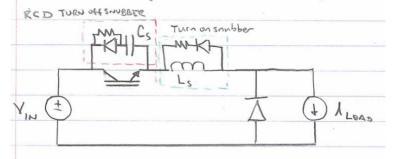

6.622 Power Electronics

Prof. David Perreault

Lecture 33 - Soft-Switching 1

1 Review


Switching losses + snubbers:

The voltage/current overlap (without snubbers) has three deleterious effects:

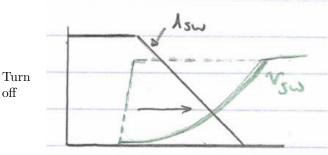
- 1. Loss + limited $\eta + f_{sw}$ (overlap + capacitive discharge loss)
- 2. EMI due to high $\frac{di}{dt} + \frac{dv}{dt}$
- 3. switching locus may exceed SOA + $\frac{di}{dt}, \frac{dv}{dt}$ limits allowed

Snubbers mitigate these effects, but (typically) add losses

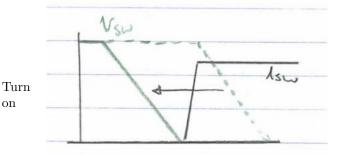
Today: Soft-switching techniques try to mitigate these effects $\underline{\text{without}}$ adding loss. General methods:

"zero voltage" switching (ZVS) "zero current" switching (ZCS)

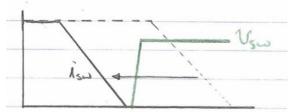
Can be applied at turn on and/or turn off

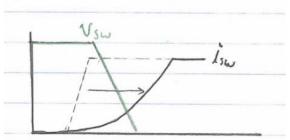

- Turn off snubber looks like ZVS in the limit
- Turn on snubber looks like ZCS in the limit

But we need to <u>recover</u> the snubber energy!


2 Soft Switching

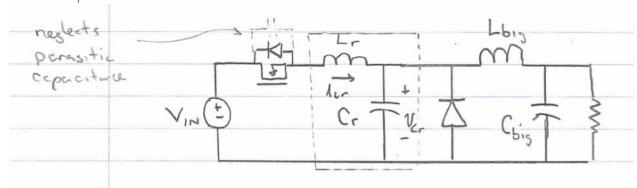
Zero voltage


:


 \star Delay V-rise on switch

Zero current

 \star Make current in switch /rightarrow 0 <u>BEFORE</u> turning off switch



 \star Make switch voltage go to zero <u>before</u> switch turn on

 \star Delay current rise on switch

- So, we can reduce overlap loss by either delaying voltage or current rise in the switch, or by arranging the switching event to take place when voltage and/or current will naturally be zero.
- These techniques typically require additional control or circuit complexity, or may add conduction loss or peak device stress, but the tradeoff may often be worth it!
- ZVS turn on additionally reduces capacitor discharge loss (important at very high frequencies) while ZCS turn on reduces loss in parasitic inductance.
- Varying degrees of "softness" exist, depending on the degree to which waveform rises are delayed, slopes at transitions, etc.

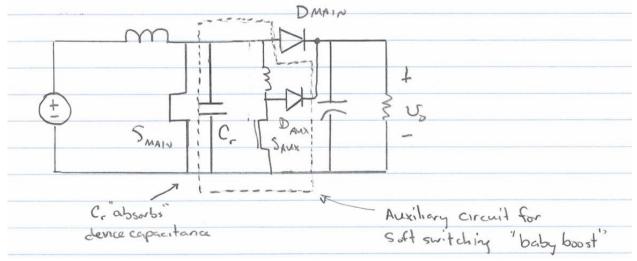
3 Example: ZCS Quasi-Resonant Buck Converter (Full wave)

 \rightarrow see handout/overhead

Go through operational cycle:

- Main switch turns on ZCS
- Main switch/diode turns off ZCS
- Diode turns on ZCS
- Diode turns off ZCS

 V_{out} controlled by f_{sw} control/pulse density modulation Show experimental waveforms at light, heavy load


Advantages:

Smooth (mostly soft) waveform transitions Low switching losses to moderate frequencies Disadv:

- ZCS turn on still loses junction cap energy
- ZCS turn off of devices can still have ringing w/ device junction cap
- High conduction losses (compared to P_{wm}) due to resonant action and energy slosh
- diode voltage rating 2x
- requires frequency control over very wide range

4 Example: 2VT Boost Converter

Add an auxiliary circuit to the conventional P_{WM} boost converter to enable the main devices to have ZVS switching \rightarrow The auxiliary "Baby boost" circuit is <u>not</u> fully soft switched, but has a low rating.

Auxiliary circuit operates only @ switching transitions

- Allows ZVS switching of main switch and diode
- especially valuable @ high output voltage where main diode reverse recovery (+ switch capacitave discharge loss) are important

Auxiliary circuit is not fully soft switched (compromise between full soft switching) hard switching)

• ZCS turn on of S_{aux} , but capacitive discalarge remains

- SCS turn off of D_{aux}
- loss is limited because auxiliary circuit elements can be small

MIT OpenCourseWare https://ocw.mit.edu

6.622 Power Electronics Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>