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and volume velocities (e.g., bi) can be expressed as a linear weighted sum of the intrinsic 
pressures and volume velocities of the sources: 

M N 

bi = αjPSj 
+ βkUSk 

j=1 k=1 

In circuit theory, this result is known as the Superposition Principle. This Principle allows 
circuits with multiple sources to be analyzed simply by considering the effects of each source 
separately. In combination, the contributions of the sources simply add. Importantly, when 
each source is considered separately, impedances are often found to be connected in series 
or in parallel. 

u(t) 

p(t) 
u'(t) 

Figure 10: Example of an acoustic circuit containing a port. It can be shown that Kirchoff’s 
volume velocity law requires that u(t) = u ′ (t). 

6.2 Equivalent Acoustic Circuits for One-Ports. 

A port (Fig. 10) is a pair of terminals (or nodes) in an acoustic circuit that can be connected 
to another circuit. 

6.2.1 Thev́enin Equivalent Circuits 

If the “other” circuit is a volume velocity source of arbitrary intrinsic velocity U0, then it 
can be shown that the pressure P across the terminals of the port must satisfy 

P = PTh + ZThU0 (9) 

This result was first obtained by the French telegrapher Thev́enin and is usually referred to 
as Thev́enin’s Theorem. 

U

In Eq. 9, PTh has a non-zero value only when the sources in the acoustic circuit (other 
than U0) have non-zero intrinsic values, and is said to be the “open-circuit” (i.e., when 

0 = 0) pressure of the circuit to the right of the terminals. If all sources in the circuit 
to the right of the terminals have zero intrinsic value, P = ZThU0. For this reason ZTh is 
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U P0 

Figure 11: An acoustic circuit for which it is possible to apply Thev́enin’s Theorem. 

said to be the equivalent impedance (or internal impedance) of the circuit to the right of 
the terminals. This generalizes the notion of impedances equivalent to the connection of two 
impedances in series or in parallel. 

It can be shown that if Thev́enin’s Theorem applies at a pair of terminals, the dependence 
of P on U0 in the acoustic circuit of Fig. 11 is the same as for the acoustic circuit of Fig. 12. 
The series connection of ZTh and PTh is said to be the “Thev́enin Equivalent” of the acoustic 
circuit to the right of the terminals in Fig. 11. 

U0 

Z Th 

P
ThP 

Figure 12: The “Thev́enin Equivalent” acoustic circuit at a pair of terminals. 

6.2.2 Norton Equivalent Circuits 

Alternatively, if the “other” circuit is a pressure source of arbitrary intrinsic pressure P0, 
then it can be shown that the volume velocity entering the terminal of the port must satisfy 

P0 

Z
U = −UN + (10) 

N 

This result was first obtained by an engineer (and M. I. T. graduate) at the Bell Telephone 
Laboratories and is usually referred to as Norton’s Theorem. 

It can be shown that if Norton’s Theorem applies at a pair of terminals, the dependence 
of U on P0 in the acoustic circuit of Fig. 13 is the same as for the acoustic circuit of Fig. 14. 

10 



U 

P0 

Figure 13: An acoustic circuit for which it is possible to apply Norton’s Theorem. 

The parallel connection of ZN and UN is said to be the “Norton Equivalent” of the acoustic 
circuit to the right of the terminals in Fig. 13. 

UN 

U 

Z NP
0 

Figure 14: The Norton Equivalent acoustic circuit at a pair of terminals. 

In addition to simplifying the analysis of acoustic circuits, Thev́enin’s Theorem can be 
used to develop circuit models for imperfect sound sources (as opposed to the “ideal” volume 
velocity and pressure sources introduced in Secs. 3.1 and 3.2). An imperfect (real world) 
volume velocity source can be represented as an ideal volume velocity source in parallel with 
an impedance. An imperfect pressure source can be represented as an ideal pressure source 
in series with an impedance. 

6.2.3 Thev́enin - Norton Relations 

In many acoustic circuits, it is possible to connect either a pressure source of arbitrary 
intrinsic pressure or a volume velocity source of arbitrary intrinsic velocity at the same pair 
of terminals. Such circuits satisfy both Thev́enin’s Theorem and Norton’s Theorem at those 
terminals. For such circuits, the Theévenin and Norton Equivalents are related: 

PTh = UNZN (11) 

ZTh = ZN (12) 
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6.3 Equivalent Acoustic Circuits for Two-Ports. 

U1 P1 U2P2 

U

Figure 15: An acoustic circuit to which it is possible to connect two one-port circuits. In 
this case the one-port circuits are volume velocity sources with arbitrary intrinsic velocities 

1 and U2. 

The concept of equivalent circuits can be generalized to acoustic circuits that contain 
more than one port. When there are two ports in an acoustic circuit, it is necessary to 
distinguish between cases in which it is possible to connect two arbitrary volume velocity 
sources (e.g., Fig. 15), two arbitrary pressure sources, and one arbitrary volume velocity 
source and one arbitrary pressure source. The concept of two-ports generalizes readily to N-
ports, where N ≥ 2. Such circuits are used 

• To develop simpler or abstract representations of portions of circuits. 

• To define abstract elements, e.g. acoustic-mechanical transformers. 

In the first case, e.g. Fig. 15, a generalization of The´ venin’s Theorem is applicable: 

P

P1 = Z11U1 + Z12U2 + POC1 
(13) 

2 = Z21U1 + Z22U2 + POC2 
(14) 

In the second case, a generalization of Norton’s Theorem is applicable: 

U

U1 = Y11P1 + Y12P2 − USC1 
(15) 

2 = Y21P1 + Y22P2 − USC2 
(16) 

When it is possible to connect an arbitrary volume velocity source at the first port and 
an arbitrary pressure source at the second: 

U

P1 = S11U1 + S12P2 + POS1 
(17) 

2 = S21U1 + S22P2 − UOS2 
(18) 

As in the case of one-ports, the terms POC1
, POC2 

, USC1 
, USC2 

, POS1
, and UOS2 

represent 
the effects of sources within the two-port. If there are no sources in the two-port, or if the 
intrinsic values of the sources in the two-port are all zero, these terms are necessarily zero. 

12 
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In the absence of sources in the two-ports, the above relations become 

P

P1 = Z11U1 + Z12U2 (19) 

2 = Z21U1 + Z22U2 (20) 

In the second case, a generalization of Norton’s Theorem is applicable: 

U

U1 = Y11P1 + Y12P2 (21) 

2 = Y21P1 + Y22P2 (22) 

When it is possible to connect an arbitrary volume velocity source at the first port and an 
arbitrary pressure source at the second: 

U

P1 = S11U1 + S12P2 (23) 

2 = S21U1 + S22P2 (24) 

6.3.1 Reciprocity 

Acoustic circuits composed of volume velocity sources, pressure sources, and impedances 
satisfy reciprocity relations that are easily expressed in terms of the two-port descriptions. 
For example, in Eq. 13 and 14, Z12 = Z21, in Eq. 15 and 16, Y12 = Y21, and in Eq. 17 and 
18, S12 = −S21. 

In the absence of sources reciprocity ensures that, corresponding to Eq. 19 and 20, 

P1 ∣
∣ 

P2 ∣
∣ 

∣ = ∣ (25) 
U2 U1=0 U1 U2=0 

corresponding to Eq. 21 and 22, 

U1 ∣
∣ 

U2 ∣
∣ 

∣ = ∣ (26) 
P2 P1=0 P1 P2=0 

and corresponding to Eq. 23 and 24, 

P2 ∣
∣ 

U1 ∣
∣ 

∣ = ∣ . (27) 
P1 U2=0 

−
U2 P1=0 

These consequences of reciprocity can be observed in sound fields as well as in acoustic 
circuits. 
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7 System Functions 

When the pressures and volume velocities in an acoustic circuit all have the same exponential 
time behavior, ratios of the amplitudes of pressures across node pairs, or the amplitudes 
of volume velocities through elements, to the the amplitudes of the intrinsic pressures of 
pressure sources or of the intrinsic velocities of volume velocity sources, are commonly called 
system functions. 

For example, in a one-port that contains no sources, (e.g., Fig. 11), the ratio 

P 
= ZTh(s). 

U0 

is said to be the driving point impedance system function. Similarly, in the two port of Fig. 
15, the ratio 

P2 ∣
∣ 

∣ = Z21(s). 
U1 U2=0 

is said to be the transfer impedance system function for the two ports. In each case, the 
notation emphasizes the dependence of the ratio on the frequency s of the source. 

7.1 Acoustic Circuits 

For acoustic circuits consisting of a finite number of elements, system functions take the 
form of a ratio of polynomials in s, e.g. 

M−1 +n(s) sM + b1s + bM
H(s) = = K 

· · ·
,

d(s) sN + a1sN−1 + · · · + aN 

where K, the ai, and the bj are real numbers. 
The fundamental theorem of algebra states that each of the polynomials n(s) and d(s) 

may be represented as a product of factors 

H(s) = K
(s − z1)(s − z2) · · · (s − zM) 

. 
(s − p1)(s − p2) · · · (s − pN) 

The zi are said to be the zeroes of the system function H(s) and the pj are said to be the 
poles of H(s). In general, these zeroes and poles are complex numbers. 

The interpretation of the zi is straightforward. As s → zi, H(s) → 0. For the poles, on 
the other hand, as s . For these values of s it is possible to have non-zero → zj , H(s) → ∞
pressures and volume velocities in an acoustic circuit when all sources have zero value. The 
poles are often called the natural frequencies of the circuit (see Sec. 8.3). 
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u(t) 

p (t)
O 

p (t) 
S C 

R 

Figure 16: Circuit for Example 1. Assume that all pressures and volume velocities have an 
exponential (est) time dependence. 

7.2 Example 1 – Resistance-Compliance Circuit 

a) Determine the input admittance system function (Y (s) = U/PS) and the pressure transfer 
ratio system function (H(s) = PO/PS) for the circuit of Fig. 16. 

b) Identify the values of the poles and zeroes of Y (s) and H(s) 
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u(t) 

p (t)
O 

p (t) 
S C 

R M 

Figure 17: Circuit for Example 2. Assume that all pressures and volume velocities have an 
exponential (est) time dependence. 

7.3 Example 2 – Resistance-Mass-Compliance Circuit 

a) Determine the input admittance system function (Y (s) = U/PS) and the pressure transfer 
ratio system function (H(s) = PO/PS) for the circuit of Fig. 17. 

b) Identify the values of the poles and zeroes of Y (s) and H(s) 
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8 The Sinusoidal Steady State 

Understanding the behavior of acoustic circuits when the intrinsic pressures and volume 
velocities of sources vary sinusoidally in time is of considerable theoretical and practical im­
portance. If the circuits contain finite positive acoustic resistances, the transient pressures 
and volume velocities that may be excited when the sources are first turned on eventually die 
away while the sinusoidal pressures and volume velocities corresponding to the sources con­
tinue and eventually dominate the response to the sources. The importance of understanding 
the response to sinusoidal sources reflects the following: 

• Arbitrarily complex periodic time waveforms can be represented as an infinite “Fourier 
Series”, a sum of terms each of which has a sinusiodal time dependence. 3 In a circuit 
composed of linear elements, the response to a sum of sinusoidal waveforms is the sum 
of the responses to each component separately. 

• In the sinusoidal steady state, the pressures and volume velocities elicited in a circuit 
by sources having sinusoidal waveforms have sinusiodal waveforms with the same fre­
quency as the sources. These can be characterized simply in terms of their relative 
amplitudes and phase angles. The dependence of the relative amplitudes and phase 
angles on frequency provides a complete description of the relation between the sources 
and the pressures and volume velocities. 

• The use of sinusoidal sources greatly simplifies the task of making measurements to 
characterize the behavior of real acoustic systems. In addition to the properties men­
tioned above, use of sinusoids permits measurements to be made at any time after the 
transient components of the responses have died away. 

8.1 Source - Response Relations 

Assume that all pressures and volume velocities in a circuit have an est time dependence, 
and that when the source waveform is x(t) = Xest , the pressure across a pair of nodes or 
volume velocity through an element is y(t) = Y est , where the system function relating Y to 
X is 

Y 
H(s) = 

X 

When s = jω, H is typically a complex quantity. In general, X and Y may be complex 
as well. To emphasize this, bold symbols are used to denote complex quantities, thus 

Y 
H(jω) = 

X 

3This result can be generalized to non-periodic waveforms, in which case the infinite series becomes an 

integral. 
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In the sinusoidal steady state 

Xejωt x(t) = X cos (ωt) = Re Xejωt = Re 

Yejωt y(t) = Y cos (ωt + θ) = Re Y ej(ωt+θ) = Re . 

Where X = X and Y = Y ejθ = H(jω)X. For each value of ω, H is a complex number 

H(jω) = H| ejθH|

where 

= (Re [H])2 + (Im [H])2|H| 
Im [H]

θH = arctan . 
Re [H] 

It follows from Eq. 57 that 

= |H X = H X (28) |Y| | | | | |
θ = θH , (29) 

so that 

y(t) = Re X |H| ejθH ejωt 

= X H cos (ωt + θH). (30) | |

This illustrates the central role played by the magnitude and angle of system functions when 
s = jω. 

8.1.1 Example 1 – Resistance-Compliance Circuit 

The system functions for the circuit of Fig. 16 can be shown to be of the form: 

ω0
H(s) = PO = 

PS ω0 + s 
1 s 

Y (s) = 
P
U 

S 
= ,

R ω0 + s 

where ω0 = 1/RC. It is easy to see that as s → 0, H(s) → 1 and Y (s) ≈ s/ω0 0. Similarly, →
, H(s) ≈ ω0/s → 0 and Y (s) → 1/R. These observations are consistent with aas s → ∞

physical understanding of the circuit of Fig. 16. As s → 0, the impedance of the compliance 
becomes arbitrarily large, the impedance seen across the terminals becomes arbitrarily large, 
and the pressure division ratio approaches unity. As s → ∞, the impedance of the compliance 
approaches 0, the impedance seen across the terminals approaches R, and and the pressure 
division ratio approaches 0. When s = jω, 

ω0 1 
H(jω) = = , (31) 

ω0 + jω 1 + jΩ
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where Ω = ω/ω0 is the normalized frequency. Making use of Eq. 49, 50, and 58, one has 

1 
H(jω) = (32) 

θ

| | √
1 + Ω2 

H = − arctan Ω (33) 

Because s = 0 only when ω = 0 and ω → ∞ implies s → ∞, these expressions confirm 
the limiting behavior of H as ω → 0 and as ω → ∞. But they also show that both 
H and θH decrease monotonically as ω increases. In the special case ω = ω0, Ω = 1, |
H
|

| | = 1/
√

2 = 0.707 . . . and θH = −45o . Also, 

1 jω 1 jΩ 
Y(jω) = = . (34) 

R ω0 + jω R 1 + jΩ 

Note that Y(jω) is just H(jω) multiplied by jΩ/R. Since 

jΩ Ω 
= e

πj
2 

R R 

Ω 

, 

Y(jω) = H(jω)e
R 

making use of Eq. 49, 50, and 57, one has 

1 Ω 

πj
2 

Y(jω) = (35) | |
R
√

1 + Ω2 

π 
θY =

2 
− arctan Ω (36) 

These expressions show that while θY decreases monotonically as ω increases, Y increases | |
monotonically as ω increases. In the special case ω = ω0, Ω = 1, Y = 1/(

√
2R) ≈ 0.707/R | |

and θH = +45o . The dependence of the magnitude and angle of H and Y on Ω are illustrated 
in Fig. 18. The system function H is said to have a lowpass characteristic because H 1| | →
as ω 0 and H 0 as ω → ∞. Similarly Y is said to have a highpass characteristic → | | →
because Y 0 as ω 0 and Y 1 as ω → ∞.| | → → | | →

8.1.2 Example 2 – Resistance-Mass-Compliance Circuit 

The system functions for the circuit of Fig. 17 are: 

ω2 
0H(s) = PO = 

PS s2 + αω0s + ω2 
0 

1 s 
Y (s) = 

P
U 

S 
= 

M s2 + αω0s + ω2 
, 

0 

where ω0 = 1/
√

MC , Ω = ω/ω0 is the normalized frequency, and α = R/ M/C is the 

normalized resistance. 4 

4The quantity ZC = M/C is the characteristic impedance of the circuit. 
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Figure 18: Dependence of the magnitude and phase of the input admittance system function
Y (solid curves) and pressure transfer ratio system function H (dotted curves) on normalized
frequency Ω = ω/ω0 for the acoustic circuit of Fig. 16. The magnitude of the admittance
system function Y has been multiplied by R.
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It is easy to see that as s → 0, H(s) → 1 and Y (s) ≈ s/M → 0. Similarly, as , 
H(s) ≈ (ω0/s)

2 → 0 and Y (s) ≈ 1/(Ms) → 0. When s = jω, 
s → ∞

ω2 1 
H(jω) = 0 = 

ω0
2 − ω2 + jαω0ω (1 − Ω2) + jαΩ

, (37) 

Note that although Eq. 37 bears a certain resemblance to Eq. 31, the real part of the 
denominator is not constant. In particular it vanishes when Ω = 1, i.e., when ω = ω0. 
Making use of Eq. 49, 50, and 58, one has 

1 
H(jω) = √ (38) | |

(1 − Ω2)2 + (αΩ)2 

αΩ 
θH = − arctan

1 − Ω2 
(39) 

Note that when ω = ω0, Ω = 1, H = 1/α and θH = −90o . Also, | |

1 jω 1 jΩ 
Y(jω) = = 

M (ω0
2 − ω2) + jαω0ω ZC (1 − Ω2) + jαΩ 

. (40) 

Similar to the RC circuit, Y is just H multiplied by jΩ/ZC. Making use of Eq. 49, 50, and 
57, one has 

1 Ω 
Y(jω) = √ (41) | |

ZC (1 − Ω2)2 + (αΩ)2 

π αΩ 
θY =

2 
− arctan

1 − Ω2 
(42) 

Note that, when ω = ω0, Ω = 1, Y = 1/(αZC) = 1/R and θH = 0o, so that from the point | |
of view of the terminals, the RMC circuit is indistinguishable from a resistance of value R. 

The dependence of the magnitude and angle of H and Y on Ω are illustrated in Fig. 19. 
The system function H is said to have a lowpass characteristic because H 1 as ω 0| | → →
and H 0 as ω → ∞. On the other hand, Y is said to have a bandpass characteristic | | →
because Y 0 as ω → 0 and also as ω → ∞, but Y = 1/R > 0 when ω = ω0. Note | | → | |
that, as ω increases, both θH and θY decrease over a range of 180o, twice the range for the 
RC circuit of Fig. 18. Also the entire decrease of these angles is largely confined to a small 
range of frequencies near ω = ω0 where H and Y exhibit sharp peaks. This pairing of | | | |
highly peaked magnitude functions and phase angles that change rapidly over nearly 180o is 
characteristic of a highly-tuned resonant circuit. 

8.2 Generalization 

The system function notion can be applied to a wider class of systems than circuits with 
a finite number of elements. These systems are generally called linear, time independent 
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Figure 19: Dependence of the magnitude and phase of the input admittance system function 
Y (solid curves) and pressure transfer ratio system function H (dotted curves) on normalized 
frequency Ω = ω/ω0 for the acoustic circuit of Fig. 17. The magnitude of the admittance 
system function Y has been multiplied by ZC. The curves have been drawn for the case 
α = 0.1. 
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systems, and include, for example, acoustic tubes. The volume velocity transfer function for 
an acoustic tube of length L that is closed at one end and open at the other is 

U 1 
H(jω) = = 

US cos ω L 
c 

Clearly H(s) cannot be written as a ratio of polynomials in the variable s, because cos x has 
an infinite number of zeroes. However 

∞ 
∏ ω2 

H(jω) = k 

ω2 
k=1 k − ω2 

where 
c 

ωk = 2πk 
4L 

and k = 1, 3, . . .. 

8.3 Example - Natural Frequencies 

pp u CM 

u M 

pOS S O 

u 

C 

M 
Cu 

p 
M 

Figure 20: Circuits that have a single acoustic mass and a single acoustic compliance. In 
the circuit on the left, all elements are connected in series; in that on the right all elements 
are connected in parallel. 

Consider the circuits of Fig. 20. When all pressures and volume velocities have an est 

time dependence, the system functions for the series circuit can be shown to be 

ω2 

H = 
PO 

= 0 

PS s2 + ω0
2 

U 1 s 
Y = = 

PS M s2 + ω0
2 
, 

where ω0 = 1/
√

MC . Similarly for the parallel circuit 

PO 1 s 
Z = = . 

US C s2 + ω0
2 
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Note that the poles of all three system function are the same: 

pi = ±jω0 

To understand why these poles are the natural frequencies of these circuits, consider the 
acoustic circuit of Fig. 21, which is identical to the circuits of Fig. 20 when the sources have 
zero intrinsic value. 

u 

p
C 

C 
M 

p
M 

Figure 21: The circuits of Fig. 20 reduce to this two element circuit when the sources have 
zero intrinsic value. 

For this circuit, the elements are connected both in series and in parallel. Kirchoff’s Vol­
ume Velocity Law requires that both elements have the same volume velocity, u(t). Kirchoff’s 
Pressure Law requires that pM = −pC or 

du(t)
M = −pC(t),

dt 

while the defining property of a compliance requires that 

dpC(t) 
u(t) = C . 

dt 

Differentiating the latter equation with respect to time yields an expression for the derivative 
of volume velocity that can be substituted in the former equation: 

d2pC(t)
MC + pC(t) = 0,

dt2 

or 
d2pC(t) 

+ ω0
2 pC(t) = 0. 

dt2 

Second order linear differential equations of this type have been encountered when solving 
the one-dimensional acoustic wave equation in the case of sinusoidal time dependence. The 
solution is readily seen to be of the form 

pC(t) = PC cos (ωt + θ) 
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because the time derivative of this expression is 

dpC 

dt 
= −ω0 sin (ωt + θ) 

and the second derivative is 

d2pC(t) 
= 0 cos (ωt + θ) = 0pC(t)−ω2 −ω2 

dt2 

This demonstrates that it is possible to have pressures and volume velocities in an acoustic 
circuit with no sources provided their frequencies are the values of the poles of the system 
function. In the case considered, the poles (and natural frequencies) are purely imaginary 
(simplifying the algebra) so the pressures and volume velocities have a sinusoidal time depen­
dence. In the more general case, the poles would be complex, with negative real parts, and 
the time dependence associated with the complex natural frequencies would be exponentially 
decaying sinusoids. 

9 Power and Energy 

This section derives three results relevant to power and energy in acoustic circuits. Al­
though the results are obtained for the series RMC circuit of Fig. 22, they apply to arbitrary 
connections resistances, masses, and compliances 

p (t)
C 

u (t)
S 

C 

R M 

p (t)
C 

p (t)
M 

p(t) 
A A 

A 

Figure 22: Example used to analyze power and energy in acoustic circuits. 

In the acoustic circuit of Fig. 22 all elements have the same volume velocity uS(t) and 
Kirchoff’s Pressure Law requires 

p(t) = pR(t) + pM(t) + pC(t) 

The power that the volume velocity source supplies to the circuit to the right of the terminals 
is thus 

w(t) = p(t)uS(t) = pR(t)uS(t) + pM(t)uS(t) + pC(t)uS(t) 
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but since 

pR(t) = RAuS(t) 

duS(t) 
pM(t) = MA 

dt 
dpC(t) 

uS(t) = CA 
dt 

duS(t) dpC(t)2 ( ) + M ( )t tuA SSw(t) = RAu + +CApC(t)
dt dt 

dEM(t) dEC(t)
+ 

dt dt 
2 ( ) + tSw(t) = RAu 

2 ( ) is the power absorbed by the acoustic resistance ( ), t twdSSince RAu EM is the energy 
stored in the acoustic mass, and EC is the energy stored in the acoustic compliance, one has 

d (EM(t) + EC(t)) 
w(t) = wd(t) + , (43) 

dt 
that is, the power flowing into the terminals from the source is equal to the power dissipated 
in the acoustic resistance plus the rate of increase of energy stored in the mass and compliance 
elements. 

9.1 Sinusoidal Steady State 

Assume that in the sinusoidal steady state 

USejωt uS(t) = US cos (ωt + φ) = Re 

p(t) = P cos (ωt + θ) = Re Pejωt . 

Then 
w(t) = USP cos (ωt + φ) cos (ωt + θ). 

Making use of the trigonometric identity 

1 1 
cos x cos y = cos (x − y) + cos (x + y)

2 2 
1 1 

w(t) = USP cos (θ − φ) + USP cos (2ωt + θ + φ)
2 2 

This can be readily shown to equal 

1 1 
w(t) = Re [PU∗ ] +

2
|P| |US cos (2ωt + θ + φ)

2 S
|

The average value of the second term over a period (T = 2π/ω) is zero. The average value 
of the power supplied to the circuit to the right of the terminals in Fig. 22 is 

1 
Wav = Re [PU∗] (44) 

2 
Note that since PU∗ = P∗U the choice for defining Wav in Eq. 44 is somewhat arbitrary. 
The reason for this choice is explained below. 
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9.2 Vector Power

The quantity

W =
1

2
PUS

∗

is called the vector power supplied to the portion of the circuit to the right of the terminals
in Fig. 22. Making use of Kirchoff’s Pressure Law

P = PR + PM + PC

PUS
∗ = RA |US|2 + jωMA |US|2 − jωCA |PC|2 ,

so that

W =
1

2
PUS

∗ =
1

2
RA |US|2 + j2ω

(

1

4
MA |US|2 −

1

4
CA |PC|2

)

(45)

Since 1
2
RA |US|2 is the average power dissipated in the acoustic resistance, 1

4
MA |US|2 is the

average energy stored in the acoustic mass 〈EM〉, and 1
4
CA |PC|2 is the average energy stored

in the acoustic compliance 〈EC〉, one has

W = Pav + j2ω (〈EM〉 − 〈EC〉) . (46)
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10 Arithmetic for Complex Numbers

Re

Im

a

b

θ
ρ

z

Figure 23: Representation of the complex number z as a point in the complex plane. The rep-
resentation may be described in terms of rectangular components z = a+ jb, or equivalently
in polar components z = ρejθ.

In what follows, a, a1, a2, b, b1, b2, ρ, ρ1, ρ2 θ, θ1, and θ2 are real numbers, z, z1, z2 are
complex numbers, with

z = ρejθ = a + jb (47)

where

ρ = |z| =
√

a2 + b2 (48)

θ = arctan b/a (49)

Re [z] = a = ρ cos θ (50)

Im [z] = b = ρ sin θ. (51)

Similarly,

z1 = ρ1e
jθ1 = a1 + jb1 (52)

z2 = ρ2e
jθ2 = a2 + jb2. (53)

10.1 Addition and Subtraction

z1 + z2 = (a1 + a2) + j(b1 + b2) (54)

z1 − z2 = (a1 − a2) + j(b1 − b2) (55)

10.2 Multiplication and Division

z1 ∗ z2 = ρ1ρ2e
j(θ1+θ2) = (a1a2 − b1b2) + j(a1b2 + a2b1) (56)

28



z1

z2

=
ρ1

ρ2
ej(θ1−θ2) =

(a1a2 + b1b2) + j(a2b1 − a1b2)

a2
2 + b2

2

(57)

1

z
=

1

ρ
e−j(θ) =

a − jb

a2 + b2
(58)

10.3 Complex Conjugates

The complex conjugate of z, denoted by z∗ has the following properties:

z∗ = ρe−jθ = a − jb (59)

Re [z∗] = ρ cos θ = a (60)

Im [z∗] = −ρ sin θ = −b (61)

zz∗ = ρ2 = a2 + b2 (62)

z

z∗
= ej2θ =

(a2 − b2) + j(2ab)

a2 + b2
(63)

[z∗]∗ = z (64)

(z1 ± z2)
∗ = z∗

1
± z∗2 (65)

(z1z2)
∗ = z∗

1
z∗
2

(66)
(

z1

z2

)

∗

=
z∗
1

z∗2
(67)
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