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Subject Organization

Welcome to 6.453, Quantum Optical Communication. It is one of a collection of MIT
classes that deals with aspects of an emerging field known as quantum information
science. As you can divine from its title, 6.453 is about quantum communication,
rather than quantum computation, although both of these topics fall under the general
rubric of quantum information science. Moreover, 6.453 is far from being an entirely
abstract presentation of quantum communication, although such a development is
indeed possible, but is instead intimately tied to quantum optics. Finally, 6.453 does
not presume a deep background in quantum mechanics or optics, such as would be
obtained from one or more semesters of study in the Physics Department, but instead
teaches all the basic quantum mechanics that is needed and does not require any
electromagnetics knowledge beyond the plane-wave solutions to Maxwell’s equations
in a source-free region of empty space.

The preceding paragraph characterizes 6.453 as an outgrowth of quantum op-
tics, i.e., the marriage of quantum mechanics and optics. An alternative, and more
informative, way to look at 6.453 is as an outgrowth of communications and espe-
cially communication theory . This should be clear from its prerequisites being 6.011
and 18.06, which indicate that 6.453 will build on knowledge of signals and systems,
probability, and linear algebra. In particular, we will rely on Fourier transforms,
convolutions, probability mass functions, probability density functions, mean values,
variances, vectors, matrices, eigenvalues, and eigenvectors. These topics will not be
reviewed in the lectures. Instead, they will be probed on Problem Set 1. The sup-
plementary reading for this problem set may help you review, but it is probably
better—and easier—if you refer to the course materials you have from wherever and
whenever you learned basic signals and systems, probability, and linear algebra.

There is no required text for 6.453. Lecture-by-lecture notes will be provided,
along with suggestions for supplementary reading. There will also be some notes
distributed, e.g., the probability theory notes being given out today.

There will be eight problem sets, assigned during the first eight weeks of the
term. These will be graded and solutions will be distributed. Most, but not all, of
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these problems will be identical to ones assigned in previous offerings of 6.453. It
is expected, however, that any homework you submit represents your work. Thus,
while it is permissible to discuss the problems with other students in the class, your
homework submissions must be your own, and not a team effort or work copied from
another student. Likewise, seeking out and making use of the problem set solutions
that were distributed in previous years is expressly forbidden.

Grading in 6.453 will be based on the problem sets, the mid-term quiz, and the
term papers. Guidelines for term papers will be provided, and you will be required
to submit a one paragraph proposal. To ensure that you have decided on a topic
far enough in advance to leave time to prepare your term paper, these proposals
will be due the day of the mid-term quiz. Furthermore, it should be noted that
term papers are not expected to represent original research, but instead present an
understanding and appreciation for the technical literature on the topic that was
selected. Finally, to ensure that your term paper constitutes a broadening educational
experience associated with 6.453, it is not appropriate to use background reading from
your thesis, or some other research project in which you are already engaged, as the
topic for your 6.453 term paper.

In addition to the lecture notes, each lecture will be accompanied by a set of
slides that will be distributed at the start of that class. The notes and the slides are
not sufficient to substitute for lecture attendance, but instead are meant to simplify
note taking during class. Course materials—lecture notes, slides, problem sets, and
problem set solutions—will be available

Technical Overview

The rest of today’s lecture will be devoted to placing 6.453 in its proper context,
i.e., by showing where classical and quantum physics part company in the context
of optical communications. In particular, without giving you sufficient details to un-
derstand how and why these things can be accomplished—after all that’s what this
entire semester-long class will be about—we will highlight three purely quantum phe-
nomena of relevance to quantum optical communication: quadrature noise squeezing,
polarization entanglement, and teleportation.

Quadrature Noise Squeezing

Let’s start with the simplistic semiclassical description of optical homodyne detec-
tion, shown on Slide 3. Semiclassical photodetection refers to the theory of light
detection in which the electromagnetic field is described via classical physics, and
the fundamental noise that limits the sensitivity with which weak light fields can be
measured is the shot noise associated with the discreteness (quantum nature) of the
electron charge. As shown on Slide 3, a weak signal field, represented as a single-
frequency signal with complex amplitude as and carrier frequency ω is combined—at
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a lossless 50/50 beam splitter—with a strong single-frequency local-oscillator field
with complex amplitude aLO, where |aLO|2 � |as|2, of the same carrier frequency.
Here we have ignored the electromagnetic polarization and spatial characteristics of
these fields, to keep the notation as simple as possible, although such considerations
figure very strongly into physical implementations of optical homodyne detection.

A lossless 50/50 beam splitter can be thought of as a partly-silvered mirror—
although the ones in use are usually dielectric mirrors—that transmits half the optical
energy incident on either of its input ports and reflects the other half. For our single-
frequency waves, we can regard |a |2s and |a 2

LO| as the energies arriving at the two
input ports. The resulting complex amplitudes at the output ports, a+ and a , can−
then be taken to satisfy

as LO
a =

± a
± √ . (1)
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It is left as an exercise for you to verify that this input-output relation conserves
energy, viz.,

|a+|2 + |a−|2 = |as|2 + |aLO|2, (2)

for arbitrary values of as and aLO, as must be the case because the beam splitter is
passive as well as lossless.

The fields emerging from the beam splitter’s output ports illuminate a pair of
photodetectors, resulting in output currents i (t) that are subsequently combined in±
a gain-K differential amplifier to obtain

K∆i(t) ≡ K[i+(t)− i (t)]. (3)−

This photodetection arrangement is called balanced homodyne detection, where bal-
anced denotes taking the differential output from two photodetectors, and homodyne
arises from each photodetector being a low-pass square-law device so that its output
current is the baseband beat between the identical-carrier-frequency signal and local
oscillator fields.

To make life notationally simple—albeit at odds with what we will see later in
the semester—Slide 3 states that the photocurrents i (t) are statistically independent±
Poisson random variables with mean values |a±|2, respectively.1 Recall that a Poisson
random variable N with mean m has the probability mass function,

mne−m
PN(n) = , for n = 0, 1, 2, . . . , (4)

n!

so that its mean value2 〈N〉 = m coincides with its variance var(N) = m, where

var(N) ≡ 〈(∆N)2〉, with ∆N ≡ N − 〈N〉. (5)

1Really, Slide 3 should have said that q−1 dt i (t), where q is the electron charge, are statistically±
independent Poisson random variables with those mean values.

2We use angle brackets to denote the ensem

∫
ble average of a classical random variable, which is a

convenient choice because the same notation will serve us later for the ensemble-averaged outcome
of a quantum measurement.
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Thus the signal-to-noise ratio (SNR) in the Poisson random variable—defined to
be the square of its mean value divided by its variance (mean-squared fluctuation
strength in that random variable) is

SNR =
〈N〉2

= m = .
(∆N)2

〈N〉 (6)
〈 〉

Applying these Poisson random variable results to the semiclassical balanced homo-
dyne detection setup on Slide 3, we get

4[Re(a 2
sa
∗

= LO)]
SNRbalanced homodyne 4

aLO
|

|2
≤ |a 2

| s , (7)

with equality if and only if as and aLO are in phase, and the derivation being left as
another exercise for the reader.

As an application of the preceding balanced homodyne detection scheme, turn now
to Slide 4. Here we have a fused fiber coupler with inputs—single-frequency fields with
their electromagnetic polarizations, spatial mode characteristics, and common carrier
frequencies suppressed—denoted asin and atin , indicating signal and tap inputs, and
similarly denoted outputs asout and atout . In a benign setting, asin is a signal-bearing
field in a fiber-optic communication network and atin = 0. The fused-fiber coupler is
a lossless asymmetric beam splitter, so that

asout =
√
T asin +

√
1− T atin and atout =

√
1− T asin −

√
T atin , (8)

where the transmissivity T satisfies 0 < T < 1. (The reader should check that this
transformation—like its 50/50 special case, T = 1/2—conserves energy.) Balanced
homodyne detection is performed on the signal and tap output ports, so that two
receivers can each view the information that is carried by the input signal asin . For
reference, we note that had balanced homodyne detection been performed on the
signal input then the resulting signal-to-noise ratio would have been3

SNRin = 4|asin|2. (9)

It is easily shown that the SNRs at the signal and tap output ports are

SNRout = 4T |asin|2 and SNRtap = 4(1− T )|asin |2, (10)

respectively. These are intuitively pleasing results. The SNR of balanced homodyne
detection equals four times the signal energy that is incident on the detector, and the
lossless, passive, fused fiber coupler—with no input applied to its tap-input port—
divides the incoming signal energy between the signal output and tap output ports,
hence

SNRout + SNRtap = SNRin. (11)

3Here, and in the tap calculations that follow, we will assume that the local-oscillator phase has
been chosen to match that of the field undergoing homodyne detection.
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The noise in balanced homodyne detection is shot noise associated with the discrete
nature of the electron charge and the internal workings of the two photodetectors. So,
how could anything other than Eq. (11) occur? The answer, of course, is quantum
mechanics!

The left-hand side of Slide 5 shows the simplistic quantum treatment of bal-
anced homodyne detection. Now, the complex amplitudes are replaced by quantum-
mechanical operators—denoted by carets—whose associated quantum states deter-
mine the measurement statistics that will be obtained. With the signal and local
oscillator quantum states coming from laser light—something we will learn about
as coherent states—the homodyne SNR is still given by 4|asin |2 at the input to the
fused fiber coupler. Now however, because quantum photodetection holds that the
noise seen in high-sensitivity photodetection is due to the quantum state of the il-
luminating field, and not to any shot effect associated with the discreteness of the
electron charge, it is possible to choose an input quantum state for the tap such that
both the signal and tap outputs achieve homodyne SNRs that approach 4|a 2

sin | for
all 0 < T < 1. Evidently, with the right quantum “magic,” which in this case we will
see is quadrature noise squeezing, we can have our SNR cake and eat it too!

Here is a quick once over on how the preceding—and astounding—SNR results are
obtained. First, we need to pin the down the inputs used for the signal and tap fields
and for the local oscillators in the balanced homodyne detectors. The operator-valued
input-output relation for the fused-fiber coupler is

âsout =
√
T âsin +

√
1− T âtin and âtout =

√
1− T âsin −

√
T âtin . (12)

A laser light (coherent-state) input to the coupler has

〈âsin〉 = asin and var[Re(âsin)] = var[Im(âsin)] = 1/4, (13)

where, for convenience, we will take asin = |asin| to be positive real. To get the non-
classical tap performance, we then use a squeezed-vacuum state for the tap input, for
which 〈âtin〉 = 0, and

var[Re(âtin)] = s/4 and var[Im(âtin)] = 1/4s, (14)

with 0 < s < 1, and we use strong coherent-state local oscillators (in the balanced
homodyne detectors) with 〈âLO〉 = aLO that is positive real.

The real and imaginary parts of a field operator correspond to the quadrature com-
ponents of the carrier-frequency ω field. Thus a coherent state has equal fluctuation
strengths in its two quadratures, whose variance product, as we will learn, satisfies the
Heisenberg uncertainty principle with equality.4 The noise in the squeezed-vacuum

4The vacuum state is the zero-mean coherent state—which is the quantum version of a field’s
being “zero”—so it too is an equal fluctuation strength minimum uncertainty state.
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state, however, has unequal fluctuation strengths in its two quadratures, while main-
taining a Heisenberg-limited uncertainty product.5 Using these results, in conjunction
with quantum photodetection theory, gives us

T 2

SNRout
|as

= in
|

4
T/4 + (1 T )s/4

≈ |asin |2, (15)
−

(1
SNRtap =

− T )|asin |2 4
(1 T )/4 + Ts/4

≈ |asin |2, (16)
−

where the approximations are valid when s is small enough that the second term in
each noise denominator can be neglected. Physically, quantum photodetection tells
us that the noise seen in the two balanced homodyne detectors is quantum noise
from the real-part quadrature of their illuminating fields. When we “squeeze” that
quadrature hard enough at the tap input port, we can make both the signal and
tap output noises in their real-part quadratures be dominated by their signal light
contributions. This, in turn, is why their SNRs can both approximate the input SNR.

The preceding development was cast in terms of a benign scenario for a fiber-optic
communication network. It could also be applied to a less benign situation, in which
an unauthorized person—the nefarious eavesdropper “Eve”—uses a T � 1 tap to
surreptitiously listen in on the information being carried by the signal light. Later
this term, when we study quadrature noise squeezing in detail, you will see that this
attack is less threatening then it might now appear.

Polarization Entanglement

The shot noise theory (semiclassical photodetection) that proved inadequate to ex-
plain quadrature noise squeezing—and the low-loss waveguide tap—comes from clas-
sical electromagnetism and the discreteness of the electron charge. Perhaps we can
break through the limitation of semiclassical photodetection if we start considering
photons as classical entities, i.e., they behave in many ways like classical particles, but
they also possess some wave-like properties. As we will now show, this semiquantum
view also fails to explain fully quantum behavior.

Consider a monochromatic +z-going photon of frequency ω. Aside from an ab-
solute phase factor, such a photon is completely characterized by its electromagnetic
polarization state. In terms of electromagnetic wave theory, this refers to the locus
of points traced out by the tip of the electric field vector, as a function of time, at
an arbitrary point in a constant-z plane. Horizontal (H) polarization means that
the electric field oscillates back and forth along the x axis. Likewise, vertical (V )
polarization means that the electric field oscillates back and forth along the y axis.
Right circular (RC) polarization is when the electric field performs clockwise circular
motion in a right-handed x-y plane, and left circular (LC) polarization is when that

5Hence s is called the squeeze parameter.
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circular motion is counterclockwise.6 In general, of course, this photon may have
elliptical polarization.

One convenient explicit representation for the polarization of our single photon is
in terms of a complex-valued, unit-length,[ 2D column vector

αx
i ≡

αy

]
, (17)

whose elements are[the projections] of i onto the x and y axes. The conjugate transpose
of i, denoted i† = αx

∗ αy
∗ , gives us the unit-length condition in the form

i†i = |αx|2 + |αy|2 = 1, (18)

and the locus of points traced out by the electric field over time is specified by

Re(ie−jωt) = Re[(α ~xix + α ~i j
y y)e

− ωt]. (19)

So, for example, we see that

1 0
i =

[ ]
= H polarization and i =

[ ]
= V polarization. (20)

0 1

Similarly, we have that

i =

[
1/
√

2

j/
√

2

]
= RC polarization and i =

[
1/
√

2

−j/
√ =

2

]
LC polarization. (21)

Although some polarization-related calculations are easiest done in terms of the
complex-valued 2D unit vector i, for others it is preferable to use an equivalent po-
larization representation in terms of a real-valued 3D unit vector r.7 The resulting
representation is called the Poincaré sphere, and it is shown on Slide 6.

In terms of the Cartesian components, αx and αy, of the complex-valued unit
vector i, we define the real-valued unit vector r as follows:

2Re(

r =


α∗ xαy) 2Im(αx
∗αy)


(22)

|αx|2 − | y|2

 .
α

6Here, we have taken the convention that a right-handed x-y plane is one in which ~iz =~ix
~

×~iy,

with ik being the unit vector in the k direction, goes into the x-y plane.
7Because i is a complex-valued 2D vector, it might seem that 4 independent real numbers are

required for its specification. However, only 2 independent real numbers are really needed. The unit-
length constraint implies that at most 3 real numbers are needed to specify i. Furthermore, because
only the relative phase between αx and αy is physically significant, insofar as the polarization state
is concerned, we can assume the αx = |αx| without loss of generality, so that 2 independent real
numbers suffice. The same behavior is evident in the vector r. Its construction depends on the
relative phase between αx and αy, not on their absolute phases. Moreover, with the unit-length
constraint on r, we see that it is determined by 2 independent real numbers, just as we saw for i.
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classical
photon

wave
plates

Figure 1: Setup for doing polarization analysis of a classical photon. PBS denotes a
polarizing beam splitter, and Nrm and N−rm are the photon counts for the rm ↔ im
and −rm ↔ i′m polarization basis.

On the Problem Sets 2 and 3 you will explore some of the properties of this polar-
ization representation, including verifying that the polarizations identified on Slide 6
are correct, and showing that the i and r representations are equivalent. For now, let
us inject some wave-particle duality into our treatment of classical photons. We will
do this by showing how one does polarization analysis for a single photon. In what
follows we will use the i and r polarization representations interchangeably, choosing
whichever one is most convenient for the argument at hand.

An idealized setup for the aforementioned polarization analysis is shown in Fig. 1.
Here, we will measure the polarization state of a +z-going classical photon in the
{im, i′m} basis, where

im ≡

[
αmx

αmy

]
and i′m ≡

[
−αm∗ y

, (23)
αm
∗

x

]
for any |αmx|2 + |αmy |2 = 1. Because i†mi

′
m = 0, any polarization vector can be

expressed as a linear combination of im and i′m.
The wave plates in Fig. 1—see Problem Set 2 for details—are chosen to effect the

polarization transformation that turns im and i′m into

ix ≡

[
1

0

]
and iy ≡

[
0

1

]
, (24)

respectively. The polarizing beam splitter (PBS) transmits horizontal (x) polarization
and reflects vertical (y) polarization, so that the single-photon counters, whose out-
puts are Nrm and N−rm , respectively will tell us whether the incoming classical photon
was transmitted (Nrm = 1 and N−rm = 0) or reflected (Nrm = 0 and N−rm = 1) by
the PBS.
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Here is where the wave-particle duality comes to the fore. If the +z-going classical
photon was im polarized, then it will be transformed into ix polarization by the
wave plates, after which it will be transmitted by the PBS and registered as a count
Nrm = 1. If the +z-going classical photon was i′m polarized, then it will be transformed
into iy polarization by the wave plates, after which it will be reflected by the PBS
and registered as a count N rm = 1. What happens, however, if the +z-going photon−
was in a superposition of the im and i′m polarizations with non-zero projections along
both of those axes? The wave-like nature of the classical photon implies that the
wave plates—which are linear devices—will transform those im and i′m components of
the +z-going classical photon into ix and iy components, respectively. The PBS then
transmits the ix component and reflects the iy component—again wave-like behavior
of a linear device—but there is still only one classical photon in the system, and hence
only one of the single-photon counters can register a count, i.e., either Nrm = 1 and
N rm = 0 will occur or N− rm = 0 and N−rm = 1 will occur, and the probabilities of
these events are

1± rTmrPr(N 1 and N∓ m = 0) =±rm = r , (25)
2

where r ↔ i is the polarization of the +z-going classical photon at the input to the
polarization analysis setup. Note that the proper interpretation for this probability
distribution is as follows. The +z-going photon that entered the polarization analysis
setup was i↔ r polarized. The Fig. 1 setup was arranged to measure the ±rm basis,
hence its photon-count output tells us whether the incoming photon was counted in
the rm or the −rm polarization. Getting Nrm = 1 is not equivalent to saying that the
+z-going photon entered the Fig. 1 setup in the rm polarization. All it says it that
photon did not enter that Fig. 1 apparatus in the −rm polarization.

So far so good, we have wave-particle duality contained within our classical-photon
picture. Let’s see what happens when two photons are involved. Suppose we have a
source that produces a pair of completely correlated, yet randomly polarized, classical
photons. In particular this source simultaneously emits a +z-going photon (photon 1)
with polarization r and a −z-going photon (photon 2) with the orthogonal polariza-
tion −r, where r is equally likely to be anywhere on the Poincaré sphere. What
happens if we perform ±rm polarization analysis on both of these photons? For
photon 1 we have that

1
Pr(photon 1 = ±rm) =

± 〈rTmr〉 , (26)
2

where 〈·〉 denotes averaging over the random Poincaré-sphere vector r.8 If we take
(r = 1, θ, φ) to be spherical coordinates on the unit sphere, with rm = (1, 0, 0), then

8We are being a bit cavalier here, and in what follows, with our notation. This equation gives the
probabilities that photon 1 leads to an N rm = 1 and N± ∓rm = 0 event, which, as we noted earlier,
does not imply that photon 1 entered its polarization analysis apparatus in the rm polarization.

9



r being completely random is equivalent to saying that the joint probability density
of its polar angle θ and its azimuthal angle φ is

sin(θ)
p(θ, φ) = , for 0 0

π
≤ θ ≤ π and

4
≤ φ ≤ 2π. (27)

It is then a simple exercise to do the averaging necessary to verify that

Pr(photon 1 = ±rm) = 1/2, (28)

regardless of the polarization basis, ±rm, being used in the measurement. This is as
it should be for a randomly-polarized photon. A similar calculation will prove that

Pr(photon 2 = ∓rm) = 1/2. (29)

More interesting behavior occurs when we look at the joint statistics of the polariza-
tion measurements made on photons 1 and 2.

We have that

1 rT r
Pr(photon 1 = r m

m
±±r and photon 2 = ∓ m) =

〈
2

1∓ rTm(−r)
(30)

2

〉
1 +

=
〈(rTmr)2〉

4
=

1

4
+

1 π

4

∫
dθ

0

∫ 2π cos2(θ) sin(θ)
dφ

0 4π
=

1
. (31)

3

From this it follows that

Pr( photon 2 = ∓rm | photon 1 = ±rm ) = 2/3, (32)

showing that the polarization-analysis measurements for photons 1 and 2 are statisti-
cally dependent but not perfectly correlated. Presumably, this is the strongest depen-
dence that could be expected, because we started out with completely correlated—
albeit completely random—polarizations for photons 1 and 2. Ah, but such is not
the case, and the reason (of course) is quantum mechanics!

In quantum mechanics we can create a pair of photons whose polarizations are
maximally entangled .9 Entanglement is a quantum-mechanical correlation that ex-
ceeds the limits of what is possible in classical physics. In particular, we can create a
+z-going photon and a −z-going photon—denoted photons 1 and 2, respectively, as
before—such that each photon is randomly polarized, leading to

Pr(photon 1 = ±rm) = Pr(photon 2 = ∓rm) = 1/2, (33)

9Later this semester we will learn how this can be done with spontaneous parametric downcon-
version.
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just as we saw for the classical photons considered above. However, in the quan-
tum case, polarization analyses of two photons whose polarizations are maximally
entangled gives10

Pr( photon 2 = ∓rm | photon 1 = ±rm ) = 1, (34)

a result that cannot be derived from the classical-photon analysis given earlier. This
perfect correlation of photon 1 and 2’s polarization analysis measurements occurs
even when the measurements are made after the photons have propagated—in oppo-
site directions—over such long distances that neither measurement apparatus could
possibly communicate its measurement result—even at light speed—to the other in
time to affect that other’s measurement result. As a result, if one adopts a classical
viewpoint, this perfect measurement correlation would seem to require instantaneous
action at a distance, in violation of relativity. Quantum mechanics has no such
problem, because the preceding perfect measurement correlation is a consequence of
entanglement; no action at a distance is needed for its explanation, as we will see
later this semester.

Teleportation

We have one more startling quantum property to introduce in today’s lecture: telepor-
tation. Simply stated, for our +z-going, frequency-ω, single photon in some arbitrary
polarization i, this has to do with how we can safely and completely convey that
polarization information from where the photon was created to some distant loca-
tion. Slide 8 illustrates two fundamental quantum difficulties and one technological
difficulty that make this a very challenging problem. Quantum mechanics does not
allow the unknown polarization state of a single photon to be perfectly measured. In
effect, the best we can do is to use the polarization analysis setup from Fig. 1 to find
out—in a probabilistic sense—whether it is more likely that the photon was im or
i′m polarized. Now, you might argue that we should clone the unknown-polarization
photon, i.e., make an enormous number of identical copies, and then use an array
of Fig. 1 setups to make repeated measurements for each of a great many different
polarization bases and thereby derive an increasingly accurate picture of the origi-
nal photon’s polarization state as the number of different bases and the number of
repeated measurements per basis both grow without bound. Unfortunately, this too
cannot be done, because quantum mechanics has a no-cloning theorem that forbids
our perfectly duplicating the unknown polarization state of a single photon. Another
way to get the polarization information from point A to point B would be to let the
photon carrying that information simply propagate from A to B. Here there is a
technological limitation. The propagation loss in single-mode optical fiber—the best
means for long-distance terrestrial photon propagation—is 0.2 dB/km. Thus, if we

10Strictly speaking, this equation requires a specific maximally-entangled state, viz., the singlet
state, that we shall see later in the semester.
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load a single-photon pulse into a 50-km-long fiber, there is only a 10% probability
that this photon will emerge at the far end. Yet, there is a way to get the unknown
polarization state of a single photon from point A to a distant point B: teleportation.

The four steps of the teleportation protocol are shown on Slide 9. In Step 1,
Alice (at point A) and Bob (at point B) share some entanglement, i.e., a source
that produces a pair of polarization-entangled photons sends one to Alice and the
other to Bob. Now, there is a high probability that one or both of these photons
won’t make it to their destinations, so this process has to be repeated until Alice and
Bob can decide—in a subtle way that won’t be described here—that they have each
received and stored a photon from the same entangled pair. Once this entanglement
sharing has occurred, Alice and Bob can proceed to Step 2. Here, Charlie brings
Alice a single photon in some polarization state—that is unknown to Alice—and asks
her to teleport it to Bob. She completes Step 2 by making an appropriate joint
measurement on the photon that Charlie has supplied and the one that she received
from the entanglement source. The outcome of this measurement is a classical result.
In particular, it is two classical bits, viz., either 00, 01, 10, or 11. For Step 3 of
the protocol, Alice send her measurement bits to Bob via a classical communication
channel, which can be regarded as error free. These two bits tell Bob which of four
wave-plate transformations he should apply to the photon he had earlier received from
the entanglement source. If all the equipment has functioned perfectly, then Bob’s
transformed photon will be in the same polarization state as the one that Charlie
delivered to Alice. There are many remarkable points to be noted here.

• Alice’s measurement tells her nothing about the polarization state of Charlie’s
photon: her four possible measurement outcomes are always equally likely to
have occurred.

• Alice’s measurement destroys the polarization of both her photon and Charlie’s,
i.e., the teleportation protocol does not violate the no-cloning theorem, even
though Bob will end up with a photon whose polarization state matches that
of Charlie’s, because by then there will not be a photon at Alice’s location that
contains any information about that polarization state.

• Causality is not violated, because the classical communication channel is light-
speed limited.

• Bob learns nothing about the polarization state of Charlie’s photon from this
protocol, so teleportation does not violate the principle that the unknown po-
larization state of a single photon cannot be measured.

Another way to sense the incredible nature of entanglement is to suppose that
Charlie knows what polarization state he wants Bob to have, i.e., Charlie has a
specific but arbitrary r value in mind. In general, Charlie must send Bob an infinite
number of classical bits—via a classical channel—for Bob to know the precise value
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of this real-valued, unit length, 3D vector. Yet, if Alice and Bob have shared an
entangled photon pair, and Alice makes the appropriate joint measurement on her
photon and Charlie’s, she need only send Bob two bits of classical information to
enable his transforming his photon into the r polarization.

Teleportation is an extremely important quantum protocol. If we succeed in
building quantum computers, and we want to network them together, then we will
need teleportation to communicate the quantum information between that network’s
nodes.

The Road Ahead

By the end of this semester you will fully understand—and be able to quantita-
tively analyze—all of the purely quantum phenomena introduced in this lecture. The
journey begins in the next two lectures, when we will lay out the fundamentals of
Dirac-notation quantum mechanics.
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