6.622 Power Electronics

Prof. David Perreault

Lecture 18 - Inverters 2

From last time:

- 1. We can synthesize pulsing voltages +, 0, over time
- 2. Filter to get desired output waveform (e.g. sinusoid)

3. Switching frequency limitations are often a practical constraint

 \Rightarrow Show inverter module from a toyota prius as example

To reduce filtering requirements, we often use waveform symmetrics to reduce unwanted content.

$$f(t) = \frac{b_0}{2} + \sum_{n=1}^a a_n \sin(n\omega_0 t) + b_n \cos(n\omega_0 t)$$
$$a_n = \frac{2}{T} \int_{\langle T \rangle} f(t) \sin(n\omega_0 t) dt, b_n = \frac{2}{T} \int_{\langle T \rangle} f(t) \cos(n\omega_0 t) dt$$

- For odd/even waves, synthesize odd/even patterns
- for half-wave symmetric outputs $f(t) = -f(t \frac{T}{2})$ synthesize half-wave symmetric pulse patterns $(a_{2k}, b_{2k} \text{ harmonics do not exist!})$

$$f_{hws}(t) = \frac{f(t) - f(t - \frac{T}{2})}{2}; f_{hwr}(t) = \frac{f(t) + f(t - \frac{T}{2})}{2}; f(t) = f_{hws} + f_{hwr}$$

We have seen that by control of the width of one pulse per half cycle (and each device switching on/off once per full cycle) we can

- Maintain half-wave symmetry (no even harmonics)
- eliminate triple-n harmonics (especially 3rd harmonic)

• keep odd symmetry (no cosine components)

Why? With only odd components, nth harmonic amplitude is:

Positive area of $f(t)sin(2\omega t)$ cancels negative area \therefore integral = 0!

 \Rightarrow we can introduce <u>more</u> notices in each half cycle (for <u>more switching transitions in each cycle</u>) so that higher harmonics (e.g. 5th are cancelled) while <u>not</u> disturbing the nullling of the 3rd. (see one example, next page)

In general: Harmonic elimination / programmed PWM

- Can eliminate one odd harmonic for each pulse per half cycle (and each switching transition per ac cycle)
- More harmonics eliminated, the higher the net device switching frequency
- Precise timing measured (μP)

 \rightarrow As more lower-order harmonics are eliminated, high-order harmonics actually increase, but these are more easily filtered!

Note: see classic papers for more on this area:

- H. S. Patel and R. G. Hoft "Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I — Harmonic Elimination Techniques"
- H. S. Patel and R. G. Hoft "Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part II — Voltage Control Techniques"

Harmonic Cancellation 1

Add up time-shifted waveforms to cancel desired harmonic component(s)

If $\mathbf{x}(\mathbf{t}) = \Sigma A_n \sin(n\omega_0 t + \Phi_n)$ $\therefore x(t-t_1) = \Sigma A_n \sin(n\omega_0(t-t_1) + \Phi_n)$ = $\Sigma A_n \sin(n\omega_0 t + \Phi_n - n\omega_0 t_1) (\Phi_n - n\omega_0 t_1 = \Phi'_n)$

If we time-shift to change the fundamental by an angle $\Delta \Theta_T = -\omega_0 t_1$, we shift the nth harmonic by an angle $\Delta \Phi_n = n \Delta \Phi_1$

- Shift fundamentals by $36^{\circ} (\pm 18^{\circ})$
- Shifts 5th harmonic by $180^{\circ} (\pm 90^{\circ})$

By adding waveforms time shifted so that their 5th harmonics are 180° out of phase, the 5th harmonic is cancelled in the summed waveform!

<u>Harmonic cancellation</u> and <u>harmonic elimination</u> can also be applied in other forms of power converters. For example, in dc-dc conversion, we have a desired frequency (dc) and undesired components (all ac ripple). We can suppress these, reducing ripple content + increasing fundamental ripple frequency.

With 2 converters, <u>fundamental</u> ripple

- 1. Frequency doubles!
- 2. Also, p-p current ripple (net) is <u>half</u> that of a single high-power unit.

We can <u>interleave</u> N identical converters by phase-shifting them by $\Delta t = \frac{T}{N}(\omega_1 = \frac{2\pi}{N})$. The net ripple

frequency in the input and output waveforms will ideally be at N times the individual switching frequency! \rightarrow This trick is very widely used, including in the converters for most PC power supplies feeding the final low voltage to the microprocessor

MIT OpenCourseWare https://ocw.mit.edu

6.622 Power Electronics Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>