6.622 Power Electronics

$$
\text { Lecture } 5 \text { - Intro to DC/DC }
$$

1 First Averaged Circuit Rules

KCL

$$
\begin{gathered}
\sum_{j} i_{j}=0 \\
\frac{1}{T} \int_{T} \sum_{j} i_{j} d t \\
\sum_{j} \frac{1}{T} \int_{T} i_{j} d t \\
\sum_{j}<i_{j}>=0
\end{gathered}
$$

KCL applies to time averaged currents (constant charge).
The same is true for $\mathrm{KVL}\left(\sum_{k}<V_{k}>=0\right)$.
So for a power converter in periodic steady state:

1. Averaged KCL $\sum_{j}<i_{j}>=0$
2. Averaged KVL $\sum_{k}<V_{k}>=0$
3. Capacitor in P.S.S. $<\lambda_{c}>=0$
4. Inductor in P.S.S. $<V_{L}>=0$
5. If system lossless (Conservation of energy) $<P_{\text {in }}>=<P_{\text {out }}>$

2 Review

Switching regulator example "Buck Converter"

Sometimes implemented as:

Text on bottom: Switch X on when $q_{x}(t)=1$, off when $q_{x}(t)=0$
Assuming Ls and Cs are very big: $v_{0}(t)=V_{0}, i_{2}(t)=I_{2}$
Using average relation in P.S.S. $\left.\left.\left\langle v_{L}\right\rangle=<v_{x}\right\rangle-<v_{2}\right\rangle$

$$
<v_{L}>=\frac{1}{T}\left[D T\left(v_{1}-v_{2}\right)+(1-D) T\left(-v_{2}\right)\right]=0 \Rightarrow V_{2}=D v_{1}
$$

2.1 Aside

What do switch 1 and switch 2 do? Let's ignore inductor ripple.

Average power into switch 1:

$$
<P_{1}>=<\left(V_{Y}+v_{Y, A C}\right)\left(I_{Y}+i_{Y, A C}\right)>=<V_{Y} I_{Y}>+<v_{Y, A C} i_{Y, A C}>
$$

Where the right side has no cross terms (orthogonal)

$$
\begin{gathered}
<P_{1}>=D(1-D) I_{L} V_{1}+\left\{D\left[-(1-D)^{2} I_{L} V_{1}\right]+(1-D)\left[-D^{2} I_{L} V_{1}\right]\right\} \\
=D(1-D) I_{L} V_{1}-D(1-D) I_{L} V_{1}=0
\end{gathered}
$$

Where the first term is average power into switch due to $i_{L} v$ and the second term is average power into switch due to $i_{a c, l}, v$ (Could not exactly read this part from original notes)

Switch S_{1} takes average power in from the current, voltage and puts equal power out at ac current, voltage. Converts power (efficiently) from dc to ac waveforms! ("inverting" "switch") S_{2} does the opposite (converts power from ac waveforms to dc waveforms!) (rectifying switch)

3 Review

Consider input current:
L's, C's big, $i_{l}(t) \approx I_{L}$
P.S.S. $<i_{c 2}>=0 \therefore I_{2}=I_{L}$
P.S.S.

$$
\begin{gathered}
<I_{c 1}>=0 \therefore I_{1}=<i_{1}>=<i_{y}>=D I_{2} \\
\therefore I_{1}=D I_{2}
\end{gathered}
$$

Combining with previous result that $D V_{1}=V_{2}: I_{1} V_{1}=I_{2} V_{2} \leftarrow$ Lossless system!
Note: The trick is to be careful about when one is dealing with instantaneous variables and when one is dealing with average variables!
e.g. at a given instant, $i_{y}(t) \neq<i_{y}(t)>$

Switch implementation for this case, $v_{1}, v_{2}>0$

Power flows form 1 to 2 .
"Down" or "buck" converter. A type of "direct" converter because in one switch state, power flows directly from input to output.

Suppose we switch source and resistor.

*note: redefine $\mathrm{q}(\mathrm{t})=1$ as switch "down" position.
If C's, L's big, same analysis:

If $v_{1}, v_{2}>0$, then power flows from $2 \leftarrow 1$ and $v_{2}>v_{1}$
Sometimes drawn $L \rightarrow R$ power flow (But nothing
Boost converter (or "up" converter):
 fundamental about it).

Show:

1. $v_{D S}$
2. i_{L}
3. v_{0} on scope

Explain boost operation:

- Switch turns on, i_{L} rises and incrementally stores energy in L from V_{I}
- Switch turns off and this energy plus additional energy from V_{I} is transformed to output
- Steady state voltages are determined by $V_{2}=\frac{V_{1}}{1-D}$

Either back or boost can be viewed as a connection of a "canonical cell"

- Direct connection has B common
- one cannot tell power flow direction without knowing

1. external networks
2. switch implementation
3. control

MIT OpenCourseWare
https://ocw.mit.edu

6.622 Power Electronics

Spring 2023
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

