6.622 Power Electronics

Prof. David Perreault

Lecture 5 — Intro to DC/DC

1 First Averaged Circuit Rules

KCL

$$\sum_{j} i_{j} = 0$$

$$\frac{1}{T} \int_{T} \sum_{j} i_{j} dt$$

$$\sum_{j} \frac{1}{T} \int_{T} i_{j} dt$$

$$\sum_{j} \langle i_{j} \rangle = 0$$

KCL applies to time averaged currents (constant charge). The same is true for KVL ($\sum_k \langle V_k \rangle = 0$).

So for a power converter in periodic steady state:

1. Averaged KCL $\sum_j < i_j >= 0$

2. Averaged KVL $\sum_k < V_k >= 0$

3. Capacitor in P.S.S. $<\lambda_c>=0$

4. Inductor in P.S.S. $\langle V_L \rangle = 0$

5. If system lossless (Conservation of energy) $< P_{in} > = < P_{out} >$

2 Review

Text on bottom: Switch X on when $q_x(t) = 1$, off when $q_x(t) = 0$ Assuming Ls and Cs are very big: $v_0(t) = V_0$, $i_2(t) = I_2$ Using average relation in P.S.S. $\langle v_L \rangle = \langle v_x \rangle - \langle v_2 \rangle$

$$\langle v_L \rangle = \frac{1}{T} [DT(v_1 - v_2) + (1 - D)T(-v_2)] = 0 \Rightarrow V_2 = Dv_1$$

2.1 Aside

What do switch 1 and switch 2 do? Let's ignore inductor ripple.

Average power into switch 1:

 $< P_1 > = < (V_Y + v_{Y,AC})(I_Y + i_{Y,AC}) > = < V_Y I_Y > + < v_{Y,AC} i_{Y,AC} >$

Where the right side has no cross terms (orthogonal)

$$\langle P_1 \rangle = D(1-D)I_LV_1 + \{D[-(1-D)^2I_LV_1] + (1-D)[-D^2I_LV_1]\}$$

 $= D(1-D)I_LV_1 - D(1-D)I_LV_1 = 0$

Where the first term is average power into switch due to $i_L v$ and the second term is average power into switch due to $i_{ac,l}$, v (Could not exactly read this part from original notes)

Switch S_1 takes average power in from the current, voltage and puts equal power out at ac current, voltage. Converts power (efficiently) from dc to ac waveforms! ("inverting" "switch") S_2 does the opposite (converts power from ac waveforms to dc waveforms!) (rectifying switch)

3 Review

Consider input current: L's, C's big, $i_l(t) \approx I_L$ P.S.S. $\langle i_{c2} \rangle = 0 \therefore I_2 = I_L$ P.S.S.

$$< I_{c1} >= 0$$
 : $I_1 =< i_1 >=< i_y >= DI_2$

$$I_1 = DI_2$$

Combining with previous result that $DV_1 = V_2$: $I_1V_1 = I_2V_2 \leftarrow$ Lossless system! Note: The trick is to be careful about when one is dealing with <u>instantaneous</u> variables and when one is dealing with <u>average</u> variables!

e.g. at a given instant, $i_y(t) \neq \langle i_y(t) \rangle$

Switch implementation for this case, $v_1, v_2 > 0$

Power flows form 1 to 2.

"Down" or "buck" converter. A type of "direct" converter because in one switch state, power flows directly from input to output.

Suppose we switch source and resistor.

*note: redefine q(t) = 1 as switch "down" position.

If C's, L's big, same analysis:

$$\langle v_L \rangle = 0 ::\langle v_x \rangle = (1 - D)V_2 = V_1$$

 $\therefore V_2 = \frac{V_1}{1 - D} \text{ and } \frac{I_2}{1 - D} = I_1$

If $v_1, v_2 > 0$, then power flows from $2 \leftarrow 1$ and $v_2 > v_1$

Boost converter (or "up" converter):

Sometimes drawn $L \to R$ power flow (But nothing fundamental about it).

 \ast Show boost converter demo circuit built by Katie R. and Sauparna Das

Show:

- 1. v_{DS}
- 2. i_L
- 3. v_0 on scope

Explain boost operation:

- Switch turns on, i_L rises and incrementally stores energy in L from V_I
- Switch turns off and this energy plus additional energy from V_I is transformed to output
- Steady state voltages are determined by $V_2 = \frac{V_1}{1-D}$

Either back or boost can be viewed as a connection of a "canonical cell"

- Direct connection has B common
- one <u>cannot</u> tell power flow direction without knowing
 - 1. external networks
 - 2. switch implementation
 - 3. control

MIT OpenCourseWare https://ocw.mit.edu

6.622 Power Electronics Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>