


1 The Concept of Finite (Lumped) Elements 

Although sound can always be thought of as a wave phenomenon, it is often not possible 
to solve analytically the partial differential equations that govern sound propagation. This 
difficulty generally arises when the structure of the boundary conditions is complex, as in 
most physiological and many mechanical systems. 

In certain restricted conditions, it is possible to develop approximations that allow the 
sound field to be determined with high accuracy without resorting to the partial differen
tial equation formalism. These approximations rely on the fact that over sufficiently short 
distances sound (pressure, p(x, t), and particle velocity, u(x, t)) can be treated as varying 
linearly with position over the short distances: 
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Figure 1: General acoustic circuit element, illustrating the terminals of the element, the 
pressure p across the element, the volume velocity u through the element, and the node at 
the connection of two terminals from different elements. 

2 Acoustic Circuits 

Acoustic circuits consist of elements that interact with each other at distinct terminals 
(Fig. 1). Each element has a pressure difference p(t) across its and a volume velocity u(t) 
through it, entering the element at one terminal and leaving at the other. The pressure 
difference p(t) corresponds to the difference between the acoustic pressures at different points 
in space. The volume velocity u(t) is the product of the particle velocity and the area 
characteristic of the physical element. Use of volume velocity, rather than particle velocity, 
simplifies the formulation of the conservation equations (Sec. 4) for acoustic circuits. The 
rate at which work is done on an element by the rest of the circuit to which the element is 
connected is the acoustic power w(t) = p(t)u(t). 

3 Acoustic Elements 

This section introduces three fundamental acoustic elements: the acoustic mass, the acoustic 
compliance, and the acoustic resistance, and two acoustic sources: volume velocity source, 
and the pressure source. 
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Figure 2: The circuit representation and terminal characteristic of a volume velocity source 
with intrinsic volume velocity uS. 

3.1 Volume Velocity Source 

A volume velocity source (Fig. 2) moves a specified volume velocity from one point in an 
acoustic circuit to another independent of the pressure difference between the two points. 
The circuit symbol for and terminal characteristics of a volume velocity source are shown in 
Fig. 2. The pressure p across the terminals of a volume velocity source is determined by the 
intrinsic volume velocity of the source uS and the rest of the network to which the volume 
velocity source is connected. Note that the rate at which work is done on a volume velocity 
source, w = pu = puS may be positive or negative, so that the volume velocity source may 
do work on the rest of the network or have work done on it. 
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Figure 3: The circuit representation and terminal characteristic of a pressure source with 
intrinsic pressure pS. 

3.2 Pressure Source 

p

A pressure source (Fig. 3) imposes a specified pressure difference between two points in an 
acoustic circuit independent of the volume velocity through the source. The circuit symbol 
for and terminal characteristics of a pressure source are shown in Fig. 3. The volume velocity 
u that flows through a pressure source is determined by the intrinsic pressure of the source 

S and the rest of the network to which the pressure source is connected. Note that the rate 
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at which work is done on a pressure source, w = pu = pSu may be positive or negative, so 
that the pressure source may do work on the rest of the network or have work done on it. 
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Figure 4: The circuit representation and terminal characteristic of an acoustic resistance 
with resistance RA. 

3.3 Acoustic Resistance 

An acoustic resistance (Fig. 4) develops a pressure difference across its terminals that is 
proportional to the volume velocity through the resistance. The circuit symbol for and 
terminal characteristics of an acoustic resistance are shown in Fig. 4. The pressure p across 
the terminals of an acoustic resistance is proportional to volume velocity that flows through 
the resistance RA, p = RAu. The rate at which work is done on an acoustic resistance is 
w = pu = RAu2 = p2/RA. For a physical acoustic resistance, RA ≥ 0, so w ≥ 0, i.e. an 
acoustic resistance cannot do work on the rest of the network to which it is connected. 

If the volume velocity through an acoustic resistance is u(t) the pressure across the 
terminals of the resistance is p(t) = RAu(t). Thus the waveforms u(t) and p(t) have the 
same shape, differing only in scale factor (including units) In the special case 

u(t) = Ue st (1) 

p(t) = Pe st = RAUe st . (2) 

so that P = RAU . ZR = P/U = RA is said to be the acoustic impedance of the acoustic 
resistance. 

3.4 Acoustic Mass 

An acoustic mass (Fig. 5) develops a pressure difference across its terminals that is propor
tional to the time rate of change of volume velocity through the mass. The circuit symbol for 
and terminal characteristics of an acoustic mass are shown in Fig. 5. The pressure p across 
the terminals of an acoustic mass is proportional to the time rate of change of the volume 
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Figure 5: The circuit representation and terminal characteristic of an acoustic mass with 
mass MA. 

velocity that flows through the acoustic mass MA, p(t) = MA
du . The rate at which work is 
dt 

done on an acoustic mass is 

du(t) dEM(t) 
w(t) = p(t)u(t) = MA u(t) = ,

dt dt 

where 
1 

EM(t) = MA u 2(t)
2 

is the energy stored in the acoustic mass. When w(t) > 0, the rest of the circuit is causing 
the energy stored in the acoustic mass to increase. 

If the volume velocity through an acoustic mass is u(t) = Uest , the pressure across the 
terminals of the mass is 

p(t) = MA 

du(t)
= sMA Ue st ,

dt 

so that p(t) = Pest , where P = sMA U . ZM = P/U = sMA is said to be the acoustic 
impedance of the acoustic mass. Note that unlike the impedance of an acoustic resistance, 
the impedance of an acoustic mass is dependent on the value of the generalized frequency 
parameter s. 

3.5 Acoustic Compliance 

The volume velocity through an acoustic compliance (Fig. 6) is proportional to the time rate 
of change of acoustic pressure across the compliance. The circuit symbol for and terminal 
characteristics of an acoustic compliance are shown in Fig. 6. The volume velocity u through 
an acoustic compliance is proportional to the time rate of change of the pressure across the 

dp terminals of the acoustic compliance CA, u(t) = CA dt 
. The rate at which work is done on 

an acoustic compliance is 

dp(t) dEC(t) 
w(t) = p(t)u(t) = p(t) CA = ,

dt dt 

4 



st st
u(t) u(t)=Ue p(t)=Pe 

1
P= Up(t) u(t)=CA 

dp
d

(
t
t) 

sCACA

1


ZC = sCA 

Figure 6: The circuit representation and terminal characteristic of an acoustic compliance 
with compliance CA. 

where 
1 

EC(t) = CA p 
2(t)

2 

is the energy stored in the acoustic compliance. When w(t) > 0, the rest of the circuit is 
causing the energy stored in the acoustic compliance to increase. 

If the pressure across the terminals of an acoustic compliance is p(t) = Pest , the volume 
velocity through the compliance is 

u(t) = CA 

dp(t)
= sCA Pe st ,

dt 

so that u(t) = Uest where U = sCA P . ZC = P/U = 1/sCA is said to be the acoustic 
impedance of the acoustic compliance. Note that unlike the impedance of an acoustic resis
tance, the impedance of an acoustic compliance is dependent on the value of the generalized 
frequency parameter s. 

4 Connections of Acoustic Elements 

An acoustic circuit is an interconnection of acoustic elements. The connections occur at the 
terminals of the elements, which become the nodes of the circuit. The connections allow 
volume velocity and pressure to be shared among elements. The precise consequences of 
making these connections were first stated as laws (in the context of electrical circuits) by 
Kirchoff in the nineteenth century. 

4.1 KUL - Kirchoff ’s Volume Velocity Law 

Kirchoff’s Volume Velocity Law expresses the conservation of mass in circuit terms. For each 
node in an acoustic circuit, e.g., Fig. 7, the algebraic sum of the volume velocities entering 
(or leaving) the node must be zero, otherwise mass would accumulate at the node. If there 
are N nodes in the circuit, N equations expressing KUL can be written, but only N − 1 of 
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Figure 7: An example of the application of Kirchoff’s Volume Velocity Law. For volume 
velocities with arbitrary time dependence, KUL applies to the values of u1, u2 and u3 at 
each instant of time, u1 + u2 − u3 = 0. If all volume velocities have the same est time 
dependence, KUL is satisfied at each instant of time if it is satisfied by the values of the 
volume velocities at t = 0, U1, U2, and U3, so that U1 + U2 − U3 = 0. 

these are linearly independent. As a result, KUL is satisfied automatically at the Nth node 
if it is satisfied at the other (N − 1) nodes. 

4.2 KPL - Kirchoff ’s Pressure Law 

Kirchoff’s Pressure Law expresses the conservation of work in circuit terms. For each closed 
loop in an acoustic circuit, e.g., Fig. 8, the algebraic sum of the pressures encountered in 
a traverse of the loop node must be zero, otherwise net work would be done during the 
traverse. 
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Figure 8: An example of the application of Kirchoff’s Pressure Law. For pressures with 
arbitrary time dependence, KPL applies to the values of p1, p2, and p3 at each instant of 
time, p1 + p3 − p2 = 0. If all pressures have the same est time dependence, KPL is satisfied 
at each instant of time if it is satisfied by the values of the pressures at t = 0, P1, P2, and 

3 so that P1 + P3 − P2 = 0. 
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Figure 9: Example of an acoustic circuit consisting of a pressure source and two elements 
connected in series. All pressures and volume velocities are assumed to have the same est 

time dependence. 

5 Example - Elements in Series 

In the circuit of Fig. 9, KUL may be expressed at nodes A and B as 

US + U1 = 0 Node A.


−U1 + U2 = 0 Node B.


Adding these two equations yields the KUL equation at Node C1


US + U2 = 0. 

The above equations indicate that 

−US = U1 = U2 = U. (3) 

Connections of elements, such as that in Fig. 9 that require that two or more elements share 
a common volume velocity (ignoring sign) are said to be series connections. 

In the circuit of Fig. 9, KPL may be expressed by traversing the single loop 

−PS + P1 + P2 = 0 

or, equivalently, 
PS = P1 + P2. (4) 

Recognizing that P1 = U1Z1 = UZ1 and that P2 = UZ2, one has 

PS = U(Z1 + Z2). (5) 

1This confirms, as noted above, that the KUL equation at the third node is linearly dependent on the 

KUL equations at the other two nodes. 
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6Provided Z1 + Z2 = 02 , U can be determined by dividing both sides of this equation by 
Z1 + Z2:


1


Z
U = PS (6) 

1 + Z2 

This result indicates that the series connection of impedances Z1 and Z2 is equivalent to a 
single impedance of value Z1 + Z2. 

Making use of Eq. 6, pressures P1 and P2 are readily determined 

P1 = 
Z1 

Z1 + Z2 
PS (7) 

P2 = 
Z2 

Z1 + Z2 
PS. (8) 

Equations Eq. 7 and Eq. 8 indicate that PS, the pressure across nodes A and C, divides 
across the two series-connected impedances in proportion to the value of the impedance, i.e., 

P1 Z1 
= 

P2 Z2 

In contrast to the series connection, in which elements share a common volume velocity, 
elements share a common pressure when connected in parallel (Problem Set 3). 

For both series and parallel connections of impedances across a pair of terminals, there is 
an equivalent impedance that is indistinguishable when connected across the same terminals. 
This concept is generalized in Sec. 6. 




