6.622 Power Electronics Prof. David Perreault

Lecture 24 - Control 1

1 Modeling and Control

1.1 Direct circuit averaging

Consider a boost converter
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Desire to regulate the output voltage vy in the face of
1. Load disturbances = Ryin < R < Rinaz

2. Input voltage variations = Viin <V < Viao

= Feedforward has problems

1. Control depends on idealized modeling assumptions
2. Doesn’t let us control response to load variations

= Use feedback!! Change d depending on output voltage. (Check % that had 6.302...)

Vg is a voltage of 0 < V; < 1 representing duty ratio = generate q(t)
switching fn
Over 1 cycle < ¢(t) >=< vy >— PWM generation




We need a dynamic model for the converter
Switched models are not easy to use

e They carry too much information about the waveforms

e We want to know about low frequency variations, not switching

(See example simultation of boost to illustrate this: Ex 1 — can show demo boost d < t (Q fixed D))
To study low-frequency “averaged” behavior, we can look at the local average value of the waveforms.

Define local average operator:

z(t) = %~/thX(T)dT

(Moving average over 1 cycle)

— local average tracks low freq variations, suppresses switching ripple info

Properties of this operator

differentiation

(Proof trivial)

Note: in general x(t)y(t) # Z(¢)y(t)
But if x(t) or y(t) has both

1. small ripple
2. slow variation wrt

Then x(t)y(t) =~ Z(t)y(t)

Linearity (ax + by) = o + by

(proof trivial)

Time invariance z(t — t9)) = T(t — to))

(proof trivial)

2 Local average operator

Operator definition
— 1
X0 = & / t— T a(r)dr
T J

Transfer function
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angle(H(jw)), rad

Magnitude and Phase of Local Average Operator Transfer Function
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Magnitude response has unity gain at dc, zero gain at switching
frequency and harmonics
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Consider the use of this operator on a circuit: because LTI, KVL 4+ KCL are satisfied for average vars

KVL: ¥v;; =0 = Xv;; =0

KCL: ¥i; =0 — %i; =0

We can apply averaging in circuits

Consider constitutive laws for averaged vars:

v(t) = i(t)R
v(t) =i(t)R

di
v(t) = L%
=

el e 7
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\ _ i(t) = Cdt

Nonlinear or time varying elements do change!
Boost circuit o -
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LTT circuit elements constitutive
relationships do not change!
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T but if x(t) or y(t) has

T e e 1. small ripple

Model with switching function

2. and slow variation wrt T

= T ~ T(O)(t)

If i, has small ripple, slow variation .. (1 — q)ip ~ 1 —q-i = d'if,

To average, place line over all variables (LTI ele-
ments do not change)

v. has small ripple, slow variation (ie = const over a cycle) .. (1 — q)vg =~ 1 — ¢ - 75 = d'vg

Where Xd(t) = q(t)




3 Averaged circuit model
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e In this circuit model, we have no more switching (only depends on averaged duty cycle d(t) = ¢(t))
e model is not linear in our control variable d(t) (because of d'vg, d’if, terms)

e model is very simple, 4+ should be accurage for averaged variables if our assumptions are valid (ie
qir = Qir, etc)

Ex2. (Show simulation w/ both switched averaged models.)
1. good results (small offset due to evice mods)
2. will be very useful for control!!

Note: not useful for some things. Ex switch power dissipation
P(t) =V (t)i(t)
P(t) =V (t)i(t) # v(t)i(t) (small ripple assumtion not met)
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