≤ T}, form
a vector space L2[0, T ]. Here, by square-integrable, we mean that∫ T

dt x(t) 2 < . (6)
0

| | ∞

You should verify that L2[0, T ] has the properties we have listed for a vector space.
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Inner Product Spaces

An inner product space is a vector space on which an inner product (dot product) is
defined. If |x〉 and |y〉 are elements of an inner product space, their inner product,
denoted 〈x|y〉 is a complex number. In Dirac terminology, |x〉 is a ket vector, and
〈x|, which is the adjoint of this ket, is called a bra vector. The bra 〈x| and the ket
|y〉 then form a bra-ket, which is the inner product 〈x|y〉 of the vectors |x〉 and |y〉.
Inner products have the following properties.

• Inner products are conjugate symmetric: 〈x|y〉 = 〈y|x〉∗.

• If c1 and c2 are complex numbers and |c1x + c2y〉 = c1|x〉 + c2|y〉, then 〈c1x +
c2y|z〉 = c∗1〈x|z〉+ c∗2〈y|z〉.

• The length of a vector |x〉, given by ‖x‖ ≡
√
〈x|x〉, is non-negative and equals

zero if and only if |x〉 = |0a〉.

• Inner products satisfy the Schwarz inequality,

|〈x|y〉| ≤
√
〈x|x〉〈y|y〉, (7)

where equality occurs if and only if |x〉 = c|y〉 for some scalar c.

• Inner products satisfy the triangle inequality,

‖x+ y‖ ≤ ‖x‖+ ‖y‖, (8)

where equality occurs if and only |x〉 = c|y〉 for some non-negative scalar c.

These properties can be illustrated by our two running examples as follows.

Example 1: N-D Real Euclidean Space
The bra vector associated with (5) is its transpose2

〈x| = xT ≡
[
x1 x2 · · · xN , (9)

and the inner product between

]
|x〉 and |y〉 in RN is

N

〈x|y〉 = xTy ≡
∑

xnyn. (10)
n=1

This inner product example and its properties should be familiar from your linear
algebra background.

2If we had used complex scalars, instead of real scalars, for the elements of x, then its adjoint
would have been the conjugate transpose.

4



Example 2: Complex-valued, Square-integrable Time Functions on [0, T ]
The bra vector associated with |x〉 = {x(t) : 0 ≤ t ≤ T} is 〈x| = {x∗(t) : 0 ≤ t ≤ T},
and the inner product for x(t) and y(t) in L2[0, T ] is

〈x|y〉 ≡
∫ T

dt x∗(t)y(t). (11)
0

You should verify that this definition satisfies the properties we have listed for an
inner product. Moreover, the Schwarz inequality,∣∣∫ 2∣ T T T∣ dt x∗(t)y(t)

∣
≤
∫

dt |x(t) , (12)
0

|2
0

∫
dt

0

|y(t)|2

with equality if and only if x(t) = cy

∣∣∣
(t), should be familiar from your linear systems

class.

Hilbert Spaces

A Hilbert space is a complete inner product space. An inner product space is complete
if every Cauchy sequence converges. Let {|xn〉 : 1 ≤ n <∞} be a sequence of vectors.
This sequence is a Cauchy sequence if and only if for every δ > 0 there is an N such
that

‖xn − xm‖ =
√
〈xn − xm|xn − xm〉 < δ for all n,m > N . (13)

The sequence {|xn〉 : 1 ≤ n < ∞} converges if and only if there is a vector |x〉 such
that for every δ > 0 there is an N such that

‖xn − x‖ =
√
〈xn − x|xn − x〉 < δ for all n > N . (14)

All convergent sequences are Cauchy, but the converse need not be true. For ex-
ample, consider the set of rational numbers, {x = p/q : p, q = integers}. A Cauchy
sequence of rational numbers may converge to an irrational number, hence the set of
rational numbers is not complete. Both of our running examples, RN and L2[0, T ],
are complete, and hence their inner product spaces are Hilbert spaces.

Time Evolution

Slide 4 gives the first of our three axioms for quantum mechanics: it specifies how
the state of an isolated quantum system—one that does not interact with an external
environment—evolves in time. There, we have stated equivalent formulations for
this evolution, one based on a unitary operator and the other based directly on the
Schrödinger equation. To establish comfort with the former, let’s review some theory
for linear operators on vector spaces.
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Linear Operators

Let H be the Hilbert space of states for some quantum systemS S. An operator,
T̂ , that maps H intoS H has the property that for every x there is someS S
| 〉 ∈ H | 〉 ˆ| ˆ

| 〉 ∈ H
y such that y = T x〉. The operator T is a linear operator if it obeys theS

superposition principle, i.e.,

ˆ ˆ ˆT (c1|x〉+ c2|y〉) = c1(T |x〉) + c2(T |y〉). (15)

ˆ ˆAt this juncture it is worthwhile to define the adjoint , T †, of a linear operator of T .
The adjoint operator obeys

〈y| ˆ(T |x〉) = [〈x| ˆ(T †|y〉)]∗, for all |x〉, |y〉. (16)

Once more, it is worth examining these properties in the context of our two running
examples.

Example 1: N-D Real Euclidean Space
ˆA linear operator, T , that maps RN into RN is an N ×N matrix of real numbers T11 T12 · · · T1N

T = T ≡  T21 T
ˆ 22 · · · T2N . . . . , (17). . . .


. . . .

TN1 TN2 · · · TNN


and y = |y〉 ˆ= T |x〉 = Tx is found by matrix-vector multiplication,

N

yn =
∑

Tnmxm. (18)
m=1

ˆ ˆIt is now easy to see that the adjoint operator, T †, associated with T is the transpose
of the T matrix, viz.,  T11 T21 · · · TN1

T
T̂ † = TT ≡ 12 T22 · ·

.
· TN2

. . .. . . .


 . (19)

. . . .
T1N T2N · · · TNN


Example 2: Complex-valued, Square-integrable Time Functions


on [0, T ]

ˆA linear operator, T that maps L2[0, T ] into L2[0, T ] is a complex-valued function of
two time variables, T (t, u), and |y〉 ˆ= T |x〉 is found from the superposition integral,

T

y(t) =

∫
duT (t, u)x(u). (20)

0
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Here, in order to ensure that y(t) is square integrable, T (t, u) must satisfy a regularity
condition, e.g., ∫ T

dt

∫ T

du |T (t, u)
0 0

|2 <∞. (21)

ˆThe adjoint operator, T † ˆ ˆ, associated with T = T (t, u) is T † = T ∗(u, t), i.e.,

T̂ †|y〉 =

∫ T

duT ∗(u, t)y(u). (22)
0

In our development and application of Dirac-notation quantum mechanics we will
need to know about some special classes of linear operators.

• ˆ ˆA linear operator is said to be Hermitian, i.e., self-adjoint, if it satisfies T † = T .

• ˆ ˆThe identity operator, I, has the property that I|x〉 = |x〉 for all |x〉.

• ˆ ˆ ˆ ˆ ˆ ˆThe inverse of a linear operator, denoted T−1, is such that T−1T = TT−1 = I.
BUT, not all linear operators have inverses.

• ˆ ˆA linear operator U is unitary if U−1 ˆ= U †. Unitary operators have the property
that they preserve lengths:

‖ ˆ | 〉‖2 〈 | ˆ † ˆ ˆU x = ( x U )(U |x〉) = 〈x|(U †Û)|x〉 ˆ= 〈x|I|x〉 = 〈x|x〉 = ‖x‖2. (23)

You can make yourself comfortable with the manipulations performed in these
equations by comparing them with the corresponding results for the vector space
RN :

‖Ux‖2 = (Ux)T (Ux) = xTUTUx = xT Ix = xTx = ‖x‖2. (24)

Unitary operators also preserve inner products, i.e.,

ˆ(U |x〉)† ˆ(U |y〉) = 〈 ˆx|(U †Û)|y〉 = 〈x|y〉 for all |x〉, |y〉. (25)

The physical importance of unitary operators in Axiom 1 should now be apparent.
A ket that represents a finite-energy state of a quantum system at time t0 has unit
length. If that system is isolated—so that its evolution is unitary—then its state at
some later time t1 will also have unit length. Mathematically, a unitary operation
is a rotation of coordinates, perhaps augmented by inverting some of the axes. You
should check that in R2 the operator

U =

[
cos(θ) sin(θ)

]
, (26)− sin(θ) cos(θ)

is both unitary—so that UTU = UUT = I, where I is the 2×2 identity matrix—and
a rotation of coordinates by θ.
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Observables and Quantum Measurements

Slide 5 presents the second and third of our three axioms for quantum mechanics. An
observable, i.e., a measurable dynamical variable of a quantum system, is represented
by an Hermitian operator with a complete set of eigenkets. For our classical point
mass, observables would include the position and momentum vectors and the energy.
For our classical RLC circuit, observables would include all the voltages and currents
in the circuit, as well as the the energies stored in the inductor and the capacitor.
Before we are ready to make use of these axioms, we should review eigenkets and
eigenvalues, both in a general setting and for our two running examples.

Eigenkets and Eigenvalues

ˆ ˆLet O be an observable. Because O is Hermitian, it has eigenkets {|o〉} and associated
eigenvalues {o} that obey

Ô|o〉 = o|o〉, (27)

i.e., applying the operator to one of its eigenkets results in scalar multiplication—by
the associated eigenvalue—of that eigenket. It is conventional to label eigenkets by
their associated eigenvalues.

Example 1: N-D Real Euclidean Space
For the vector space RN , this eigenket-eigenvalue relation becomes

Oo = oo, (28)

which can be rearranged to read

(O− oI)o = 0, where I is the identity matrix, and 0 is the zero vector. (29)

Thus, for there to be a non-trivial, o 6= 0, solution, then o must satisfy the charac-
teristic equation

det(O− oI) = 0. (30)

For O a real, symmetric matrix, there are N real roots to this equation, although
some may be degenerate. Once the eigenvalues have been determined, the eigenkets
are found by using those values in the eigenket-eigenvalue relation.

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ]
For the vector space L2[0, T ], the eigenket-eigenvalue relation is the Fredholm integral
equation ∫ T

duO(t, u)o(u) = oo(t), for 0 ≤ t ≤ T . (31)
0

The identity operator for L2[0, T ] is the impulse (Dirac delta) function, δ(t − u),
because ∫ T

du δ(t− u)x(u) = x(t), for 0
0

≤ t ≤ T . (32)
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Here are some fundamental properties of the eigenkets and eigenvalues of Hermi-
tian operators that we shall need and which you will explore on Problem Set 1.

• The eigenvalues are real valued.

• The eigenkets associated with distinct eigenvalues are orthogonal, i.e., if o and
o′ ˆare distinct eigenvalues of O, then their associated eigenkets satisfy 〈o|o′〉 = 0.

• Eigenkets can be normalized to have unit length, i.e., we can assume that 〈o|o〉 =
1.

• If there are M linearly independent eigenkets that have the same eigenvalue,
then these can be converted into M orthonormal eigenkets that have this eigen-
value.

Outer Product Notation and its Uses

Suppose that |x〉 and |y〉 are kets in a Hilbert space H . Then it should be self-S
evident that the outer product, |x〉〈y|, is a linear operator that maps H intoS H . InS
particular, for any |w〉, |z〉 ∈ H and |c1w + c z c w + c z we have thatS 2 〉 ≡ 1| 〉 2| 〉

(|x〉〈y|)|c1w + c2z〉 = |x〉(c1〈y|w〉+ c2〈y|z〉), (33)

where 〈y|w〉 and 〈y|z〉 are scalars.
ˆOuter products give us some very useful operator representations. For O an

observable with a discrete (or even countable) set of orthonormal eigenkets {|on〉}
and associated eigenvalues {on}, we have that

Ô =
∑

on
n

|on〉〈on|, (34)

as you will show on Problem Set 1. If the eigenkets are complete, then any |x〉 ∈ HS
can be represented as a linear combination of these eigenkets:

|x〉 =
∑

xn|on〉, (35)
n

where the coefficients {xn}, depend on |x〉. Because the eigenkets have been taken
to be orthonormal, we have that these coefficients can be found from projection onto
the eigenkets:

xn = 〈on|x〉. (36)

It then follows that the eigenkets resolve the identity operator in the sense that

Î =
∑
n

|on〉〈on|, (37)
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which is something that you will also prove on Problem Set 1. As usual, it’s worth
grounding our abstract notions by referring them to the running examples of RN and
L2[0, T ].

Example 1: N-D Real Euclidean Space
The standard orthonormal basis for RN is {1n : 1 ≤ n ≤ N}, where 1n has its nth
element equal to unity and all others equal to zero. Then, it should be clear that

x ≡
 x1 x2 . has x. n = 1Tnx, (38)

.
xN


and the N


×N identity matrix satisfies

N

I = 1n1
T
n . (39)

n=1

Furthermore, if U is any real-valued, N

∑
×N unitary matrix, then

en ≡ U1n for 1 ≤ n ≤ N, (40)

defines another orthonormal basis for RN .

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ]
The complex sinusoids comprise an orthonormal basis for L2[0, T ], viz.,

ej2πnt/T
φn(t) ≡ √ for −∞ < n <

T
∞ (41)

satisfy ∫ T 1, for n = m
dt φ∗n(t)φm(t) = δnm

0

≡

{
(42)

0, for n 6= m,

and any x(t) ∈ L2[0, T ] can be represented in the Fourier series

∞

x(t) =
n

∑ ej2πnt/T
xn

=−∞

√ , for 0
T

≤ t ≤ T , (43)

where

xn =

∫ T 1
dt φ∗n(t)x(t) =

0

√
T

dt x(t)e−j2πnt/T . (44)
T 0

We also have that the identity operator for

∫
L2[0, T ] has the following series represen-

tation:
∞ ∞

e−j2πn(t−u)/T
δ(t− u) = φn

∗ (t)φn u) =
n

∑
(

=−∞ n

∑
=−∞

T
, for 0 ≤ t, u ≤ T . (45)
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Measurement Statistics

Axioms 3 and 3a point to an essential way in which quantum mechanics diverges
from classical physics. When a measurement is made on a classical system whose
state is known, then there is no limit to the precision of that measurement, i.e., there
is no fundamental requirement that classical measurements be noisy.3 Such is not the
case in quantum mechanics. Even if the state of the system is known, the outcome of
measuring an observable is, in general, a random variable. The state of the system and
the observable that has been chosen for measurement determine the statistics of the
resulting outcome according to the prescription given on Slides 5 and 6, for the cases of
countable and uncountable eigenvalues, respectively. In both cases, the measurement
outcome will be one of the eigenvalues, and the measurement statistics are obtained
by projection of the state onto the associated eigenkets. Because calculating and
manipulating the statistics of quantum measurements are so important to what we
will cover this semester, we need to take the time now to pin down the fundamental
ideas.

ˆConsider an observable O with distinct, discrete eigenvalues {on}. The associated
orthonormal eigenkets, {|on〉}, obey

〈on|om〉 = δnm. (46)

If we measure this observable when the system is in state |ψ〉, then Axiom 3 states
that the outcome on will occur with the following probability

Pr(on) = |〈on|ψ〉|2, (47)

Let’s see that this axiom is consistent with probability theory, which holds that
probabilities must lie between 0 and 1, and that summing the probabilities of all
possible disjoint outcomes must equal 1. That the probabilities in (47) are non-
negative follows immediately from its right-hand side being the squared magnitude of
an inner product. That these probabilities do not exceed 1 follows from the Schwarz
inequality,

|〈on|ψ〉|2 ≤ 〈on|on〉〈ψ|ψ〉, (48)

and |on〉, |ψ〉 both having unit length. To show that the total probability is 1, we
argue as follows:

∑
Pr(on) =

∑
|〈o 〉|2n|ψ = ψ

n n

∑
n

〈 |on〉〈on|ψ〉 = 〈ψ|

(∑
n

|on〉〈on|

)
|ψ〉 (49)

= 〈 ˆψ|I|ψ〉 = 〈ψ|ψ〉 = 1. (50)

3Here we are neglecting the classical thermal noise associated with the statistical mechanics of
equilibrium at an absolute temperature greater than 0 K.
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The situation is more complicated for observables that have a continuum of eigen-
values.4 ˆTo see what is involved, let O be an observable whose eigenvalues are
{o : −∞ < o < ∞} and non-degenerate. The eigenket-eigenvalue relation now
leads to infinite-length eigenkets that satisfy the orthonormality relation

〈o|o′〉 = δ(o− o′ ), (51)

from which it follows that

Ô =

∫ ∞
do o|o〉〈o|, (52)

−∞

and

Î =

∫ ∞
do |o〉〈o|, (53)

−∞

so that for any |x〉 ∈ H we getS

|x〉 =

∫ ∞
do x(o)|o〉, with x(o) ≡ 〈o|x〉. (54)

−∞

According to Axiom 3a, when we measure this observable, with the system being in
state |ψ〉, the probability density for getting the value o is

p(o) = |〈o|ψ〉|2, for −∞ < o <∞. (55)

To check that this probability density specification is consistent with classical prob-
ability theory, we note that p(o) ≥ 0 and∫ ∞

do p(o) =

∫ ∞
do |〈o|ψ〉|2 =

∫ ∞
do 〈ψ|o〉〈o|ψ〉 (56)

−∞ −∞( −∞∫ ∞
| ˆ= 〈ψ do o〉〈o|

)
|ψ〉 = 〈ψ|I|ψ〉 = 〈ψ|ψ〉 = 1, (57)

−∞

and consistency is proven.
A few final comments and we will be done for today. First, we note that if—and

only if—the quantum state is an eigenket of the observable that is measured do we
get a non-random outcome. in particular, for an observable with discrete eigenvalues,
if |ψ〉 = |om〉, then Axiom 3 shows that

Pr(o 2
n) = |〈on|ψ〉| = |〈on|om〉|2 = |δnm|2 = δnm. (58)

Now, because the eigenkets of an observable whose eigenvalues form a continuum are
of infinite length, it is impossible to avoid randomness when this observable is mea-
sured and the state of the system has finite energy. Finally, we point to the Projection

4Examples include position and momentum, and, as we will see in considerable depth later, the
quadrature components of the electromagnetic field.
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Postulate, which appears on Slide 6. This postulate, which provides the means for
studying what happens to a quantum system after a measurement has been made,
is found in standard introductions to quantum mechanics. However, it will not play
a strong role in our work, because we will be concerned with photodetection mea-
surements, which are invariably annihilative, i.e., the photons—which comprised the
quantized light field that was measured—get destroyed in the measurement process.
Nevertheless, the Projection Postulate is worth citing because—for those quantum
systems and measurements to which it applies—it makes clear why we cannot use
repeated measurements to circumvent the fundamental randomness inherent in Ax-
ioms 3 and 3a.

The Road Ahead

Believe it or not, you have now seen almost all of the foundations of quantum me-
chanics that we will need for the entire semester. Next lecture we complete this
foundational work by: continuing our work on quantum measurements; converting
the Schrödinger picture of quantum mechanics—which is what we have been doing
so far—into the equivalent (but more convenient for quantum optics) Heisenberg pic-
ture; and deriving the Heisenberg uncertainty principle. After that, we will be ready
to tackle the quantum harmonic oscillator, which we will later learn can represent a
single mode of the electromagnetic field.
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