6.622 Power Electronics

Prof. David Perreault

Lecture 29 - EMI Filtering 2

1 Review

e Filters are needed to achieve long attentuation of ripple

e to make measurements REPEATABLE a LISN is often specifified for making EMI measurements:
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e The LISN makes the ripple-frequency impedance looking back into the source known + repeatable

e Ripple measurements made @ the LISN “resistor”: typically a 502 input impedance of a spectrum

analyzer

High-frequency ripple model
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To achieve sufficient attenuation, a capacitor often insufficient. A higher-order filter is needed. The filter
should pass dc current w low loss, and accept dc voltage with low loss
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e We can get -40dB/decade attenuation above the cutoff
e blocks dc voltage well (capacitor), carries dc current well (inductor)

e can cascade L sections if needed

A second consideration is filter and component parasitics

2 Parasitics

We must carefully consider component and layout parasitic, as they limit HF performance!
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Component parasitics are an important limitation/consideration in design



Another design issue is filter damping. (In practice, the LISN) is not present, and we must have acceptable
behavior across all frequency
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LC

Neglecting Z,, setting V; — 0, the converter looks back into a parallel LC tank circuit. At resonance,
this becomes a high impedance + large resonant currents will flow! = must damp to be acceptable.
A natural idea is to add a resistor to damp the filter
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\ C‘? ‘ (}j If Ry < ,/é—; we will be damped!

However, we could not accept the dc dissipation of R4! So, place it in series with a large dc blocking

capacitor Cy, such that the Ry — C; combination looks resistive Q@ w = \/LI_C
£Cs

O'—‘W\;— o we want Cq >> Cy for effective performance,
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L " typically 2 to 10 times
c;- ch e (4 needs to be big, but unlike Cy
C e e R — It only carries low current
{' \ T C " — it can have big parasitics (only capaci-
D o tive @ low freq \/ﬁ)

Let’s consider selection of the damping resistor Ry for a given choice of damping capacitor Cy = nCy
(where n>1, usually 2-10). We can characterize the damping by looking at the output impedance of the
filter:
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3 Goldilocks

o If Ry too small, Ly resonates with Cy||C and impedance peaks high.
o If Ry too big, Ly resonates with C' and impedance peaks high.

o If Ry “just right,” we minimize peaking for that value of Cp = nCy.

= It can be shown (as in Erickson + Maksimovic) that the peak of the | Zy| curve for an optimal damping
resistor that minimizes max |Zp| is exactly the intersection point of the |Zy| curves for Ry — 0 and Ry — oo.

* Choose a ”Goldilocks” value of Ry to achieve this minimum peaking. Can find by simulation sweep or
analytically as
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Ro==, /L n==""Rr=R
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(24+n)(4+ 3n)
2n2(4 +n)

And we get a maximum output impedance: |Zq.| = Ro —”Z(;W
Note that in our filter design we choose n = % The bigger the multiple n, the smaller we can make

| Zmaz| or equivalently, the more damped we can make the filter for a given Ly, Cy.
We pay for a bigger n by requiring a higher Cy value (bigger damping capacitor).
We could also put the damping leg in parallel with Ly
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e high-frequency attentuation not as good as

undamped L;Cy. Move cutoff down to com-
pensate.
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L4 can be small since it carries no dc current!

We must also consider the low-frequency interactions between the power converter and the filter!
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To regulate the output to a specified voltage (controlled) the converter needs to draw a certain amount
of power from the input, independent of voltage v;n!

= It is a constant-power load!

@ constant power Py: v, = iﬁl
mn
For variations in input voltage, we get variations in current

T, A

So incrementally about the operating point, the converter looks like a negative resistance!
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We require that the system remain well damped despite the tendency of the negative resistance to undamp
the system.



max(Zy(w) ~ Rq)
System approximation
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| Simplified approximation: neglects effect of Cy, but
approximately true
We need Ry||r; >0

Rgry
Rg+ 1

P,
> 0 for Rq < |rj] = make Ry <<|—I—20|

In general: max(Zy) << | — 4|1 (There are also other considerations we neglect here!)
= show demo of input filter oscillations

If time permits: show sufficient condition for input filter to not affect converter control design
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Can prove (using Middlebrookextra element theorem)

z0(s)
EENOR
1+ 20(8)

za(s)

Gvd(s) = (Gvd(s)‘z(s):()) ! [

Where G,4(s) is a transfer function with no filter

e 2y(s) filter output impedance

e 2,(s) converter input impedance w/ perfect control of output (:—%)
e z4(s) converter input impedance w/ constant duty ratio

Sufficient condition |zp(s)| << z,(s) and z4(s)
(see Erickson and Maksimoniv chapter for details)
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