
6.622 Power Electronics Prof. David Perreault 

Lecture 27 - Control 4 (Current-Mode Control) 

We have seen that duty-ratio control can yield (in Boost and other converters): 

1. Nonlinear dynamics (vary w/ operating point) 

2. RHP zero + lightly-damped poles 

One can partially mitigate damping and operating-point variation with a damping leg. However, a still 
better strategy is “full-state feedback”: control the converter based on both inductor current and output 
(capacitor) voltage. 
In current-mode control we add an inner feedback loop to control inductor current, and use an outer 

feedback loop to control voltage. 

In peak current control we adjust the switching function q(t) such that 

1. The switch turns on every T seconds 

2. Switch turns of when the peak inductor current reaches (a simple function of) a reference value ip 

⇒ The value of ip is set by the (outer) voltage control loop to regulate vout 
This gives 

1. better controlled dynamics 

2. cycle-by-cycle current limiting 

Consider the boost: 

Boost 
µ1 = u 

L 
µ2 = v−u 

L 

• Switch turns on at beginning of each cycle 

• switch turns of when iL reaches ip − µc(t − nT ) 

– → will see reason for adjustment term µc shortly 

– → must sense iL (or isw) but often do anyway for protection 

• control output voltage by adjusting ip 
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Consider system dynamics: 
Simplest method: start with duty ratio equations, fnd (approximate) relation between d, ip, iL 

Look at a 1-cycle window and make a geometric 
approximation 

1 1 1 
iL ≈ (ip − µcdT ) − [ µ1d

2T 2 + µ2(1 − d)2T 2]
T 2 2 

iL ≈ (ip − µcdT ) − 
1 
µ1d

2T +
1 
µ2(1 − d)2T 

2 2 
Their equation can be used for various types of converters (but for diferent values of µ1, µ2 

u v−uFor a boost converter: µ1 = , µ2 = L L 

1 uT (v − u)T
∴ iL = ip − µcdT − d2 − (1 − d)2 

2 L 2L 

linearize + solve for d̃: 

1 (D2 − D ′2) D ′2 

(Equation∗)d̃ = (ĩ  
p − ĩL) − ũ − ṽ 

µcT 2LµC 2Lµc 

For boost converter 

If we substitute Equation ∗ into the linearized state-spacemodel of the boost converter from before, we 
eliminated d̃  and have a new control variable ĩ  

p 

From new model, we can get new linearized plant transfer function H2(s) 

1. RHP zero 

2. 2 LHP poles 

→ low freq, 1 high freq, on real axis (depending on µc) 

⇒ we can achieve much better control performance! 

A challenge is Ripple Instability: under some conditions, the system will not settle to a single duty ratio 
at the switching period. Instead, it may oscillate subharmonically or chaotically! 

Bad because 

1. Low frequency ripple (below fsw) 

2. Large ripple amplitude + spectrum 

3. Control is “jittery” 
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A properly chosen “compensating ramp” (slope - −µc) can fx this: ⇒ let’s analyze ripple dynamics 
(can’t used averaged model) 

Start w/ ∆I ofset from 
steady state µ1D = µ2(1−D) 

Considering the parallel lines in this region 

∆In = (µ1 + µC )(D − d∗)T 

∆In+1 = (µC + µ2)(D − d∗)T 

µ2 − µC
∆In+1 = − ∆In 

µ1 + µC 

Unstable forµ2 − µC µ2 − µc∴ ∆In = (− )n∆Io | | > 1µ1 + µC µ1 + µC 

boost D@ µc = 0 | µ2 | > 1 → | | > 1 ∴ unstable for D > 0.5 µ1 1−D 

⇒ choose µC to stabilize ripple dynamics (µ2 = µc deadbeat control) 
But µC afects averaged dynamics (steeper µC looks more like duty ratio control) ⇒ tradeof. 
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