6.622 Power Electronics Prof. David Perreault

Lecture 36 - Resonant Power Conversion Continued

1 Review:

Resonant networks provide strong impedance variation w/ frequency
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wo = \/%70, Z0 = %, QQuwy = 2% = we can control power to load R by varying frequency!
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2 “Class D” amplifier in “series resonant” converter

Suppose we drive the resonant tank (w/ resistive load R) from a half-bridge inverter:
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Fourier transform based on exponential form of series, + has scaling on it (—2)



To control iy, power to R, we might vary switching frequency above or below resonance.
iz, (jws)| = [Va(jws) - Yin (jws)]

e = Above resonance fg, > 52 network looks inductive

e = Below resonance fy, < 52 network looks capacitive (keep 3 fs,, >> wp to avoid amplifying harmonic
voltage)

3 Fundamental Harmonic Approximation (FHA)

= if harmonics well filtered (near resonance, high Q) iy, sinusoidal
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Above resonance i, lags vy 1

= If we add capacitors across the switch (could be junction capacitor) we can always get 2VS turn on
and turn off!

0. A ‘“nice” characteristic is that device + component currents change proportional to load current (good
for efficiency vs load)

1. Note: Device voltages are clamped @ V;, but iy, v, can have large peak values. At resonance:
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= Q! can be j; 1
2. challenge: as Resistor varies

(a) If R too small, v's,#’s T or must move away from resonance

(b) If R too large, tank @ |, low selectivity (wide f var), nonsinusoidal waveforms, can lose soft
switching

With the series circuit there are concerns w/ load resistor variation (The load may vary naturally w/

system (e.g. induction cooking). Rectifiers provide loads having equivalent resistance that vary w/ power +
output power)

1. If R — too small we must move away from resonance or peak V’s; i’'s become large
2. If R — too big selectivity of the tank becomes poor

e Current not sinusoidal

e “soft” switching lost



We can get different properties by loading the tank differently
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In this case, tank @ becomes high as R, 1 (generate big V's and I’s in tank when R, — c0), and tank
Qlas R, |

A further impact of this is that well as power decreases R 1. Efficiency a light load may be a challenge

This is used to good effect in fluorescent lamp ballasts:

e Lamp R 1 until a big voltage is applied and lamp “strikes”

e Once lamp is struck, R, | and tank becomes more loaded, delivering appropriate power at lower
voltages.

To get a balance between series and parallel behavior, the “series parallel” approach is sometimes used
(also called “LCC”).

e @ low “R” values R “shorts out” C5 and design acts
‘ C | “like” a series res control
(’_") Y1 I‘L e @ high “R” values the equivalent resonant charac-
| ! I % teristics change [Ceq goes from C; to C4||Ch]
CZ | E R If we increase f,,,, we get behavior “like” parallel res.

What about dc-dc conversion? = model the rectifier!
We can also use the “Fundamental Harmonic Approximation” to model rectifiers
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If V4 is determined by a dc load resistor

fundamental component of V... is

4 .
Urect,1 = ;Vosm(wt)




Cases:

1. For a fixed output voltage Vp (not determined by a de resistor). P,, =< i, > -Vp = %I Vorl=7% 1?‘;0”

So the FHA ac impedance posed by the rectifier is:

‘/rect,l 4%_4‘/02‘/0
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Racesr = ﬁp—o General form for other rectifiers K —2

2. If the rectifier is loaded with a dc resistor Rp¢:

Vrect,l o % i 2IRDC

Ra(‘ e = 7 . N -
melf Isin(wt) wI =l v
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Rocesfr = = Rpc | General form for other rectifiers K’ - Rpc

Similar expressions may be found for other rectifiers

Consider a “series resonant” de-de converter
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Operate above wy = ﬁ to get ZVS soft switching.

This works for a ”dc gain” such that |V, 1| < |V, 1]

— We can change inverter and/or rectifier topology (full-bridge, half-bridge) to adjust the gain, as
well as transformer turns ratio.
— For very “light” loads (Rg4. big) tank selectivity /frequency range becomes a problem.
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x Can use a different tank structure, such as parallel, LCC, LLC.

* Can “burst” converter on and off = R.sf = (power when burst is “on”).

We often pick a tank that meets requirements of an application and absorbs parasitics in a useful
way (e.g., “series-parallel” /LCC or parallel resonant converter PRC can be used when a high-voltage
secondary yields high transformer capacitance and/or rectifier capacitance)

e = @,
e By gapping the transformer, we can get an “LLC” design: = _'Tp
— Above wger = ﬁ’ we get behavior a bit like a series-resonant con- iM';[‘%u %:H’

verter, but L,, herlp; at low power and provides inductive ZVS current. ”
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— Below wser, we can still be inductively loaded and get additional voltage A I
gain by resonance between C and L,,, “matching” over some range. . ; }r&;(_



We can also operate below resonance in some designs for ZCS, e.g.
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Since i1, > 0 before top switch turns on, bottom diode conducts + bottom switch off @ ZCS. Same w/
top switch

A variation of this trick uses multiple resonances to provide ZCS turn on for the switches, also. Good
for thyreistors.
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