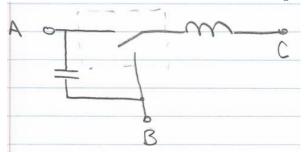
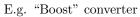
Lecture 6 — DC/DC Lecture 2

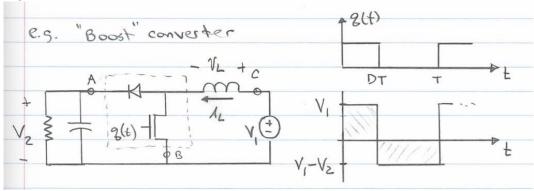
1 Switching

Last class we introduced the canonical switching cell:



We can construct the various types of converters from this.



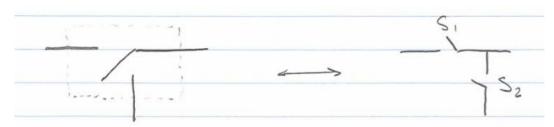


$$\langle V_L \rangle = DTV_1 + (1 - D)T(V_1 - V_2) = 0$$
 in P.S.S.

$$\therefore V_1 = (1-D)V_2 \to \boxed{\frac{V_2}{V_1} = \frac{1}{1-D}}$$

by conservation of power
$$\boxed{\frac{I_2}{I_1} = 1 - D}$$

The operational capabilities of a converter are heavily influenced by switch implementation



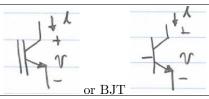
 $s_1,\,s_2$ controlled so that inductor is never open-circuited with current through it.

Switch implementations:

Can: block +v carry + or -i

Model as:

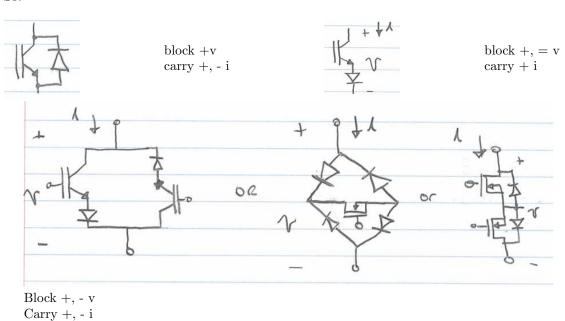
Power mosket



Similar, but cannot block $\quad \to \operatorname{Most}$ versions will reverse v or carry reverse i \quad blow up!

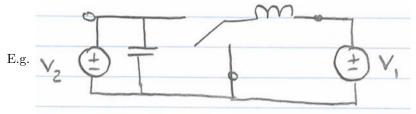
 $\underline{\text{IGBT}}$

So:

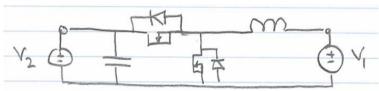


In analyxing a converter and identifying power flow direction we need to know many things:

- 1. Switch implementation
- 2. External networks
- 3. Control



Can we tell power flow direction? \rightarrow No



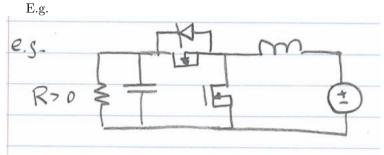
Adding switch implementation

Note: the intronics/MIT converter is one example of a bidirectional unit of this type.

We $\underline{\text{still}}$ cannot tell

- \rightarrow Could do "buck" L \rightarrow R or "boost" R \rightarrow L operation (depends on control)
- \rightarrow We do know that v_1, v_2 must be > 0
- \rightarrow Also $v_2 \geq v_1$

External networks +/ or control may be sufficient.

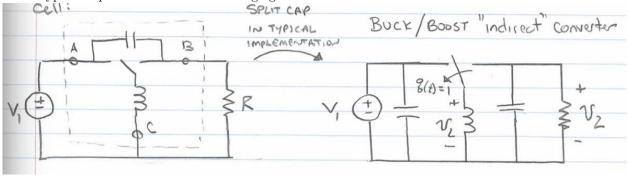


This must send power $R\rightarrow L$ in P.S.S. (but may transiently be bidirectional)

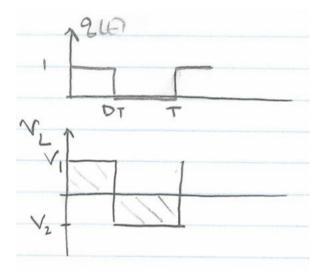
The buck, boost converters are <u>direct</u> converters

 \rightarrow energy transfer directly from one part to the other in one switch state.

Other types are possible. Consider rearranging the canonical cell:



Arrow on top: split cap in typical implementation. Right text: Buck/boost "indirect" converter.



If L's, C's are big, in P.S.S. (small ripple)

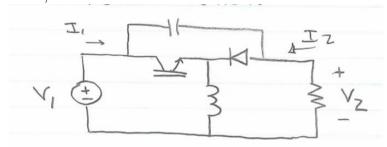
Assume $v_1 > 0$ in this case, $v_2 < 0$ so average 0!

$$\begin{array}{c} \to v_2 \text{ has opposite sign to } v_1 \\ \to 0 < D < 0.5 \ |v_2| < |v_1| \ 0.5 < D < 1 \ |v_2| > |v_1| \\ \text{So as } 0 < D < 1, \ -\infty < v_2 < 0! \end{array}$$

Explain:

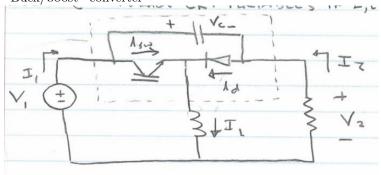
- 1. In 1st part of cycle, store incremental energy in L from v_1
- 2. 2nd part of cycle, transfer energy from L to $v_2 \to \text{All}$ energy is transferred via the inductor! \to must have voltage inversion to get $\langle v_L \rangle = 0$

Switch implementation for $v_1 > 0, v_2 < 0$ "Buck/boost" converter



If $v_1 > 0, v_2 < 0$ $I_1 > 0, I_2 > 0$

Look @ average CKT variables if L, C very large (no ripple) "Buck/boost" converter



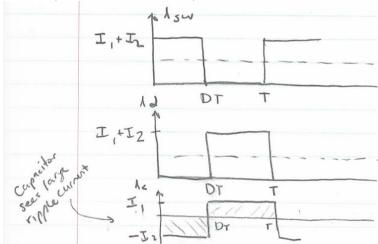
If L's, C's large $v_1(t) = V_1$ $v_2(t) \approx V_2$ $i_L(t) \approx I_L$ Average KCL into dotted box "supernode":

$$I_L = I_1 + I_2 \text{ or } |I_L| = |I_1| + |I_2|$$

Average KVL around outer loop

$$V_c = V_1 - V_2 \text{ or } |V_c| = |V_1| + |V_2|$$

It may be counterintuitive why $I_L\ast I_1+I_2\colon \text{Look}\ @\ i_{sw}$



$$i_{sw,peak} = I_1 + I_2$$

 $< i_{sw} >= D(I_1 + I_2) = I_1$
(since $< i_c >= 0$)

$$i_{d,peak} = I_1 + I_2$$

 $< i_d >= (1 - D)(I_1 + I_2) = I_2$
(since $< i_c >= 0$)

$$DI_2 = (1 - D)I_2$$

In general, for an **indirect converter**:

$$I_L = i_{z,peak} = i_{d,peak} = |I_1| + |I_2|$$

$$V_c = v_{q,peak} = v_{d,peak} = |V_1| + |V_2|$$

Show simulation of a buck/boost!

MIT OpenCourseWare https://ocw.mit.edu

6.622 Power Electronics Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms