6.622 Power Electronics

Lecture 17 - Inverters 1

Fourier Series Review

Break up a periodic signal as a sum of harmonically-related sin + cosine terms (or as a sume of complex exponentials)

$$
f(t)=\frac{b_{0}}{2}+\Sigma_{n=1}^{\infty} a_{n} \sin \left(n \omega_{0} t\right)+b_{n} \cos \left(n \omega_{0} t\right)
$$

Coefficients can be calculated as:

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{<T\rangle} f(t) \sin \left(n \omega_{0} t\right) d t \\
& b_{n}=\frac{2}{T} \int_{<T>} f(t) \cos \left(n \omega_{0} t\right) d t
\end{aligned}
$$

Some waveforms have special characteristics:

Even $x(t)=x(-t)$

No \sin terms $a_{n}{ }^{\prime} \mathrm{s}=0$
Calculating a_{n} 's are integrals of even function times (odd) sines, result is odd \therefore integral $=0$
$\operatorname{Odd} x(t)=-x(-t)$

No cos terms $b_{n}{ }^{\prime} \mathrm{s}=0$
Calculating b_{n} 's are integrals of odd function times (even) cosines, result is odd \therefore integral $=0$

Half-wave symmetry $\mathrm{x}(\mathrm{t})=-\mathrm{x}(\mathrm{t}-$ $\frac{T}{2}$)

No even harmonics $a_{2 k}$'s, $b_{2 k}$'s $=$ 0 where k is an integer
Calculating $a_{2 k}, b_{2 k}$'s are integrals where first half of integral exactly cancels 2 nd half \therefore integral $=0$

Aside: waveform decomposition
Note that we can decompose any waveform into even and odd components, or alternatively into "Half-wave symmetric" and "Half-wave repeating" components:

$$
x(t)=x_{e v}(t)+x_{o d d}(t)
$$

where

$$
\begin{aligned}
x_{e v}(t) & =\frac{x(t)+x(-t)}{2} \\
x_{o d d}(t) & =\frac{x(t)-x(-t)}{2}
\end{aligned}
$$

$x_{e v}$ has only the b_{n} terms of the fourier decomposition of $x(t)$, including b_{0}
$x_{\text {odd }}$ has only the a_{n} terms of the fourier decomposition of $\mathrm{x}(\mathrm{t})$
or

$$
x(t)=x_{h w s}(t)+x_{h w r}(t)
$$

where

$$
\begin{aligned}
x_{h w s}(t) & =\frac{x(t)-x\left(t-\frac{T}{2}\right)}{2} \\
x_{h w r}(t) & =\frac{x(t)+x\left(t-\frac{T}{2}\right)}{2}
\end{aligned}
$$

$x_{h w s}$ is half-wave symmetric and has only the odd numbered fourier components of $x(t)$, $a_{2 k+1}, b_{2 k+1}$ for integer k.
$x_{h w r}$ is "half-wave repeating" and comprises only the even numbered fourier components of $\mathrm{x}(\mathrm{t})$, $a_{2 k}, b_{2 k}$ for integer k. $X_{h w r}$ repeats every half-cycle of $\mathrm{x}(\mathrm{t})$

We can use these s to sort out different portions of a waveform content in manners that can be useful, and for thinking about how we might synthesize waveforms having desired properties (e.g. having no even harmonics)
Note that even and odd portions of a given waveform $\mathrm{x}(\mathrm{t})$ are orthogonal to each other, as are the HWS and HWR components:

$$
\frac{1}{T} \int_{<T>} x_{e v}(t) x_{o d d}(t)=0 \quad \frac{1}{T} \int_{<T>} x_{H W S}(t) x_{H W R}(t)=0
$$

Inverter structure
Suppose one wants to create an AC waveform from a dc source. This can be accomplished with a bridge

$\frac{\text { Switches on }}{}$	$\frac{v_{x}}{+v_{d c}}$
S_{1}, S_{2}	$-v_{d c}$
S_{3}, S_{4}	0
S_{1}, S_{4}	0

If load/filter is resistive or inductive, switches should block forward voltage, carry bidirection current

Suppose we approximate a sinusoidal voltage by switching each switch on and off only once per cycle

- v_{x} is odd (no b_{k} terms; synthesize sine wave)
- v_{x} is half-wave symmetric (no even harmonics, $a_{2 k}, b_{2 k}$ terms $=0$)

$$
V_{x}(t)=\sum_{\mathrm{n} \text { odd }} V_{n} \sin \left(n \omega_{0} t\right)
$$

Ex. @ $\mathrm{f}=0 \rightarrow$ square wave $V_{x}(t)=\Sigma_{n, o d d} \frac{2 v_{d c}}{\pi n} \sin \left(n \omega_{0} t\right)$
fundamental, 3rd, 5th, 7th, etc...

If load filters out harmonics
V_{L} more pure than V_{x}, but difficult since harmonics are so close in frequency

What can we control by varying f ?

1. Fundamental magnitude
2. Harmonic magnitudes
3. Control of fundamental

$$
\begin{aligned}
V_{1}= & \frac{2}{2 \pi} \int_{<2 \pi>} V_{x}(t) \sin (\omega t) d(\omega t) \\
& =\frac{2}{\pi} \int_{f}^{\pi-f} V_{d c} \sin (\phi) d \phi
\end{aligned}
$$

$$
V_{1}=\frac{4 V_{d c}}{\pi} \cos (f)
$$

\rightarrow by control of f we can control the fundamental magnitude.
2. Can also control harmonics:

$$
\begin{gathered}
V_{3}=\frac{2}{2 \pi} \int_{<2 \pi>} V_{x}(t) \sin (w \omega t) d \omega t \\
=\frac{2 v_{d c}}{\pi} \int_{f}^{\pi-f} \sin (3 \phi) d \phi \\
=\left.\frac{2 V_{d c}}{3 \pi} \cos (3 \phi)\right|_{\pi-f} ^{f} \\
=\frac{2 V_{d c}}{2 \pi}[\cos (3 f)-\cos (3 \pi-3 f)] \\
=\frac{4 v_{d c}}{3 \pi} \cos (3 f)
\end{gathered}
$$

So if we choose $\mathrm{f}=\frac{p i}{6}=20^{\circ}, V_{3} \rightarrow 0$!
Then lowest harmonics will be the 5th (easier to filter)
However, we cannot control harmonics and fundamentals at the same time.
(Note: this value of f turns out to eliminate all triples (triple-n, 2n) harmonics! Thus we will have 5th, 7th, 11th, 13th)

This case

Any multiple of this frequency will also balance out to cancel exactly!
\Rightarrow eliminating 3rds makes it easier to filter

Note that there are other structures that can implement similar modulation and filtering:
Consider the topological dual

- Instead of dc voltage, use dc current (place large inductor on dc-side)
- instead of inductive filter, use capacitive filter (in parallel w/ loads)
- Instead of switches (carry bidirectional $\mathrm{i} \rightarrow$ carry unidirection i), (carry unidirectional $\mathrm{v} \rightarrow$ carry bidirection v)
- switch control is different:

Time
"Dead time" in switching different

In VSI:
S_{1} off before S_{2} on to avoid shorting $V_{d c} \Rightarrow$ "dead time" during which antiparallel diodes conduct

In CSI must turn S_{1} on before S_{3} off to prevent open circuits $I_{d r}$. Series switch diodes will pick up blocking of output.

MIT OpenCourseWare
https://ocw.mit.edu

6.622 Power Electronics

Spring 2023
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

